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Key Points

• Downregulation of
major
histocompatibility
complex class II
expression is observed
at posttransplant
pediatric AML relapse.

• Natural killer cells and
CD8+ T-cell subsets
are dysfunctional at
posttransplant
pediatric AML relapse.
Although allogeneic hematopoietic cell transplant (allo-HCT) is curative for high-risk

pediatric acute myeloid leukemia (AML), disease relapse remains the primary cause of

posttransplant mortality. To identify pressures imposed by allo-HCT on AML cells that escape

the graft-versus-leukemia effect, we evaluated immune signatures at diagnosis and

posttransplant relapse in bonemarrow samples from 4 pediatric patients using a multimodal

single-cell proteogenomic approach. Downregulation of major histocompatibility complex

class II expression was most profound in progenitor-like blasts and accompanied by

correlative changes in transcriptional regulation. Dysfunction of activated natural killer cells

and CD8+ T-cell subsets at relapse was evidenced by the loss of response to interferon

gamma, tumor necrosis factor α signaling via NF-κB, and interleukin-2/STAT5 signaling.

Clonotype analysis of posttransplant relapse samples revealed an expansion of dysfunctional

T cells and enrichment of T-regulatory and T-helper cells. Using novel computational

methods, our results illustrate a diverse immune-related transcriptional signature in

posttransplant relapses not previously reported in pediatric AML.
Introduction

Pediatric acute myeloid leukemia (AML) is an aggressive cancer characterized by a rapid accumulation
of immature cells of the myeloid lineage, representing from 15% to 20% of all pediatric acute leuke-
mias.1 Although allogeneic hematopoietic cell transplantation (allo-HCT) is curative for high-risk AML in
children, posttransplantation relapse occurs in ~20% to 50% patients, comprising the primary cause of
treatment failure and mortality.2 The efficacy of allo-HCT in curing hematological malignancies partly
relies on transferring an immune system from donor to patient that is capable of eliminating residual
tumor cells via a mechanism known as the graft-versus-leukemia effect.3 Computational advances
permit the study of tumor evolution and relapsed disease in the context of immune-mediated selective
pressures imposed by allo-HCT.
ay 2023; prepublished online on Blood
e 2023. https://doi.org/10.1182/

dy.

ual meeting of the American Society of
ber 2022.

Expression Omnibus database (acces-

Data are available on request from the corresponding author, Katharine C. Hsu
(hsuk@mskcc.org).

The full-text version of this article contains a data supplement.

© 2023 by The American Society of Hematology. Licensed under Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0),
permitting only noncommercial, nonderivative use with attribution. All other rights
reserved.

ER 17 5069

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
https://doi.org/10.1182/bloodadvances.2022009468
https://doi.org/10.1182/bloodadvances.2022009468
mailto:hsuk@mskcc.org
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode


Current evidence in adult patients with AML suggests that relapse
after allo-HCT is mediated by a variety of immune escape mecha-
nisms, including loss or altered expression of major histocompati-
bility complex (MHC) molecules, aberrant cytokine signaling, and
expression of immune checkpoints that suppress immune
response against leukemic cells.4,5 Specifically, AML cells in adult
patients with post-HCT relapse demonstrate downregulation of
MHC class II (MHC-II) molecules, downregulation of activating
markers, such as CD11A and LFA-1, and upregulation of inhibitory
markers, including PD-L1 and B7-H3.4 T cells from the same
patients exhibit increases in exhaustion patterns, including upre-
gulation of PD-1.4 Meanwhile, in natural killer (NK) cells, target cell–
induced interferon gamma (IFN-γ) production appears markedly
diminished in multiple allo-HCT settings (T-cell–replete, T-cell–
depleted, and umbilical cord blood transplantation).6 These studies
have exclusively addressed adult patients with AML.

Major differences in the disease spectrum between adult and
pediatric patients with AML can be attributed to dissimilar envi-
ronmental and genetic factors.7 The homeostatic environment and
immune system of a fully mature host differ significantly from that of
a developing host, in whom a susceptible stem cell population
experiences reduced protection from a less mature innate and
adaptive immune system.7,8 In addition, pediatric AML is typified by
molecular drivers, including structural chromosomal rearrange-
ments leading to expressed fusion genes, whereas adult AML
largely results from acquisition of sequential somatic mutations
over time.9-11 These major differences may result in distinctively
dysregulated biological processes within the leukemia cell,
affecting cell differentiation, proliferation, apoptosis, and immune
interaction.

Elucidating the factors that contribute to the ability of leukemia cells
in children to escape immune recognition in allo-HCT is vital to the
success of transplantation and adoptive cellular therapies for
relapsed disease. We evaluated bone marrow aspirate (BMA)
samples obtained at diagnosis and at posttransplant relapse for 4
pediatric patients with AML at Memorial Sloan Kettering Cancer
Center (MSKCC). Using cellular indexing of transcriptomes and
epitopes by sequencing (CITE-seq)12 and T-cell receptor (TCR)
sequencing, we identify several transcriptional and phenotypic
alterations that may permit pediatric AML cells to escape the graft-
versus-leukemia effect.

Methods

Patient samples

To identify patients for inclusion in this study, we performed a
retrospective review of pediatric patients with AML who relapsed
after receiving an allogeneic HCT between 2008 and 2020 at
MSKCC. Cryopreserved paired samples of BMAs performed at the
time of diagnosis and relapse after allo-HCT were obtained from
MSKCC’s Hematologic Oncology Tissue Bank and New York
Presbyterian Hospital Weill Cornell Medical Center Hema-
topathology Department. All participants or their parents provided
written consent for banking and use of these specimens for future
research following research sample procurement and genomic
profiling protocols, IRB#06-107 and 12-245, respectively, in
accordance with the regulations of the MSKCC Institutional
Review Board. In all cases, a retrospective review of clinical
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parameterswas performed, and cytogenetic, molecular genetic,
and diagnostic flow cytometry results were obtained. Clinical
follow-up information was obtained via retrospective review of the
medical record under IRB#16-1564. Frozen primary human whole
bone marrow mononuclear cells (from a 20-year-old female) were
obtained from STEMCELL Technologies and was used as a
healthy donor control.

Frozen bone marrow mononuclear cell preparation

Frozen human bone marrow specimens were thawed and trans-
ferred into 5 mL polypropylene fluorescence-activated cell sorting
(FACS) tubes and resuspended in 4 mL phosphate-buffered saline
(PBS) + 2 mM EDTA + 2% fetal bovine serum (FBS) (staining
buffer). Cell suspensions were centrifuged at 500 g for 5 minutes
at 4◦C, and the supernatant was discarded (all subsequent wash
steps were performed the same way). Cell pellets were resus-
pended in staining buffer and counted. For each sample with >106

live cells, 70% was used for T-cell sorting (described in “T-cell
sorting”). The remaining 30% of the samples, or the entire sample
for those with <106 live cells, were washed and then subjected to
dead cell removal (Miltenyi Biotec). Dead cells were depleted per
the manufacturer’s instructions, with the exception of the incuba-
tion period shortened to 5 minutes and column washes reduced to
3 times. The live cell fraction was washed, resuspended in staining
buffer, and counted. Samples were resuspended in PBS + 2%
FBS (labeling buffer) and Human FcR Blocking Reagent (1:50,
Miltenyi Biotec) and incubated on ice for 5 minutes. Samples were
tagged with cell hashing (Stoeckius et al, 2018) oligo-tagged
antibodies (TotalSeq-C0251 anti-human hashtag 1 antibody and
TotalSeq-C0252 anti-human hashtag 2 antibody; BioLegend) per
the manufacturer’s instructions. After tagging, samples were
washed 3 times in labeling buffer, and then each patient’s samples
were pooled together and washed. Samples were resuspended in
labeling buffer and Human FcR Blocking Reagent (1:50, Miltenyi
Biotec) and incubated on ice for 5 minutes. CITE-Seq antibodies
(TotalSeq-C Human Universal Cocktail, BioLegend) were stained
per the manufacturer’s instructions, using the aforementioned
labeling buffer for all steps. After staining, samples were washed 3
times in labeling buffer and resuspended at a concentration of 103

cells per μL in cold PBS + 0.04% bovine serum albumin
(sequencing buffer).

T-cell sorting

Samples were incubated with Human FcR Blocking Reagent
(1:50; Miltenyi Biotec) in staining buffer on ice for 10 minutes.
Phycoerythrin-conjugated anti-human CD45 (clone HI30; to a final
concentration of 1:50 in staining buffer; BD Biosciences), BV650-
conjugated anti-human CD3 (clone UCHT1; to a final concentra-
tion of 1:100 in staining buffer; BD Biosciences), and fluorescein
isothiocyanate–conjugated anti-human CD14 (clone M5E2; to a
final concentration of 1:50 in staining buffer; BD Biosciences) were
added to the samples and incubated on ice for 20 minutes. After
incubation, cell suspensions were washed twice with staining
buffer, resuspended at a concentration of 106 cells per 100 μL of
staining buffer containing 4′,6-diamidino-2-phenylindole (1 μg/mL)
for viability staining, and then passed through a 35 μm nylon mesh
filter to remove cell clumps. Sorting was performed using FAC-
SAria Cell Sorter (BD Biosciences). T cells were identified and
sorted into 5 mL polypropylene FACS tubes coated with 350 μL
12 SEPTEMBER 2023 • VOLUME 7, NUMBER 17



FBS on the basis of forward scatter and side scatter, singlets,
viability (4′,6-diamidino-2-phenylindolelow), CD45+, CD14–, and
CD3+. After cell sorting, individual samples were centrifuged at
700 g at 4◦C for 7 minutes, counted, tagged for cell hashing as
described earlier, and resuspended at a concentration of 103 cells
per μL in sequencing buffer.

Sequencing

Single-cell transcriptome sequencing. Fresh cells were
stained with Trypan blue, and Countess II Automated Cell Counter
(Thermo Fisher Scientific) was used to assess both cell number
and viability. After quality control, the single-cell suspension was
loaded onto a Chromium Next GEM Chip K (10X Genomics PN
1000286). GEM generation, complementary DNA (cDNA) syn-
thesis, cDNA amplification, and library preparation of ~2000 to
14 000 cells was done using the Chromium Next GEM Single Cell
5′ Kit version 2 (10X Genomics PN 1000263) in accordance with
the manufacturer’s protocol. cDNA amplification included 13 or 14
cycles, and between 38 and 50 ng of the material was used to
prepare sequencing libraries with 14 cycles of polymerase chain
reaction (PCR). Indexed libraries were pooled equimolar and
sequenced on a NovaSeq 6000 in a PE28/91 run using the
NovaSeq 6000 S1 or S2 Reagent Kit (100 or 200 cycles) (Illu-
mina). An average of 263 million paired reads were generated per
sample.

Single-cell V(D)J analysis from RNA. An aliquot of cDNA
generated using the methods described above was used to enrich
for V(D)J regions using the Chromium Single Cell Human TCR
Amplification Kit (10X Genomics PN 1000252) per the manufac-
turer’s protocol, with 10 cycles of PCR during enrichment and 9
cycles during library preparation. Indexed libraries were pooled
equimolar and sequenced on a NovaSeq 6000 in a PE28/91 run
using the NovaSeq 6000 S2 Reagent Kit (100 cycles; Illumina). An
average of 44 million reads were generated per sample.

Cell surface protein feature barcode analysis. Amplification
products generated using the previously described methods
included both cDNA and feature barcodes tagged with cell barc-
odes and unique molecular identifiers (UMIs). Smaller feature
barcode fragments were separated from longer amplified cDNA
using a 0.6X cleanup using aMPure XP beads (Beckman Coulter
catalog # A63882). Libraries were constructed using the 5′
Feature Barcode Kit (10X Genomics PN 1000256) per the man-
ufacturer’s protocol, with 9 cycles of PCR. Indexed libraries were
pooled equimolar and sequenced on a NovaSeq 6000 in a PE28/
91 run using the NovaSeq 6000 S2 Reagent Kit (100 cycles;
Illumina). An average of 36 million reads were generated per
sample.

Data preprocessing

Twenty-two sequencing samples from 5 individuals (including a
healthy donor) were registered in the Isabl platform13 (a platform
for the integration, management, and processing of individual-
centric multimodal data). Metadata, such as experimental tech-
niques (single-cell RNA sequencing [RNA-seq] VDJ, single-cell
CITE-seq, and single-cell RNA-seq), sample category (tumor/
germ line), sample ID, cohort ID, and disease information were
recorded in a secured relational database.
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Single-cell analysis

CellRanger software (version 6.0.1) was used to perform read
alignment, barcode filtering, and UMI quantification using the 10X
GRCh38 transcriptome (version 3.0.0) for gene expression. Paired
TCR sequences and protein expression levels were generated
using 10X CellRanger VDJ (version 4.0.0) and CellRanger Feature
Barcoding (3.1.0), respectively. Filtered matrixes were processed
using the Scanpy python package (version 3.0.1).14 The resulting
gene-by-cell matrix was log normalized and merged for each
patient. Protein expression from CITE-seq was normalized using
the centered log ratio method.15 Cells with <300 total UMIs and
genes found in <3 cells were excluded from the analysis.

Individual cells were classified to major cell types using a set of
marker genes (supplemental Table 1) using GeneVector.16,17 The
AML blast cells were further divided into subtypes using annotation
transfer within the ingest pipeline available in Scanpy python
library14 with a single-cell RNA-seq, AML-specific reference data
set of 6 blast subtypes.18 T-cell specific phenotypes were proba-
bilistically assigned using a collection of referenced marker
genes,19 and NK activation and exhaustion signature were manu-
ally curated. Cell-type annotated matrixes for individual patients
across timepoints were integrated using Harmony (version 0.1) into
a single batch-corrected matrix. Dimensionality reduction and
visualization as a uniform manifold approximation and projection
(UMAP) embedding was performed using the Scanpy python
package.14 Differentially expressed genes (DEGs; P < .001) were
computed using the Wilcoxon test both at diagnosis and post-
transplantation relapse for each phenotype and among patients.

Pathway enrichment and gene set enrichment analysis plots were
generated using the Gseapy python package,20 with gene lists
collected from Enrichr libraries on DEGs in our data set and from 2
additional articles based on adult patients using the reported
DEGs.21-23 Doublets were calculated using the Scrublet python
package, with a maximum score of 0.3.24 Clonotype annotations
were assigned to barcodes using the Scirpy python library.20

Transcription factors with binding sites found 10 kb upstream
and 1 kb downstream of transcription start sites for MHC-II genes
were identified using Motifmap25 and annotated as activators or
repressors using the TRRUST database.26 Transcriptional activa-
tors, repressors, and MHC-II genes were assigned scored values
for the 6 AML blast subtypes using the Seurat gene scoring
module as implemented in Scanpy.27

Individual TCR β (TRB) clonotypes were defined from the TRB
CDR3 amino acid sequence and processed using Scirpy,27

defined by a unique amino acid sequence. Public clonotypes
were defined as any clonotype found in >1 patient. Generation
probabilities for individual TRB sequences was computed using
OLGA python package.28

Results

Clinical information for the 4 pediatric patients with AML (UPN1-4)
is shown in supplemental Table 2. UPN1-3 achieved sustained full
donor chimerism before relapse, whereas UPN4 did not. A total of
79 334 single-cell transcriptomes were profiled from 9 BMA
samples obtained from the 4 patients at diagnosis (n = 45 345)
and posttransplantation relapse (n = 15 412) and from 1 healthy
20-year-old female donor (n = 18 577). For BMA samples with
IMMUNE PROFILING AFTER ALLO-HCT IN PEDIATRIC AML 5071



≥106 viable cells present, a fraction of the sample was flow cyto-
metrically sorted for T cells. Detailed profiling of the leukemia-
associated immune compartment was performed, including TCR-
seq (supplemental Figures 1 and 2).

Downregulation of MHC-II gene expression in

pediatric AML blasts at posttransplantation relapse

compared with that at disease diagnosis

We performed an initial probabilistic cell-type assignment using a
set of marker genes (supplemental Table 1) for the major cell types
(T cells, NK cells, normal myeloid cells, B cells, and AML blast cells)
(Figure 1A). The distribution of cell types was diverse across
patients and between diagnosis and relapse samples per patient.
Major cell–type assignments were validated based on relative
expression levels of canonical markers encompassing lineage-
specific gene and surface markers (supplemental Figure 3).
Although known AML blast transcriptional markers are derived from
adult samples, we found that those cells labeled as AML blasts in
our samples from pediatric patients also expressed high levels of
myeloperoxidase (MPO), elastase, neutrophil expressed (ELANE),
and azurocidin 1 (AZU1). The healthy myeloid and AML blast
clusters in Figure 1A appear to cluster differently for each patient
(supplemental Figure 4A), rather than at different time points
(supplemental Figure 4B). Each myeloid cluster (supplemental
Figure 4C) contains known myeloid/AML markers (supplemental
Figure 4D-E). Although there is limited availability of single-cell
transcriptional data for pediatric AML blasts, we validated our
analysis by comparing genes upregulated in pediatric leukemic
blasts vs healthy stem cells in our data with that previously
generated from pediatric AML microarray data.29 We found that of
the 50 genes reported by Depreter et al, 5 genes were significantly
upregulated in our pediatric AML blast analysis: ATF3, CFD, EMI-
LIN2, FOSB, and TUBB6 (P = .02).

Pathway enrichment analysis identified several significantly down-
regulated immune-related processes in AML blasts at disease
relapse after allo-HCT compared with that at initial disease diag-
nosis, including antigen processing and presentation, cytokine-
mediated signaling, and IFN-γ mediated signaling (Figure 1B).
Interestingly, the MHC-II antigen presentation pathways were
common to pediatric and adult post-HCT relapse4,5 (Figure 1C).
Overall downregulation of MHC-II genes HLA-DR, -DP, -DQ, -DM,
and -DO and MHC-II regulators CIITA and CD74 was observed on
comparing mean expression at diagnosis with that at post-
transplantation relapse (Figure 1D-E). However, there was vari-
ability among patients regarding the specific MHC-II genes
downregulated (supplemental Figure 5). Although this down-
regulation was not significant in the CITE-seq protein expression
data (supplemental Figure 6), it was readily apparent via flow
cytometry (supplemental Figure 7).

It has been reported in adult AML that the absence of NKG2D
ligands defines leukemia stem cells and mediates their immune
evasion,30 so we evaluated the change in expression level of
NKG2D ligands (MICA, MICB, ULBP1, ULBP2, and ULBP3) on
AML blasts between diagnosis and posttransplantation relapse.
Although there was a decrease in gene expression level of all 5
ligands at posttransplantation relapse, only MICA was statistically
significantly downregulated (P = .01) in our data (supplemental
Figure 8).
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Downregulation of MHC-II gene expression in

pediatric AML blast subtypes

Because of known intratumoral heterogeneity in AML,31,32 we
sought to evaluate whether a specific subpopulation of AML blasts
was driving the downregulation of MHC-II at relapse. Using anno-
tation transfer on a published AML single-cell RNA-seq data,18

previously identified blast cells from patients with AML (Figure 1A)
were reprocessed and stratified into 6 subtypes along the myeloid
differentiation axis (hematopoietic stem cell–like, progenitor-like,
granulocyte-monocyte progenitor–like, promonocyte-like, mono-
cyte-like, or cDC-like; Figure 2A-B). Mean MHC-II expression was
computed to ascertain overall MHC-II gene activation for each
subtype in all 4 patients (Figure 2C).27

Comparative analysis revealed that progenitor-like AML blasts
exhibited the lowest MHC-II gene expression at diagnosis, which
remained constant in posttransplantation relapse samples. Inter-
estingly, in 3 of 4 patients, there was an increase in the proportion
of progenitor-like blasts at posttransplantation relapse compared
with that at diagnosis (Figure 2B). The statistical significance for
each AML blast subtype change from diagnosis to post-
transplantation relapse was evaluated using Fisher exact test
(supplemental Table 3). Furthermore, we found that the 3 repre-
sentative markers of progenitor-like blasts (ELANE, MPO, and
AZU1) were relatively increased in frequency and/or expression
level at posttransplantation relapse in UPN2, UPN3, and UPN4
(Figure 2D). We found that this change was significant in UPN2
and UPN4, as compared with that inUPN3, who had a compara-
tively lower number of AML blasts recovered (supplemental
Figure 9). There was a statistically significant increase in ELANE,
MPO, and AZU1 in AML blasts as compared with healthy myeloid
cells (supplemental Figure 10).

Previously published transcription factors targeting ≥1 MHC-II
pathway genes were then annotated as activators or repressors
in our data set25,26 (Figure 2E). The regulatory network con-
structed for upstream MHC-II activators (MYC, RELA, TP53,
CREBBP, EZH2, IRF1, and CIITA) and repressors (MYCN and
HDAC1) highlighted significant differences in regulatory expres-
sion between diagnosis and posttransplantation relapse stages
within progenitor-like AML blasts (supplemental Figure 11).

Bone marrow environment immune dysfunction at

posttransplantation relapse in pediatric patients with

AML

To elucidate the immune pressures leading to the MHC-II changes
in AML blasts, we characterized the bone marrow immune micro-
environment using single-cell CITE-seq analysis (Figure 3A). Bone
marrow from a healthy donor served as a comparison
(supplemental Figure 12). T cells from BMA samples were sepa-
rated into CD8+ and CD4+ populations, alongside NK cells
(CD56+), using CITE-seq cell surface protein expression. Individual
phenotypes for T and NK cells were characterized by probabilistic
assignment, using sets of known representative genes
(supplemental Table 4).19 After categorization into naive, memory,
activated, and dysfunctional CD8+ phenotypes, distinct sub-
populations of CD8+ T cells associated with high MHC-II expres-
sion or IFN-stimulated genes were then identified within activated
or dysfunctional phenotypes. When compared to BMA samples
12 SEPTEMBER 2023 • VOLUME 7, NUMBER 17
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Figure 1. Downregulation of MHC-II gene expression in pediatric AML blasts at posttransplantation relapse compared with that at disease diagnosis. (A) UMAP

plots and bar graphs of 5 transcriptionally distinct cell clusters/broad hematopoietic cell types identified in BMA samples in pediatric patients with AML at the time of diagnosis and

posttransplantation relapse (n = 4) and in healthy donor control (n = 1). (B) Histogram outlining the top 10 most significantly downregulated gene ontology (GO) biological

processes identified from the pairwise comparison of AML blasts from patients at disease diagnosis and at relapse after allo-HCT. (C) Venn diagram comparing GO pathways
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Figure 1 (continued) downregulated in 2 data sets of adult patients with AML with that in pediatric patients with AML at posttransplantation relapse. Twelve shared GO pathways
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plot showing decreased average normalized MHC-II gene expression level in all pediatric AML blasts at posttransplantation relapse as compared with that at diagnosis. *P < .05;

**P < .01; and *** P <.001.
obtained at diagnosis, samples obtained from patients who
relapsed after transplantation revealed a relative expansion of
exhausted CD8+ cells (Figure 3B), suggesting recruitment of
cytotoxic T cells to the bone marrow environment and lower
effector functionality at the time of relapse after transplantation.

CD4+ T cells were accordingly assigned into naive, regulatory, and
helper phenotypes. In comparison to diagnosis samples, samples
obtained from patients who relapsed after transplantation revealed
an over-representation of regulatory T cells with a relative decrease
in naive CD4+ cells (Figure 3C), findings consistent with a relatively
immunosuppressive tumor microenvironment. Although the ratio of
activated to exhausted NK cells was similar at both timepoints, the
frequency of NK cells was enriched at relapse after transplantation
(Figure 3A, D; supplemental Figure 13). Pathway enrichment using
a combined enrichment score21 validated the overall dysfunctional
pattern in T cells and NK cells at relapse after transplantation with
lower observed response to IFN-γ, tumor necrosis factor α
signaling via NF-κB, and interleukin-2 [IL-2]/STAT5 signaling in
activated NK cells and lower observed response to IFN-γ and IL-2/
STAT5 in activated T cells (Figure 3E).
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Evolution of TCR clonotypes at diagnosis and relapse

after transplantation in pediatric patients with AML

Phenotype assignment was coupled with TCR clonotype in all 4
patients at diagnosis and in 2 at relapse after transplantation. We
observed a significant number of clonotypes present across >1
patient (Figure 4A), suggesting a conserved function and further
highlighted by high generation probabilities (supplemental
Figure 14).28 Notably, the top 10 TCR clones by size across all
4 patients primarily were activated MHC-II+ CD8+ T cells
(Figure 4B).33

Several TCR clonotypes were identified both at diagnosis and at
relapse after transplantation within a single patient, UPN4
(Figure 4C-D; supplemental Table 5), demonstrating a persistence
of host T cells despite ablative therapy. The evolution of each
clonotype in UPN4 could be tracked from diagnosis to relapse after
transplantation by defining the empirical probability of each
phenotype at each timepoint. Persistent clones shifted from an
activated to dysfunctional phenotype within MHC-II+ CD8+ T cells
and from a memory or naive phenotype to an activation signature
12 SEPTEMBER 2023 • VOLUME 7, NUMBER 17
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Figure 2. Downregulation of MHC-II gene expression in pediatric AML blast subtypes. (A) UMAP plots showing malignant myeloid cells stratified into 6 subtypes along

the myeloid differentiation axis for UPN1-4. (B) Bar graphs showing relative composition of 6 malignant AML blast subtypes within each patient, UPN1-4, at diagnosis, and at
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specific to IFN-stimulated genes (Figure 4E). Phenotypic evaluation
of clones shared between diagnosis and posttransplantation
relapse in UPN4 revealed that the majority were MHC-II+,
5076 SHAHID et al
CD8+-exhausted T cells (Figure 4F). Taken together, the data
reveal dynamic changes among MHC-II+ CD8+ cells in the tumor
microenvironment, consistent with activation-induced exhaustion.
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Figure 3 (continued) score, p is the P value computed using the Fisher exact test, and z is the z-score computed by assessing the deviation from the expected rank. DPT, double

positive T cell; TGF, transforming growth factor; TNF, tumor necrosis factor; Treg, regulatory T cell.
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Discussion

Although limited by small sample size and heterogeneity among
patients, this study uses a novel multimodal computational
approach to demonstrate that pediatric AML has immune-mediated
drivers of tumor escape related to MHC-II expression. These novel
methods include mapping AML blasts in pediatrics to subtypes,
evaluating trends in expression of pathways over the differentiation
stages of AML blasts, and demonstrating phenotypic changes of
AML clonotypes. Although not available for this pilot study, larger
sample sizes as well as remission samples are necessary to further
characterize the frequency of these transcriptional and phenotypic
changes, and how they will influence treatment options. However,
the emerging computational methods used in this study serve as a
strong foundation to guide future efforts to define the functions and
mechanisms of immunomodulatory AML, evaluate their relationship
to the bone marrow microenvironment, and modify their activities
for therapeutic benefit using future single-cell studies.

In our patient cohort, downregulation of MHC-II genes in AML blasts
at posttransplantation relapse correlates with changes in upstream
activating (MYC, RELA, TP53, CREBBP, EZH2, IRF1, and CIITA)
and repressing (MYCN and HDAC1) transcription factors. A
dampened CD4+ T-cell response, suggested by the reduced con-
ventional CD4+ T-cell population and diminished IFN-γ, tumor
necrosis factor α, and IL-2 response signature in NK and CD8+

T cells, could be a possible mechanism for posttransplantation
relapse driven by downregulation of AML MHC-II expression. We
further propose that the progenitor-like AML blast subset may be
driving this phenomenon based on the relative expansion of
progenitor-like AML clones at posttransplantation relapse. However,
it remains unclear whether AML blasts with intact MHC-II expres-
sion were surveyed and destroyed by the host’s immune system
before the time of diagnosis of posttransplantation relapse or
whether the low-expressing MHC-II, progenitor-like AML blasts
dominated immune escape after transplantation. Finally, consistent
with published results that the absence of NKG2D ligands defines
leukemia stem cells and mediates their immune evasion,30 we
observed a decrease in gene expression level of NKG2D ligands
(MICA, MICB, ULBP1, ULBP2, and ULBP3) on AML blasts
between diagnosis and posttransplantation relapse.

In summary, our findings suggest potential mechanisms for thera-
peutic epigenetic targeting to modify MHC-II gene expression and
prevent immune escape, particularly among the progenitor-like
AML blast stage, leading to improvements in prevention and ther-
apy of pediatric AML.
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