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Association and Prediction Utilizing Craniocaudal and
Mediolateral Oblique ViewDigital Mammography and
Long-Term Breast Cancer Risk
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ABSTRACT
◥

Mammographic percentage of volumetric density is an
important risk factor for breast cancer. Epidemiology stud-
ies historically used film images often limited to cranio-
caudal (CC) views to estimate area-based breast density.
More recent studies using digital mammography images
typically use the averaged density between craniocaudal
(CC) and mediolateral oblique (MLO) view mammography
for 5- and 10-year risk prediction. The performance in
using either and both mammogram views has not been
well-investigated. We use 3,804 full-field digital mammo-
grams from the Joanne Knight Breast Health Cohort (294
incident cases and 657 controls), to quantity the association
between volumetric percentage of density extracted from
either and both mammography views and to assess the 5
and 10-year breast cancer risk prediction performance. Our

results show that the association between percent volumet-
ric density from CC, MLO, and the average between the
two, retain essentially the same association with breast
cancer risk. The 5- and 10-year risk prediction also shows
similar prediction accuracy. Thus, one view is sufficient to
assess association and predict future risk of breast cancer
over a 5 or 10-year interval.

Prevention Relevance: Expanding use of digital mam-
mography and repeated screening provides opportunities for
risk assessment. To use these images for risk estimates and
guide risk management in real time requires efficient pro-
cessing. Evaluating the contribution of different views to
prediction performance can guide future applications for
risk management in routine care.

Introduction
Mammographic breast density is well established as a risk

factor for breast cancer. The classic studies used film mammo-
grams and identifieddensity as a risk factor. In 2005, Boydwrote
a classic article making the case for density as an intermediate
phenotype (1). Because then it has been used as an endpoint for
prevention trials (2), consistent with it being accepted as an
intermediate phenotype. Although assessment of breast density
in the film-screen era was qualitative and based on the radi-
ologist’s subjective evaluation of the presence of dense glandular
tissue, widespread use of digital mammography created the
potential for quantitative assessment of breast density. Older
methods were area-based using two-dimensional (2D) film

images, which has advanced to volumetric assessment with
advent of digital images. The association of breast density with
breast cancer risk is consistent across a range ofmethods used to
estimate density as percent density (amount of dense glandular
tissue compared with total breast tissue; refs. 3, 4). More
specifically, the percentage of volumetric density (often %VD)
and its association with breast cancer risk has been widely
studied in the literature (3, 5–7). Volumetric density assess-
ment is an established risk factor and is incorporated into
existing risk assessment models, including Tyrer–Cuzick
version 8 (8). Furthermore, a continuous measure of breast
density shows low concordance with the 77 SNP polygenetic
breast cancer risk scores (Spearman r ¼ 0.024) and also a
summary breast cancer–risk factor score derived from ques-
tionnaire risk factor data (Spearman r¼ 0.054; ref. 9). As risk
models are implemented in broader clinical use, breast
density is commonly included (10, 11).
However, debate in the epidemiologic literature still asks if

the view used to assess breast density changes the magnitude of
association or model performance for risk prediction (12). We
note that approaches to process images and automatically
remove pectoral muscles are described as more accurate for
craniocaudal (CC) views than those for mediolateral oblique
(MLO) mammograms (12). Previous meta-analysis of largely
film-based studies suggests that the CC view shows a stronger
association with future breast cancer risk than the MLO (13).
With the advent of digital mammography, easier access to
images has facilitated extension from consideration of density
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to define ormask lesions to now use the CC andMLO views for
5- and 10-year risk prediction (14, 15) consistent with NCCN
guidelines (16) and providing sufficient interval for interven-
tion to reduce risk (16).
To quantify the benefits ofmultiple views of breast density on

predicting risk of future breast cancer as opposed to diagnosis,
we draw on prospective data from the Joanne Knight Breast
HealthCohort (JKBHC; ref. 17).We focus on the longer-term5-
or 10-year risk in this article in contrast with diagnosis of breast
lesions, where more views (including tomosynthesis) may gen-
erate more precise identification to suspicious lesions (18). Few
studies have investigated this issue thoroughly in the context of
digital mammograms (4, 19, 20). We aim to investigate the
association and risk prediction of CC, MLO, and the average of
both in this study using the JKBHC comprised of 3,804 full-field
digital mammograms.

Materials and Methods
Study population
The JKBHC is comprised of over 10,000women ages 30 to 84

undergoing repeated mammography screening at Siteman
Cancer Center and followed since 2010 (17). All women had
a baseline mammogram at entry and completed a risk factor
questionnaire. Mammograms are obtained using the same
technology (Hologic). Women were excluded from the cohort
if they had a history of cancer at baseline (other than non-
melanoma skin cancer). Women with breast implants were
excluded from the cohort. Follow-up through October, 2020
was maintained through record linkages to electronic health
records and pathology registries. 80% of participants had a
medical center visit (mammography and other health visits)
within the past 2 years. All analyses performed in this study use
the nested case–control cohort within JKBHC where the
pathology confirmed breast cancer cases were matched to two
controls sampled from the perspective cohort. We sampled 2
control women for each case based on age at entry to the cohort
and year of enrollment as previously described (17, 21). We
identified 347 cases and 694 controls. After linkage to screening
mammogram files, we excluded 8 women with breast implants
and the rest without screening mammograms retrieved, we
retained 294 cases diagnosed through October, 2020 and 657
controls. Supplementary Fig. S1 demonstrates the cohort selec-
tion and case identification. All women had 4 mammogram
images and both the CC andMLO views are used in this study.
Thus we used 3,804 images. We assessed the baseline char-
acteristics of cases who did not have mammogram images
retrieved (53) against those case who did (294) and observed
comparable risk factor distribution, age (56.6 vs. 57.5), and
breast density categories defined by BI-RADS clinical reports
(48.8% vs. 49.0%).
Ethical approval for this prospective nested case–control

cohort study was obtained from the Washington Univer-
sity in St Louis institutional review board. Participants
provided informed written consent under the US Com-
mon Rule.

Breast cancer–risk factor collection
Women self-reported breast cancer–risk factors on entry to

the cohort. These are drawn from established and validated
measures (22). The questionnaire at entry assessed height,
current weight, parity, age at first birth, menses ceased (yes/
no), age at menopause (natural or with surgical removal of
uterus, with removal of ovaries or without removal of ovaries),
age at hysterectomy, family history of breast cancer (mother
and/or sister), personal history of benign breast biopsy, and
race.

Volumetric mammographic breast density assessment
As previously described (21), the volumetric percentage of

breast density (VPD) within each digital mammogram is
estimated with an automated pixel-thresholding algorithm
developed and implemented at Washington University on
processed images that directly takes in the full digital mammo-
grams. The skin around the breast in CC and MLO views is
removed and the pectoral muscle in MLO views is automat-
ically removed using the boundary detection algorithm before
estimating the dense volume. The VPD is then estimated using
the volume of dense glandular tissue divided by the total breast
volume that normalizes the difference in breast size across
women and is consistent with other density estimation meth-
ods in the literature (23, 24). The correlation between VPD
generated from our algorithm with the commercially available
and widely used Volpara 4th edition (Volpara Solutions,
Matakina Technology Limited, Wellington, New Zealand), is
0.81 based on an out-of-sample study with 375 women
recruited from the mammography service at Washington
University with mean age 47 (sd ¼ 4.8; Supplementary
Fig. S2; refs. 25, 26). Volpara reports the percentage of volu-
metric density that corresponds to BI-RADS as: A, <3.5%,
Fatty; B, 3.5% to <7.5%, Scattered; C, 7.5% to <15.5%, Het-
erogeneously dense; D, 15.5% or more, Extremely dense. We
refer to the CC view VPD as CC-VPD, MLO view VPD as
MLO-VPD, and the average of the two as Full-VPD from here
on.

Statistical analysis
We first assessed the Pearson correlation between the VPDs

using different views. To estimate the 5 and 10-year breast
cancer risk, we adopted the Cox proportional hazards model
adjusting for baseline age in single years, BMI (continuous),
family history of breast cancer (mother and/or sister), personal
history of biopsy confirmed benign breast disease, parity (1þ
vs. 0), and menopausal status (menses ceased; yes/no). This
approach is consistent with routine practice as the loglikeli-
hood for a conditional logistic regression model is statistically
proven to be equivalent to the loglikelihood from a Cox
model (27–29). Three different Cox regressions have been
fitted that use CC-VPD, MLO-VPD, and Full-VPD on their
original percent scale to investigate the model performance
using different views.
The proportional hazards assumption has been formally

checked using statistical tests and graphical diagnostics based
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on the scaled Schoenfeld residuals. The linearity assumption
was checked by the Martingale residuals. We report the hazard
ratios (HR), the 95% confidence interval (CI), and P value
under all three Cox regressions. The 5 and 10-year prediction
accuracy is assessed by theAUCusingUno’s estimator (30) that
considers censoring, under a 10-fold cross-validation study.

Data availability
All datasets were accessed and used under IRB-approved

protocols and are available from the corresponding author
upon reasonable request. The density estimation pipeline
developed at Washington University is available upon request.

Results
The participant characteristics by case and control status are

presented in Table 1. Among controls, the mean age was 56.6,
mean BMI was 27.4 kg/m2, 81.1% were white and 12.9% were
black, 82.8%ofwomen reported having 1 ormore children, and
68.8% were postmenopausal.
As shown in Fig. 1, the CC-VPD and MLO-VPD retain a

significant positive linear relationship with each other (Pearson
correlation of 0.70). The correlation between Full-VPD aver-
aged between both views and CC-VPD is 0.93, and for MLO-
VPD is 0.90. The correlation between BMI and CC-VPD is
�0.48 and between age and CC-VPD is �0.22 where similar
correlations are seen under both MLO- and Full-VPD. Addi-
tional correlation plots by case and control status are included
in Supplementary Fig. S3.

In Table 2, we summarize the associations between baseline
risk factors and breast cancer risk using CC-, MLO-, and Full-
VPD. We observe that each year increase in baseline age is
associated with an increase of 2.3% in breast cancer risk and
each unit increase in BMI (kg/m2)with a 5.0% increase in breast
cancer risk in all three models. Women with family history of
breast cancer are at significantly higher risk of breast cancer
than those without. In all three models, the VPD measure was
statistically significant, and an increase in VPD is positively
associated with breast cancer risk. Subgroup analyses by men-
opausal status are shown in Supplementary Tables S1–S6.
Results were largely unchanged in postmenopausal women,
though family history had a somewhat stronger in premeno-
pausal women.
We further show in Fig. 2, the 5 and 10-year breast cancer

prediction performance using the three VPD measures. To
avoid over-optimism, the reported AUCs are based on Uno’s
integrated 5-year AUC estimated by averaging over a 10-fold
cross-validation. As a benchmark, we see that the conventional
Full-VPD achieved an AUC of 0.636 (sd ¼ 0.023). When we
separately estimated the 5-year AUC using CC-VPD and
MLO-VPD, we observe an AUC of 0.641 (sd ¼ 0.024) and
AUC of 0.622 (sd ¼ 0.025). For 10-year risk, we observe an
AUC of 0.591 (sd ¼ 0.062) for CC; an AUC of 0.595 (sd ¼
0.057) for MLO and an AUC of 0.605 (sd ¼ 0.058) for Full-
VPD. Although these AUCs are not statistically different from
each other at either 5 or 10 years, we see that using one view
(either CC- orMLO-VPD) can be as efficient as using both. The
linearity assumption checked by the Martingale residuals was

Table 1. Risk factors at baseline by case–control status within the Joanne Knight Breast Health Cohort.

Cases (n ¼ 294) Controls (n ¼ 657)
Risk factors Mean (sd) Median (Range) Mean (sd) Median (Range)

Age, y 56.56 57.19 56.62 56.68
(8.75) (35.38–76.80) (8.67) (35.27–76.84)

BMI (kg/m2) 29.25 28.45 27.38 25.82
(6.37) (17.47–54.54) (6.19) (14.14–50.96)

CC-VPD (%) 6.31 5.59 6.19 5.22
(3.46) (1.82–19.16) (3.89) (1.66–24.46)

MLO-VPD (%) 6.78 6.41 6.52 5.77
(2.81) (2.01–18.53) (3.19) (1.91–22.54)

Full-VPD (%) 6.48 6.20 6.28 5.45
(2.78) (1.92–16.44) (3.23) (1.87–20.27)

n (%)
Family history of breast cancer 92 (31.30%) 156 (23.74%)
Race

White 232 (78.91%) 533 (81.13%)
Black 57 (19.39%) 85 (12.93%)
Others 5 (1.70%) 39 (5.94%)

Biopsy confirmed benign breast disease 88 (29.93%) 179 (27.25%)
Parity (1þ) 232 (78.91%) 544 (82.80%)
Postmenopausal 199 (67.69%) 452 (68.80%)
Diagnosis (years since entry mammogram)

0 ≤ 5 104 (35.4%)
5 ≤ 10 176 (60.0%)
10þ 14 (1.02%) —

Note: Continuous covariates are reported with mean and standard deviation (sd); binary covariates are reported by the number of positive responses and their
corresponding percentage.
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deemed reasonable in this study (Supplementary Fig. S4) and
proportional hazards assumption was satisfactory under the
model with CC,MLO, and the average of both (Supplementary
Figs. S5–S7).

Discussion
In this study, which used data from 3,804 full-field digital

mammography scans obtained from the JKBHC, we demon-
strated that using the craniocaudal (CC)-view, the MLO view,
and the average of both views, exhibit comparable associations
with breast cancer risk. In addition, we found that using only
one view (either CC or MLO) performs just as effectively as
combining both views when it comes to predicting the risk of
breast cancer over a 5- or 10-year period. Prior report from a
meta-analysis of older film-basedmammographywith 13 case–
control studies shows that absolute dense area and the per-
centage of dense area in the CC view had stronger associations
with breast cancer (percentage of dense area summary OR 1.59
per SD; 95% CI, 1.46–1.69) compared with the MLO view
measures (percentage of dense area summary OR 1.40 per SD;

95% CI, 1.28–1.54). 12 of the 13 studies used cumulus to
estimate measures of breast density (13).
Combined cross-sectional data from 22 countries show

that measures and changes of breast density with age are
consistent across a diverse set of women worldwide, sug-
gesting that breast density is an intrinsic biologic feature of
women and that change across the life course is an inherent
biologic feature (31). With the goal of incorporating breast
density into risk prediction models (10, 32, 33) to improve
risk management (16), efficient automated measures have
become increasingly important. Machine-derived measures
of breast density remove non-constant reader-specific dif-
ferences (4). Although machine-derived approaches have
become standard in clinical practice the value for predic-
tion of future risk is less well studied. Others have com-
pared performance of automated measures against clinical
classification for BI-RADS showing comparable association
with breast cancer (34–36). A number of studies compare
approaches with estimation of density by different machines/
technologies and show no important variation (4, 7, 19). Fur-
thermore, the approach reported here for density estimation is

Figure 1.

Linear correlation and scatter plots; all variables are square root transformed. A, MLO-VPD and CC-VPD. B, CC-VPD and Full-VPD. C, MLO-VPD and Full-VPD.

Table 2. Multivariate-adjusted hazards ratios (and 95% Confidence Intervals) summarizing breast cancer–risk factor associations with
breast cancer incidence using different mammogram images CC, MLO, and combined.

Risk factorsa Measure of mammographic breast density used in breast cancer incidence model
CC-VPD MLO-VPD Full-VPD

Model HR (95% CI) P HR (95% CI) P HR (95% CI) P

Age 1.02 (1.00–1.05) 0.04 1.02 (1.00–1.05) 0.07 1.02 (1.00–1.05) 0.04
BMI (kg/m2) 1.05 (1.03–1.08) <0.01 1.05 (1.03–1.07) <0.01 1.05 (1.03–1.07) <0.01
Family history (yes vs. no) 1.43 (1.11–1.83) <0.01 1.44 (1.12–1.84) <0.01 1.42 (1.11–1.83) <0.01
Biopsy confirmed benign breast disease 1.01 (0.78–1.32) 0.92 1.04 (0.80–1.35) 0.76 1.02 (0.78–1.32) 0.91
Parity (1þ vs. 0) 0.96 (0.72–1.28) 0.78 1.01 (0.76–1.35) 0.92 0.99 (0.74–1.31) 0.92
Menopause (post vs. pre) 0.67 (0.45–1.01) 0.05 0.68 (0.46–1.03) 0.07 0.68 (0.45–1.02) 0.06
CC-VPD (per 1% increase) 1.05 (1.01–1.09) 0.01 — — — —

MLO-VPD (per 1% increase) — — 1.05 (1.01–1.09) 0.02 — —

Full-VPD (per 1% increase) — — — — 1.06 (1.02–1.11)a <0.01

Note: Findings from 294 women diagnosed with breast cancer and 657 controls from a cohort of 10,481 women.
aRisk factors entered as continuous in the model except for family history, history of benign breast biopsy, party and menopause that are binary.
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related to breast cancer risk in prospective data, and change in
density over up to 10 years in the breast developing breast
cancer shows decline in density more slowly than in women
who remain free from breast cancer (21).
We consider strengths and limitations of this study. Our

population is diverse and all measures are consistent with
routine screening services. Images are all obtained from a single
system and were processed over a week for this comparison
within the images. On the other hand, performance over 10 or
more years for risk prediction may vary in ways not yet
detected. We note that VPD is estimated from the 2D mam-
mography. Thus, the estimated VPD is a surrogate to the true
three-dimensionalmammography. This approach is consistent
with Volpara and Libra for estimating the VPD (37). However,
it routinely shows strong associationwith breast cancer risk (3).
As others evaluate the implementation of digital image assess-

ment for risk into routine clinical practice to develop risk
classification that can guide risk management and maximize
populationhealth (10, 38), issues of efficiencybecomeparamount
for total population coverage (10). Further research is needed to
determine optimal screening frequency and risk management
strategies and how best to use images in this context.

Conclusion
We show that the association between VPD from CC, MLO,

and the average between the two, retain similar associationwith
breast cancer risk, and that solely using any one view mam-
mography performs as well as or better than combiningCC and
MLOviewswhen predicting future risk of breast cancer over a 5
and 10-year intervals.
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Figure 2.

5 and 10-year breast cancer–risk prediction for three different models. The reported AUCs are based on Uno’s cumulative 5 and 10-year AUC estimated by averaging
over a 10-fold cross-validation.
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