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Theoretical models group maladaptive behaviors in addiction into neurocognitive domains such as incentive salience (IS), negative
emotionality (NE), and executive functioning (EF). Alterations in these domains lead to relapse in alcohol use disorder (AUD). We examine
whether microstructural measures in the white matter pathways supporting these domains are associated with relapse in AUD.
Diffusion kurtosis imaging data were collected from 53 individuals with AUD during early abstinence. We used probabilistic tractography
to delineate the fornix (IS), uncinate fasciculus (NE), and anterior thalamic radiation (EF) in each participant and extracted mean
fractional anisotropy (FA) and kurtosis fractional anisotropy (KFA) within each tract. Binary (abstained vs. relapsed) and continuous
(number of days abstinent) relapse measures were collected over a 4-month period. Across tracts, anisotropy measures were typically
(i) lower in those that relapsed during the follow-up period and (ii) positively associated with the duration of sustained abstinence during
the follow-up period. However, only KFA in the right fornix reached significance in our sample. The association between microstructural
measures in these fiber tracts and treatment outcome in a small sample highlights the potential utility of the three-factor model of
addiction and the role of white matter alterations in AUD.
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Introduction
Alcohol use disorder (AUD) is a common psychiatric condition
characterized by chronic alcohol use despite harmful conse-
quences. In the United States, roughly 30% of adults will meet
criteria for AUD at some point in their lives (Grant et al. 2015).
Although residential and outpatient treatment programs are
widely available, patients with AUD frequently relapse following
treatment and are trapped in a cycle between treatment,
abstinence, and relapse (McKay and Hiller-Sturmhöfel 2011).
AUD’s persistent relapse rates highlight the importance of
developing new treatment strategies such as neuromodulation
interventions that are designed with a greater understanding
of the risk factors and neurobiological mechanisms involved in
relapse.

AUD results from a culmination of psychosocial, environmen-
tal and biological factors (Deeken et al. 2020; Ossola et al. 2021).
Among the biological factors are maladaptive alterations to neu-
rocircuitry, which have been a primary focus of addiction research
for the past several decades. Koob and Volkow synthesized this
body of animal and human imaging research into a theoretical
model which describes the neural pathophysiology of addiction
(Koob and Volkow 2010; Koob and Volkow 2016). This framework
outlines three neurofunctional domains impacted in addiction:

incentive salience (IS; e.g. exaggerated reward response from a
drug), negative emotionality (NE; e.g. withdrawal and exaggerated
stress when not using), and executive functioning (EF; e.g. preoc-
cupation with a substance; heightened impulsivity).

The neurofunctional domains identified by Koob and Volkow
and alterations to the structures that underlie those domains
may explain individual variation in resilience to relapse (Koob and
Volkow 2010; Koob and Volkow 2016). We previously showed that
reduced resting state functional connectivity measured during
early abstinence within addiction networks defined by Koob and
Volkow’s theoretical model of addiction were associated with an
increased risk of relapse and predicted days-to-relapse in AUD
(Camchong et al. 2022). In the present manuscript, we lever-
age modern diffusion MRI techniques to examine white matter
microstructure within white matter tracts connecting regions
within these addiction networks. For each of the three Koob–
Volkow domains, we identified a white matter tract based on
prior research. Fig. 1 illustrates these three tracts in an example
participant.

IS domain and the fornix
In AUD, the IS domain involves an exaggerated reward response
to alcohol. This heightened reward response is thought to be
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Fig. 1. Tractography results rendered as 3D surfaces overlaid on an
FA map. The fornix (yellow), uncinate fasciculus (blue), and anterior
thalamic radiations (green) correspond to the IS, NE, and EF domains,
respectively.

modulated by excess dopaminergic activity in the mesolimbic
reward pathway (Vollstädt-Klein et al. 2010; Sanchez-Roige et al.
2014), including the nucleus accumbens. Supporting connectivity
between the nucleus accumbens and several other limbic struc-
tures (e.g. hippocampus, thalamus, and hypothalamus), the fornix
is a primary white matter pathway mediating reward and memory
circuitry (Brown and Winocur 1973; Shin et al. 2019). Decreased FA
in the fornix has been reported in alcoholics relative to controls
(Pfefferbaum et al. 2009) and fornix FA has been shown to be
negatively correlated with alcohol cue reactivity in heavy drinkers
(Monnig et al. 2013).

NE domain and the uncinate fasciculus
The NE domain describes how alcohol-seeking behavior in AUD is
characterized by negative affect such as dysphoria, anxiety, and
withdrawal symptoms when access to alcohol is limited. These
negative emotional responses have been shown to be primar-
ily mediated by the release of corticotropin releasing factor in
the extended amygdala (Koob and Volkow 2010). The uncinate
fasciculus (UF) is a hook-shaped white matter tract joining the
amygdala and orbitofrontal cortex. This tract is thought to play a
key role in emotional responses to events and has been implicated
in disorders involving emotional regulation (e.g. anxiety disorders,
depression, and conduct disorder) (Taylor et al. 2007; Olson et al.
2015; Damme et al. 2017). UF diffusivity has been shown to be
related to levels of anxiety and depression in individuals with
heroin addiction (Wong et al. 2015). Microstructural changes in UF
have been reported in adolescent cigarette smokers (Zhou et al.
2022) and adolescent binge alcohol drinkers (Jacobus et al. 2013;
Luciana et al. 2013).

EF domain and the anterior thalamic radiation
In AUD, the EF domain involves impaired impulse control and per-
sistent and habitual alcohol-seeking behavior despite the desire to
avoid negative consequences of alcohol use. The top-down exec-
utive control functions affected in AUD are primarily mediated
by the prefrontal cortex (Goldstein and Volkow 2011), working
in conjunction with thalamic, cerebellar, and parietal cortices
(Dosenbach et al. 2008). The anterior thalamic radiation is a major
thalamocortical projection between the dorsolateral prefrontal
cortex and the dorsomedial thalamic nucleus through the inter-
nal capsule’s anterior limb and is known to be involved in EF
(Mamiya et al. 2018; Niida et al. 2018; Haddad et al. 2021). Studies
have linked alterations in ATR microstructure with heightened
impulsivity (Joutsa et al. 2011; Yuan et al. 2017; Alfano et al. 2021).
Recent evidence suggests that substance use disorders may be
associated with decreased ATR volume (Pando-Naude et al. 2021).

White matter microstructure metrics
We assessed white matter microstructure in each of the three
pathways using diffusion kurtosis imaging (DKI), a framework

for modeling the diffusion signal that improves upon the stan-
dard tensor model by accounting for deviations from Gaussianity
(Jensen and Helpern 2010). We focused on anisotropy of both the
diffusion tensor (fractional anisotropy, FA) and kurtosis tensor
(kurtosis fractional anisotropy, KFA). These metrics range from
0 to 1, where 0 represents perfect isotropy and 1 represents
complete directional cohesion along the primary axis.

FA was chosen as the primary metric of interest due to its
widespread clinical and research use, allowing for easier compar-
isons to prior research. KFA was also examined because it has
been shown to offer supplementary information and improved
contrast in complex tissues and deep brain structures where FA
often approaches zero (Hansen and Jespersen 2016). We and oth-
ers have hypothesized that KFA’s enhanced ability to distinguish
various microstructural compositions of white matter results in
an improvement over FA in diagnostic sensitivity (Hansen and
Jespersen 2016; Hansen 2019; Zhang et al. 2019). By including
both metrics, we aimed to leverage the more advanced kurtosis
model while maintaining the ability to compare our results to
prior studies which used the standard tensor model.

To determine whether white matter microstructure is asso-
ciated with subsequent relapse outcome, we investigated here
whether FA and KFA metrics within these three tracts (a) predict
dichotomous relapse (relapsed vs. abstained) during a 4-month
follow-up period and (b) predict the number of days until relapse
during a 4-month follow-up period.

Methods
Participants
Participants with AUD were recruited 1–2 weeks following admis-
sion to a 28-day in-patient addiction treatment program in Min-
neapolis, MN as part of a longitudinal study. This analysis focuses
on imaging data collected during early abstinence (mean num-
ber of days abstinent until MRI session = 25.4, SD = 13.2) and
relapse data collected at a four month follow up interview. Written
informed consent was obtained from each participant. Partici-
pants received monetary compensation for their time. The Insti-
tutional Review Board at the University of Minnesota reviewed
and approved the consent process and all study procedures. The
data that support the findings of this study are available from the
corresponding author upon reasonable request.

A total of 86 participants were consented. From these, 11 did
not complete the MRI session for the following reasons: 3 left
the treatment program and were no longer reachable before the
MRI session, 3 participants opted out of the study after consent
and before the MRI session, and 5 were found to be no longer
eligible (3 because of medical conditions, 1 because of unknown
metal in body, and 1 because it was discovered that the identified
primary substance use disorder diagnosis was not alcohol, but
methamphetamine). Of the 75 participants who completed an
MRI session, 6 were missing diffusion MRI data due to time
constraints during the MRI session. Of the 69 participants from
whom we collected diffusion MRI data, 16 were lost to follow-up
after the MRI session. As a result, complete data for the scope
of this paper (neuroimaging and treatment outcome data) were
available for 53 individuals with AUD (Table 1).

Participants underwent random alcohol and drug tests in the
treatment program. Each participant’s substance use history for
the past 6 months before entering the treatment program was
recorded using the Timeline Follow-Back (TLFB) (Sobell and Sobell
1992) assessment that was administered for alcohol and for each
other substance used (excluding caffeine) (Table 1).
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Table 1. Demographics, history of alcohol use, and clinical self-report measures in individuals with AUD during early abstinence.

Sample separated by treatment outcome at 4-month follow-up

All AUD (n = 53) ABS (n = 27) REL (n = 26) ABS vs. REL
Characteristic Mean or n (SD or %) Mean or n (SD or %) Mean or n (SD or %) P-value for t-test or χ2 (italics)

Age 42.8 (10.1) 44.1 (10.8) 41.3 (9.3) P = 0.32
Years of education 14.2 (2.1) 14.3 (2.0) 14.1 (2.2) P = 0.66
Female, n % 19 (35.9%) 6 (22.2%) 13 (50.0%) P = 0.09
Employed, n % 21 (39.6%) 12 (44.4%) 9 (34.6%) P = 0.57
Age of AUD onset 24.7 (10.7) 25.2 (10.8) 24.1 (10.6) P = 0.70
# of standard drinks: past 6 months 2,799.2 (2,226.8) 2,538.8 (1,876.9) 3,069.5 (2,549.7) P = 0.39
# drinking days: past 6 months 101.7 (58.1) 101.8 (58.6) 99.5 (58.7) P = 0.89
# days abstinent before MRI session 22.4 (13.2) 23.5 (10.7) 21.3 (15.5) P = 0.55
Beck Depression Inventory (BDI)a 21.6 (12.0) 21.6 (13.2) 21.7 (10.9) P = 0.97
State Anxiety Inventory (STAI)a 42.2 (11.2) 39.7 (12.0) 44.5 (10.1) P = 0.12
Penn Alcohol Craving Scale (PACS)a 21.9 (7.4) 21.5 (8.4) 22.3 (6.4) P = 0.71

AUD, alcohol use disorder; MRI, magnetic resonance imaging; SD, standard deviation; ABS, those that remained abstinent in the 4-month follow-up period;
REL, those that relapsed during the 4-month follow-up period; χ2, chi-square; p, significance probability value. aOne participant (ABS) did not complete any
self-report measures. Four participants (two REL, two ABS) completed PACS and BDI, but not STAI.

Study participants completed clinical self-report measures
that have been associated with relapse (Oliva et al. 2018; Stohs
et al. 2019; Pareaud et al. 2021) (Table 1): the Beck Depression
Inventory (BDI; Beck et al. 1988); the State Anxiety Inventory (STAI;
Spielberger et al. 1970); and the Penn Alcohol Craving Scale (PACS;
Flannery et al. 1999). Participants completed interviews during a
4-month follow-up period after the neuroimaging session to query
dichotomous and continuous relapse metrics.

Dichotomous relapse metrics: group definition
Participants were considered to be in the relapsing group (REL) if
they reported consuming at least one drink and/or non-prescribed
drug during the 4-month follow-up period. Participants who
reported consuming no alcohol or non-prescribed drug during the
4-month follow-up period were considered to be in the abstaining
group (ABS).

Continuous relapse metrics
Detailed TLFB (Sobell and Sobell 1992) data were collected from
the REL group, recording date of relapse, number of drinks, and
number of drinking days after relapse during the 4-month follow-
up period. Time to relapse to alcohol use was operationalized as
the number of days until a participant’s self-reported first use of
alcohol. The variable representing the number of drinks (standard
drink, equivalent to 0.6 ounces of pure alcohol (Alcohol Questions
and Answers | CDC 2022) after relapse was operationalized as
the number of drinks reported to have been consumed in the
4-month follow-up period. The number of days drinking was
operationalized as the number of days reported to have consumed
at least one drink during the 4-month follow-up period (Table 1).

Imaging data acquisition and analysis
MRI data were collected using a 3 T Siemens Prisma scanner
(Siemens, Erlangen, Germany) at the University of Minnesota Cen-
ter for Magnetic Resonance Research. Acquired images included:
a T1-weighted MPRAGE image [TR = 2,400 ms, TE = 2.24 ms,
slices = 208, voxel size = 0.8 mm3], a T2-weighted SPACE image
[TR = 3,200 ms, TE = 564 ms, slices = 208, voxel size = 0.8 mm3],
and a pair of multi-shell diffusion-weighted images collected
using reversed phase-encode blips [TR = 3,100 ms, TE = 85 ms,
slices = 92, voxel size = 1.5 mm3, multi-band factor = 4, b values
of 0, 1,000, and 2,000 s/mm2].

Image data were preprocessed using the HCP minimal pre-
processing pipelines (v4.0.1) (Glasser et al. 2013). For structural
data, these steps included alignment of the T1-weighted volume
to the T2-weighted volume, correction for gradient distortion and
intensity bias, volume segmentation and surface reconstruction
using FreeSurfer (v6.0.0) (Dale et al. 1999) and calculation of non-
linear transforms to standard MNI152 space. Diffusion prepro-
cessing included rigid AC-PC alignment to the native structural
images, correcting for susceptibility-related distortions using the
“topup” tool from the Functional Magnetic Resonance Imaging of
the Brain Software Library (FSL; Andersson et al. 2003; Smith et al.
2004), and eddy current distortion with slice outlier replacement
using FSL’s “eddy” tool (Andersson et al. 2016; Andersson and
Sotiropoulos 2016; Andersson et al. 2017; Andersson et al. 2018).

Tractography was carried out using FSL’s XTRACT (Warrington
et al. 2020), in which expertly defined masks in MNI152 space are
warped to native space and used to guide probabilistic tractogra-
phy of a set of 42 major white matter pathways (19 bilateral and 4
commissural) in each participant, including the 6 tracts of interest
(3 bilateral) examined in the present study (Table 2). Tracts of
interest were then visually inspected by an experienced rater
(D.J.R.) to ensure they were free from anomalies or discernible
processing errors. Finally, we refined each tract of interest by
excluding voxels with less than 20% of the robust maximum
probability of tract membership.

White matter microstructure in each tract was assessed using
FA and KFA metrics. FA is a frequently used measure of the
anisotropy of the diffusion signal when the tensor model is
applied to the data, while KFA reflects the anisotropy of the
non-gaussian component (kurtosis tensor) when the higher order
kurtosis model is applied to the diffusion signal (Glenn et al. 2015).
KFA provides superior contrast in complex tissues compared to
standard diffusion tensor models (Hansen and Jespersen 2016).
Whole brain FA and KFA scalar maps were calculated from
the preprocessed diffusion images using the Diffusion Kurtosis
Estimator package (Tabesh et al. 2011). Average tract-wise values
were then calculated for each tract, weighted by voxel-wise
likelihood of tract membership.

Statistical analysis
First, to determine whether there were significant demographic
differences on dichotomous relapse metrics (ABS vs. REL defined
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Table 2. Koob–Volkow addiction domains and underlying brain regions and associated white matter pathways.

Domain Description Brain Regions (Koob and Volkow
2016; Kwako et al. 2019)

Proposed associated white matter
pathway

Reward and Incentive salience (IS) Exaggerated dopaminergic reward
response

Nucleus accumbens
Caudate
Putamen
Globus pallidum
Thalamus

Fornix (Fx)

Negative emotionality (NE) Withdrawal and exaggerated stress
when not using

Amygdala
Caudate
Habenula
Nucleus accumbens

Uncinate fasciculus (UF)

Executive functioning (EF) Preoccupation with drug; heightened
impulsivity

Prefrontal cortex
Orbitofrontal cortex
Hippocampus
insula

Anterior thalamic radiation (ATR)

For each white matter pathway, left and right hemispheres were examined separately.

at the 4-month follow-up period), independent samples t-test
were conducted on age, years of education, clinical self-report
measures (i.e. BDI, STAI, PACS, SCQ), and substance use history
(age of onset of alcohol dependence, number of drinks in the
past 6 months, number of days drinking in the past 6 months,
number of days abstinent until MRI data collection day). To deter-
mine whether there were sex (as a biological variable) differences
between groups (REL vs ABS), Pearson’s chi-square tests were
conducted (Table 1).

Binary logistic regression models were fit to assess whether
FA and KFA in our tracts-of-interest predicted binary outcome
(REL vs ABS) at a 4-month follow-up. Cox proportional hazards
models were used to assess whether FA and KFA in our tracts-of-
interest predicted days-to-relapse. For these models, anisotropy
metrics were linearly scaled by a factor of 100 to facilitate the
interpretability of the coefficient estimates. Each tract-of-interest
in each hemisphere was modeled separately and separate analy-
ses were conducted for KFA and FA. Based on the total number of
tracts examined (6), a Bonferroni-adjusted significance threshold
of 0.0083 was used.

Results
No demographic differences were found between REL and ABS
groups (Table 1), Despite there being no significant relationship
between sex and age and either continuous or binary relapse
measures in our sample, we adjusted for these variables in each
model to account for observed trend-level relationships and prior
reports of potential effects (Sliedrecht et al. 2019). No significant
differences were found in any self-report measures between REL
and ABS groups (Table 1).

Diffusion metrics and risk of relapse
Dichotomous relapse metric
Descriptive statistics for tract-wise FA and KFA measurements
are reported in Table 3. After correcting for the number of com-
parisons within each diffusion metric by using a Bonferroni-
adjusted alpha (α = 0.0083), only KFA in the right fornix was a
significant predictor (P = 0.006) of dichotomous relapse in sex
and age-adjusted binary logistic regression models (Table 4); FA
in this tract did not survive correction for multiple comparisons
(P = 0.018). Results in the bilateral UF suggest that a negative rela-
tionship between anisotropy measures and dichotomous relapse
may be uncovered in a larger sample, but these did not reach
significance in our sample.

Continuous relapse metric
Results of the sex and age-adjusted Cox regression models pre-
dicting the number of days to relapse (see Table 5) bore simi-
larities to the logistic regression models predicting dichotomous
relapse reported above. In the right fornix, KFA significantly pre-
dicted the number of days until relapse (P = 0.002), with increased
KFA associated with longer periods of abstinence. FA in this
tract showed a similar relationship but did not survive Bonfer-
roni correction (P = 0.011). In the bilateral UF, the relationship
between anisotropy measures and abstinence duration was in the
same direction as observed in the right fornix but failed to reach
significance.

Discussion
This study follows a previous report in which we leveraged the
same theory-driven addiction model (Koob and Volkow 2016;
Kwako et al. 2019) to examine whether resting state functional
connectivity (RSFC) within each addiction domain was associated
with binary and continuous relapse metrics (Camchong et al.
2022). This study expands on our brain functional connectivity
work by examining whether white matter microstructural alter-
ations in tracts within those same theoretical addiction domains
are also predictive of subsequent relapse outcomes (as dichoto-
mous and continuous variables). By examining anatomical met-
rics that are relatively stable across time, we hoped to both
address reliability concerns inherent in RSFC analyses (Noble et al.
2019) and explore potential structural explanations for previously
observed RSFC hypoconnectivity.

We examined three pairs of contralateral tracts representing
the three addiction domains (Table 2) using two diffusion-based
metrics (FA and KFA) that are sensitive to microstructural alter-
ations in white matter. Our approach revealed a relationship
between white matter microstructure in one tract associated with
the IS domain (right fornix) and non-significant effects in the
same direction in the NE domain (bilateral UF). There was no
apparent relationship between white matter microstructure and
the bilateral ATR, which was selected as representative of the EF
domain.

KFA in the right fornix (IS domain) was significantly asso-
ciated with both dichotomous (relapsed: yes vs. no) and con-
tinuous (number of days to relapse) relapse metrics during the
4-month follow-up period, after controlling for age and sex and
after correction for multiple comparisons. The IS domain was the
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Table 3. Descriptive statistics of tract-wise FA and KFA measurements.

All AUD ABS REL

Domain Tract Hemisphere FA
m (SD)

KFA
m (SD)

FA
m (SD)

KFA
m (SD)

FA
m (SD)

KFA
m (SD)

EF Anterior thalamic radiation Left
Right

0.428 (0.020)
0.421 (0.018)

0.502 (0.024)
0.501 (0.026)

0.428 (0.020)
0.422 (0.020)

0.503 (0.025)
0.501 (0.025)

0.427 (0.019)
0.419 (0.017)

0.500 (0.025)
0.501 (0.027)

IS Fornix Left
Right

0.312 (0.039)
0.301 (0.042)

0.307 (0.045)
0.314 (0.049)

0.316 (0.044)
0.320 (0.035)

0.312 (0.052)
0.328 (0.043)

0.309 (0.034)
0.299 (0.046)

0.302 (0.038)
0.300 (0.051)

NE Uncinate fasciculus Left
Right

0.415 (0.024)
0.416 (0.024)

0.506 (0.028)
0.507 (0.028)

0.421 (0.024)
0.423 (0.022)

0.510 (0.029)
0.516 (0.027)

0.409 (0.023)
0.408 (0.024)

0.501 (0.026)
0.498 (0.028)

Table 4. Predicting dichotomous relapse based on diffusion metrics measured during early abstinence.

FA KFA

Domain Tract Hemisphere Est. CI p Est. CI p

EF Anterior thalamic radiation Left
Right

1.00
1.01

(0.74–1.36)
(0.73–1.40)

0.996
0.975

0.96
1.04

(0.74–1.23)
(0.81–1.33)

0.763
0.731

IS Fornix Left
Right

0.94
0.80

(0.79–1.11)
(0.66–0.95)

0.462
0.018a

0.93
0.79

(0.80-1.07)
(0.66–0.92)

0.314
0.006b

NE Uncinate Fasciculus Left
Right

0.83
0.82

(0.63–1.08)
(0.62–1.06)

0.178
0.140

0.85
0.82

(0.66–1.08)
(0.64–1.02)

0.195
0.085

aSignificant only before Bonferroni correction bSignificant after correction for multiple comparisons

Table 5. Predicting days-to-relapse based on diffusion metrics measured during early abstinence.

FA KFA

Domain Tract Hemisphere Est. CI p Est. CI p

EF Anterior thalamic radiation Left
Right

0.95
0.98

(0.77–1.17)
(0.78–1.23)

0.628
0.861

0.94
1.02

(0.79–1.12)
(0.86–1.21)

0.476
0.818

IS Fornix Left
Right

0.98
0.86

(0.87–1.10)
(0.76–0.96)

0.707
0.011a

0.96
0.86

(0.88-1.06)
(0.78–0.95)

0.453
0.002b

NE Uncinate fasciculus Left
Right

0.86
0.85

(0.71–1.05)
(0.71–1.01)

0.137
0.064

0.90
0.86

(0.77–1.05)
(0.74–1.01)

0.170
0.062

aSignificant only before Bonferroni correction bSignificant after correction for multiple comparisons

only domain in which a significant relationship was found with
either dichotomous or continuous relapse. These findings align
with our prior results based on RSFC strength, where IS domain
hypoconnectivity was predictive of both continuous and dichoto-
mous relapse outcomes and was the only domain that remained
a significant predictor of dichotomous relapse after controlling
for sex (Camchong et al. 2022). Due to its role in the mesolimbic
reward pathway, microstructural abnormalities in the fornix may
be associated with cue-induced alcohol craving and habit-like
compulsive alcohol consumption (Koob and Volkow 2016).

Though not significant, increased FA and KFA in the bilateral
UF (NE domain) were associated with decreased odds of contin-
uous and dichotomous relapse in our sample. Microstructural
abnormalities in the UF likely influence emotional processing
(Von Der Heide et al. 2013) which could exacerbate symptoms
of protracted withdrawal in those undergoing treatment for AUD
(Koob and Volkow 2016). Although not significant in our limited
sample, the directionality and strength of the observed rela-
tionship suggest that further exploration of this relationship is
merited.

In the IS and NE domains, the direction of all observed relation-
ships was negative, with increases in anisotropy corresponding
to decreased risk of relapse and longer periods of sustained
abstinence and vice versa. Under the common interpretation

of anisotropy as a proxy for white matter integrity, this is the
expected directionality and suggests that relapse risk in AUD may
be related to white matter that is damaged or underdeveloped.
Impaired structural connectivity may also explain our previous
observation of decreased RSFC in these domains (Camchong et al.
2022). However, caution must be taken in interpreting diffusion
metrics and further exploration of these findings is warranted
(see Considerations).

Comparison to prior research
Several previous studies have also investigated white matter
microstructure in the context of relapse in AUD. Using a
design similar to the present study, Zou et al. (2018) reported
decreased FA in the genu and splenium of the corpus callosum
as well as the right fornix/stria terminalis in participants
who went on to relapse compared to those who remained
abstinent. Sorg et al. (2012) also reported lower FA in callosum,
bilateral UF, right superior corona radiata, and left anterior
internal capsule in participants who returned to heavy use
compared to those who abstained as measured six months after
treatment. These studies used a whole brain, tract-based spatial
statistics (TBSS) approach that substantially differs from our
tractography-driven approach. Nonetheless, our observations
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in the fornix and UF are broadly consistent with these prior
studies.

While the present study focused on white matter microstruc-
ture as a predictor of relapse in AUD, it is important to also con-
sider how microstructure is itself impacted by abstinence/relapse.
In a relevant longitudinal study, Pfefferbaum et al. (2014) reported
that age-related decreases in FA across wide areas of the brain
were exaggerated in participants with AUD who relapsed after
treatment, while those who abstained showed a flatter trajectory
suggesting that FA may recover to normal ranges in prolonged
abstinence. Several other studies have also presented evidence
that white matter alterations in AUD may be at least partially
reversible (Gazdzinski et al. 2010; Alhassoon et al. 2012; Zou et al.
2017).

Considerations
We relied on a theoretical model of addiction (Koob and Volkow
2010; Koob and Volkow 2016) to inform the a priori selection
of several white matter tracts in which we hypothesized that
microstructural measures may relate to relapse risk in AUD. In
the context of our limited sample size, we lack sufficient power
to address the specificity of our findings and thus cannot deter-
mine whether similar effects may also be found elsewhere in the
brain. Furthermore, the theoretical model on which we relied was
derived in large part from research on animal models of addiction
that may not necessarily extend to AUD in humans. Although
this analysis leveraged the Koob–Volkow model in its design, the
results should not be interpreted as supporting or refuting the
model’s validity.

Although diffusion MRI is a useful tool for examining white
matter microstructure in vivo, caution must be taken when inter-
preting how these metrics may reflect the biophysical proper-
ties of the underlying tissue (Mueller et al. 2015). A variety of
microstructural features may influence the diffusion signal and
therefore metrics derived from it, including myelination, axonal
damage, and orientation of crossing fibers (De Erausquin and
Alba-Ferrara 2013). Our primary goal was to assess whether mea-
surable microstructural alterations were associated with relapse
in AUD. The nature of those differences is beyond the scope of this
study. Furthermore, we are unable to infer from our data whether
variations in FA and KFA were caused by chronic alcohol use or if
they were pre-existing, perhaps even predisposing individuals to
AUD. These questions are well suited for future research.

Interpretation of these findings in relation to our recent report
on RSFC in Koob–Volkow domains (Camchong et al. 2022) requires
some additional considerations. The white matter tracts chosen
to represent each domain in the present study were selected
from the 23 expertly defined pathways available in FSL’s XTRACT.
Perfect correspondence, wherein each pathway connects those
structures and only those structures that comprised the RSFC
networks used in our prior study, was not feasible. Further inves-
tigations using alternative tractography approaches may provide
additional information. Furthermore, we do not provide direct evi-
dence to determine whether the observed microstructural effects
cause resting state hypoconnectivity or instead reflect structural
degradation as a result of sustained hypoconnectivity.

Conclusions
We observed that decreases in anisotropy measures of the right
fornix, a white matter tract involved in the IS domain, were
related to an increased risk of dichotomous relapse as well as
shorter duration of abstinence among individuals with AUD in

an inpatient treatment program. No significant relationships
between microstructure and relapse outcomes were found in
tracts representing the EF and NE domains, but the observed
relationship between microstructure and relapse in NE domain
tracts (bilateral UF) encourages further exploration using a larger
sample. This study supplements our previous report in which
reduced RSFC in domain-specific networks was associated with
increased relapse risk in AUD. The current findings suggest that
some microstructural features may also mediate relapse risk. Fur-
ther investigation is needed into how the structure and function
of these addiction networks may modulate resilience to relapse.
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