
Received: May 10, 2023. Revised: June 16, 2023. Accepted: June 17, 2023
© The Author(s) 2023. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

Cerebral Cortex, 2023, 33, 9850–9866

https://doi.org/10.1093/cercor/bhad249
Advance access publication date 11 July 2023

Original Article

Analogous cortical reorganization accompanies entry
into states of reduced consciousness during anesthesia
and sleep
Bryan M. Krause1, Declan I. Campbell1, Christopher K. Kovach2, Rashmi N. Mueller2,3, Hiroto Kawasaki2, Kirill V. Nourski2,4,

Matthew I. Banks1,5,*

1Department of Anesthesiology, University of Wisconsin, Madison, WI, United States,
2Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, United States,
3Department of Anesthesia, The University of Iowa, Iowa City, IA 52242, United States,
4Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242, United States,
5Department of Neuroscience, University of Wisconsin, Madison, WI 53706, United States

*Corresponding author: Department of Anesthesiology, University of Wisconsin, 1300 University Avenue, Room 4605, Madison, WI 53706, United States.
Email: mibanks@wisc.edu

Theories of consciousness suggest that brain mechanisms underlying transitions into and out of unconsciousness are conserved no
matter the context or precipitating conditions. We compared signatures of these mechanisms using intracranial electroencephalog-
raphy in neurosurgical patients during propofol anesthesia and overnight sleep and found strikingly similar reorganization of human
cortical networks. We computed the “effective dimensionality” of the normalized resting state functional connectivity matrix to quan-
tify network complexity. Effective dimensionality decreased during stages of reduced consciousness (anesthesia unresponsiveness,
N2 and N3 sleep). These changes were not region-specific, suggesting global network reorganization. When connectivity data were
embedded into a low-dimensional space in which proximity represents functional similarity, we observed greater distances between
brain regions during stages of reduced consciousness, and individual recording sites became closer to their nearest neighbors. These
changes corresponded to decreased differentiation and functional integration and correlated with decreases in effective dimensionality.
This network reorganization constitutes a neural signature of states of reduced consciousness that is common to anesthesia and sleep.
These results establish a framework for understanding the neural correlates of consciousness and for practical evaluation of loss and
recovery of consciousness.
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Introduction
Consciousness is inextricably tied to the organizational structure
of brain networks (Tononi et al. 2016; Mashour et al. 2020). Inves-
tigations into the neural correlates of consciousness suggest that
changes in the brain underlying loss and recovery of conscious-
ness (LOC, ROC) should overlap regardless of the circumstances,
or contexts, of their occurrence (Alkire et al. 2008; Mashour and
Hudetz 2018). LOC and ROC are likely precipitated by large-scale
reorganization of cortical networks. This reorganization might
result in altered functional integration and differentiation in the
brain (Tononi et al. 2016), communication into or out of pre-
frontal cortex and amplification of sensory signals (Dehaene and
Changeux 2011), or feedback connectivity (Mashour 2014) with
concomitant effects on predictive processing (Bastos et al. 2012).
Identifying the neural correlates of LOC and ROC remains a
central goal of neuroscience research.

Comparing consciousness-related changes in brain networks
across contexts facilitates identification of neural correlates
that are specific to LOC and ROC. Two contexts of interest that
are readily amenable to experimental investigation are general
anesthesia and sleep. General anesthesia and sleep exhibit com-
mon behavioral and physiological features (Scheinin et al. 2021).
Unconsciousness and dreaming (i.e. conscious experience while

disconnected from the environment) occur in both settings (Eer
et al. 2009; Leslie et al. 2009; Siclari et al. 2013), as do decreased
cerebral blood flow and metabolic rate (Hudetz 2012; Aalling
et al. 2018; Elvsåshagen et al. 2019) and increased slow wave
activity (Murphy et al. 2011). However, sleep and anesthesia
are also clearly distinct. Patients are not as arousable during
anesthesia compared to sleep, and the internal architecture of
sleep, with its distinct and predictable stages, is not observed
during anesthesia. Changes in brain network organization have
been investigated during general anesthesia or sleep separately
(Alkire et al. 2008; Mashour and Hudetz 2018), but in the small
number of studies involving a direct comparison (Murphy et al.
2011; Li et al. 2018; Wang et al. 2020), no clear and consistent
neural correlates have emerged. Thus, the degree to which the
brain traverses an overlapping complement of network states
during anesthesia versus sleep is still a matter of debate (Akeju
and Brown 2017; Li et al. 2018; Sleigh et al. 2018).

The reorganization of cortical networks underlying LOC and
ROC cannot be explained solely by changes in the magnitude
of connectivity. For example, reports of changes in connectivity
during anesthesia and sleep are inconsistent; some studies report
that connectivity is decreased (Spoormaker et al. 2010; Boly et
al. 2012a; Lee et al. 2013; Monti et al. 2013; Palanca et al. 2015;
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Ranft et al. 2016; Sarasso et al. 2021) and others that it is increased
(Murphy et al. 2011; Boly et al. 2012b; Lee et al. 2017b). Further-
more, selective effects of anesthesia have been reported on both
feedback (Lee et al. 2013; Murphy et al. 2019) and feedforward
(Sanders et al. 2018) connectivity. Decreased thalamo-cortical
connectivity has been reported for both anesthesia and sleep
(Alkire et al. 2000; Picchioni et al. 2014), but at least for anesthesia
this change is unlikely to be causal for LOC (Hudetz 2012).

Distinct effects of anesthesia and sleep on network properties
have also been reported. Increased modularity of resting state net-
works during non-rapid eye movement (REM) sleep was reported
to be accompanied by greater connectivity overall (Boly et al.
2012b), suggesting differential effects on within- versus between-
network connectivity. By contrast, during propofol anesthesia
both between- and within-network connectivity was observed to
decrease (Boveroux et al. 2010; Golkowski et al. 2019). Investiga-
tions that operationalized changes in brain integration (Schrouff
et al. 2011; Boly et al. 2012b) and differentiation (Massimini et
al. 2005; Ferrarelli et al. 2010; Casali et al. 2013; Sarasso et al.
2015) have yielded more consistent results. However, a direct
comparison of these effects during anesthesia and sleep would
provide more direct evidence for their roles in LOC and ROC.

Recently, we reported consistent changes in cortical functional
connectivity during anesthesia and sleep (Banks et al. 2020).
Stages of higher probability of consciousness, including wake and
N1 and REM sleep (when dreaming is prominent), exhibited con-
nectivity profiles that were similar to each other but distinct from
stages of reduced probability of consciousness such as propofol
unresponsiveness and non-REM sleep (Banks et al. 2020). These
findings were consistent with a network transition boundary for
consciousness common to anesthesia and sleep, but did not yield
a unifying framework for understanding network reorganization
and relating these changes to theoretical constructs (Dehaene and
Changeux 2011; Mashour 2014; Tononi et al. 2016).

Here, we explore the organization of cortical networks using
intracranial electroencephalogrqphic (EEG) recordings from neu-
rosurgical patients. We apply diffusion map embedding (DME)
(Coifman et al. 2005; Coifman and Hirn 2014) to functional con-
nectivity measured between recording sites. DME has been used
previously to demonstrate an intrinsic or “functional” geometry
of brain networks based on time series data (Langs et al. 2010;
Margulies et al. 2016). Since these initial applications in the field
of neuroscience, DME has been used with increasing frequency
to explore the relationship between structure and function in the
brain (Liu et al. 2022; Meng et al. 2022; Parkes et al. 2022; Chiou
et al. 2023; Katsumi et al. 2023; Pines et al. 2023), and changes in
brain networks underlying altered states of consciousness (Huang
et al. 2021a; Huang et al. 2023; Timmermann et al. 2023) and
brain and psychiatric disorders (Hong et al. 2019; Oldehinkel et
al. 2023; Yang et al. 2023). DME maps the anatomical locations
of recording sites into a Euclidean embedding space in which
proximity reflects similarity in connectivity to the rest of the
network. Implicit in this analytical framework is the assumption
that two sites that are similarly connected to the rest of the brain
are performing similar functions.

In this study, we identify differences in the organization of
cortical networks between stages of sleep and anesthesia that
may underlie LOC. As in our previous work, we distinguished
stages corresponding to substantially reduced probability of con-
sciousness (propofol unresponsiveness, non-REM sleep) from the
waking state and from stages of higher probability of conscious
experience (propofol sedation, light sleep, REM sleep). We show
that states of reduced consciousness during both anesthesia and

sleep can be characterized reliably by a single parameter, the
effective dimensionality of the normalized connectivity matrix.
We present an analytical framework that provides an intuitive,
geometric understanding of changes in cortical networks associ-
ated with states of reduced consciousness and observed reduc-
tions in effective dimensionality. Globally, brain regions become
more distinct (reduced functional integration), moving farther apart
in functional embedding space. Locally, brain subregions become
less distinguishable (reduced differentiation), moving closer to each
other in the functional embedding space. This unifying framework
has a practical utility in identifying cortical state transitions in
clinical settings and broader implications for understanding the
neural basis of consciousness.

Materials and methods
Data acquisition
Study participants
The study included 21 neurosurgical patients (eight female;
age 18–54 years old, median age 34 years old) with medically
refractory epilepsy and undergoing chronic invasive electrophys-
iological monitoring at the University of Iowa Hospital to identify
seizure foci prior to resection surgery (Table 1). Patients were
consented 11/2016–5/2021 and data collected 1/2017–6/2021.
Research protocols aligned with recently aggregated best prac-
tices (Feinsinger et al. 2022) and were approved by the University
of Iowa Institutional Review Board. Written informed consent
was obtained from all participants. Research participation did not
interfere with clinical care, and participants could rescind consent
for research without interrupting their clinical management. All
participants underwent neuropsychological assessment prior
to electrode implantation, and none had cognitive deficits that
would impact this study. As part of their clinical care, the dosages
of the patients’ anti-seizure medications (ASM) were gradually
reduced during chronic monitoring when resting state data were
collected. No a priori power analysis was performed to determine
sample size; the obtained sample size is relatively large for studies
of intracranial electrophysiology. In five participants, data from
the same experiments were previously analyzed using a different
approach (Banks et al. 2020).

Pre-implantation neuroimaging
All participants underwent whole-brain high-resolution T1-
weighted structural magnetic resonance imaging (MRI) scans
before electrode implantation. The scanner was a 3 T GE
Discovery MR750W with a 32-channel head coil. The T1 scan
(3D FSPGR BRAVO sequence) was obtained with the following
parameters: Field of View (FOV) = 25.6 cm, flip angle = 12◦,
Repetition Time (TR) = 8.50 ms, Time to Echo (TE) = 3.29 ms,
inversion time = 450 ms, voxel size = 1.0 × 1.0 × 0.8 mm.

Intracranial EEG recordings
Intracranial EEG (iEEG) recordings were obtained using either
subdural and depth electrodes, or depth electrodes alone. The
type and placement of electrodes were decided solely on the basis
of clinical requirements, as determined by the team of epilep-
tologists and neurosurgeons (Nourski and Howard 3rd. 2015).
Electrode arrays were manufactured by Ad-Tech Medical (Racine,
WI). Subdural arrays, implanted in 14 participants out of 21, con-
sisted of platinum-iridium disks (2.3 mm diameter, 5–10 mm inter-
electrode distance), embedded in a silicon membrane. Stereo-
tactically implanted depth arrays included between 4 and 12
cylindrical contacts along the electrode shaft, with 5–10 mm
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inter-electrode distance. A subgaleal electrode, placed over the
cranial vertex near midline, was used as a reference in all partici-
pants. For sleep recordings, data were recorded using a Neuralynx
Atlas System (Neuralynx Inc., Bozeman, MT), amplified, filtered
(0.1–500 Hz bandpass, 5 dB/octave rolloff), and digitized at a
sampling rate of 2,000 Hz. For anesthesia recordings, data were
acquired using a TDT RZ2 real-time processor (Tucker-Davis Tech-
nologies, Alachua, FL) in participants R369 through L460 and by a
Neuralynx Atlas System in participants L514 and L585. Recorded
data were amplified, filtered (0.7–800 Hz bandpass, 12 dB/octave
rolloff for TDT-recorded data; 0.1–500 Hz bandpass, 5 dB/octave
rolloff for Neuralynx-recorded data), and digitized at a sampling
rate of 2034.5 Hz (TDT) or 2000 Hz (Neuralynx).

Sleep recordings
Resting-state iEEG, EEG, and video data were recorded during
overnight sleep (n = 15 participants) 7.5 +/− 1.1 days [range 6–
9] after iEEG electrode implantation surgery. All participants (i)
in whom placement of overnight scalp EEG leads did not inter-
fere with clinical monitoring, and (ii) that had at least 10 data
acquisition channels available to accommodate scalp EEG, elec-
tromyogram (EMG), and electrooculogram (EOG) leads in addition
to iEEG are included in this cohort. Per clinical limitations and
for patient’s comfort, overnight sleep data were recorded with
scalp EEG on one, and occasionally (n = 2 participants) two, nights
during the monitoring period. If two nights of data were collected,
one was randomly chosen to be analyzed. Data were collected in
the dedicated, electrically shielded suite in The University of Iowa
Clinical Research Unit while the participants lay in the hospital
bed.

Stages of sleep [wake (WS), N1, N2, N3, REM] were defined man-
ually using facial EMG and scalp EEG data based on standard clin-
ical criteria (Berry et al. 2017). Sleep staging was performed inde-
pendently by two individuals who participate in the inter-scorer
reliability program of the American Academy of Sleep Medicine:
a licensed polysomnography technologist, certified by the Board
of Registered Polysomnography Technologists, and a physician
certified in Sleep Medicine by the Accreditation Council for Grad-
uate Medical Education. The final staging report was agreed upon
by the two scorers after a collaborative review. Scalp and facial
electrodes were placed by an accredited technician, and data were
recorded by a clinical acquisition system (Nihon Kohden EEG-
2100) in parallel with research data acquisition. Facial electrodes
were placed following guidelines of the American Academy of
Sleep Medicine (Berry et al. 2017) at the left and right mentalis
for EMG, and adjacent to left and right outer canthi for EOG. EEG
was obtained from electrodes placed following the international
10–20 system at A1, A2, F3, F4, O1, and O2 in all participants, with
the following additional electrodes: C3 and C4 in all participants
but R376; Cz and Fz in L409, L423, and L585; F7 in L585; F8 in L423
and L585. One participant (L403) experienced multiple seizures
in the second half of the night; those data were excluded from
analysis. The durations of recordings for each sleep stage in each
participant are provided in Table 1.

Anesthesia recordings
Anesthesia data were collected during induction of propofol
anesthesia (N = 14 participants) prior to electrode removal
surgery, typically 2 weeks after implantation. All participants
undergoing propofol induction are included in this cohort. Data
were collected during an awake baseline period and during
either an infusion of increasing doses of propofol (n = 12; 50–
150 μg/kg/min) or a propofol bolus followed by constant infusion

(n = 2; Supplemental Fig. 1). Participants were observed to have
eyes closed during nearly all resting state recordings. Data were
recorded in 3–4 blocks (duration 3–6 min each), interleaved with
auditory stimulus paradigms related to other studies (e.g. Nourski
et al. 2018; Nourski et al. 2021).

Awareness was assessed using the Observer’s Assessment of
Alertness/Sedation (OAA/S) scale (Chernik et al. 1990) just before
and just after collection of each resting state data block. Data
segments were assigned labels corresponding to one of three
anesthesia stages: wake (WA; i.e. pre-drug), sedated but respon-
sive to command (S; OAA/S ≥ 3), and unresponsive (U; OAA/S ≤ 2)
(Nourski et al. 2018) (Supplemental Fig. 1). Bispectral index (Gan et
al. 1997) was measured but was not used in the analyses presented
in this study.

In six participants, OAA/S values crossed the boundary
between S and U during the resting state block (e.g. resting
state block #1 in participant L372; see Supplemental Fig. 1). In
these cases, only the first and last 60-s segments of the block
were analyzed; data from the first segment were labeled S,
and data from the second segment were labeled U. Data in the
intervening segment were not used in the analysis. The durations
of recordings used in the analyses for each stage and each
participant during the anesthesia experiment are provided in
Table 1.

Data analysis
Anatomical reconstruction and region of interest
parcellation
Localization of recording sites and their assignment to region
of interest (ROIs) relied on post-implantation T1-weighted
anatomical MRI and post-implantation computed tomography, as
described previously (Banks et al. 2020). All images were initially
aligned with pre-operative T1 scans using linear coregistration
implemented in FSL (FLIRT) (Jenkinson et al. 2002). Electrodes
were identified in the post-implantation MRI as magnetic
susceptibility artifacts and in the computerized tomography
(CT) scan as metallic hyperdensities. Electrode locations were
further refined within the space of the pre-operative MRI using
three-dimensional non-linear thin-plate spline warping (Rohr
et al. 2001), which corrected for post-operative brain shift and
distortion. The warping was constrained with 50–100 control
points, manually selected throughout the brain, which were
visually aligned to landmarks in the pre- and post-implantation
MRI.

To sort recording sites for presentation of diffusion matri-
ces and for assessment of centroid distances and cluster-
ing, recording sites were assigned to one of 58 ROIs (Fig. 1,
Supplemental Table 1). These ROIs were categorized into nine
functional regions based on analysis of resting state data from
a different cohort of participants (Banks et al. 2022). (A small
number of sites in ROIs that did not appear in that cohort
were grouped with regions based on anatomical and functional
criteria.) In the current study, recording sites were assigned to
ROIs based on anatomical reconstructions of electrode locations
in each participant. For subdural arrays, ROI assignment was
informed by automated parcellation of cortical gyri (Destrieux et
al. 2010; Destrieux et al. 2017) as implemented in the FreeSurfer
software package. For depth arrays, it was informed by MRI
sections along sagittal, coronal, and axial planes. Subcortical
recording sites identified as seizure foci or characterized by
excessive noise, and depth electrode contacts localized to the
white matter or outside brain, were excluded from analyses and
are not listed in Supplemental Table 1.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad249#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad249#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad249#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad249#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad249#supplementary-data
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Fig. 1. ROI parcellation and electrode coverage. (a) ROI parcellation scheme used in the present study. (b) Electrode coverage in all subjects that
contributed to the propofol and sleep data sets (left and right column, respectively). Locations of recording sites, color-coded according to functional
region, are plotted in MNI coordinate space and projected onto the right hemisphere of the MNI152 average template brain for spatial reference. (Note
that assignment of recording sites to ROIs was made based on anatomical reconstructions specific to each participant rather than based on the projection
onto the template brain, thus accounting for the individual variability in cortical anatomy; see Materials and methods for details.) Left hemisphere MNI
x-axis coordinates (xMNI) were multiplied by −1 to map them onto the right-hemisphere common space. Projection is shown on the lateral, top-down
(STP), ventral and mesial views, aligned with respect to the yMNI coordinate (top to bottom rows). Recording sites over orbital, frontomarginal, inferior
temporal gyrus, and temporal pole are shown in both the lateral and the ventral view. Sites in fusiform, lingual, parahippocampal gyrus, and gyrus
rectus are shown in both the ventral and medial view. Sites in the amygdala, frontal operculum, hippocampus, and parietal operculum are not shown.
(c) ROI groups, ROIs, and abbreviations used in the present study.

Preprocessing of iEEG data
Analysis of iEEG data was performed using custom software writ-
ten in MATLAB (MathWorks, Natick, MA, USA). Several automated
steps were taken to exclude recording channels and time intervals

contaminated by noise. First, channels were excluded if average
power in any frequency band (broadband, delta (1–4 Hz), theta (4–
8 Hz), alpha (8–14 Hz), beta (14–30 Hz), gamma (30–50 Hz), or high
gamma (70–110 Hz); see below) exceeded 3.5 standard deviations
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of the average power across all channels for that participant. Next,
transient artifacts were detected by identifying voltage deflec-
tions exceeding 10 standard deviations on a given channel. A time
window was identified extending before and after the detected
artifact until the voltage returned to the zero-mean baseline plus
an additional 100 ms buffer before and after. High-frequency arti-
facts were also removed by masking segments of data with high
gamma power exceeding five standard deviations of the mean
across all segments. Only time bins free of these artifact masks
were considered in subsequent analyses. Artifact rejection was
applied across all channels simultaneously so that all connectiv-
ity measures were derived from the same time windows. Occa-
sionally, particular channels survived the initial average power
criteria yet had frequent artifacts that led to loss of data across
all the other channels. There is a tradeoff in rejecting artifacts
(losing time across all channels) and rejecting channels (losing all
data for that channel). If artifacts occur on many channels, there
is little benefit to excluding any one channel. However, if frequent
artifacts occur on one or simultaneously on up to a few channels,
omitting these can save more data from other channels than
those channels contribute at all other times. We chose to optimize
the total data retained, channels × time windows, and omitted
some channels when necessary. The number of channels and per-
cent of recording time retained for each participant is reported in
Supplemental Table 2.

On occasion, broadband noise from in-room clinical equipment
and muscle artifacts appeared in the data as shared signals across
channels. This noise could be detected via analysis of frequencies
higher than those of interest here. To remove these signals, data
from retained channels were high-pass filtered above 200 Hz, and
a spatial filter was derived from the singular value decomposition
of the data omitting the first singular vector. This spatial filter
was then applied to the broadband signal to remove the common
signal. This procedure was implemented as follows. Note that here
and throughout, upper case bold letters refer to matrices, and
lower case bold letters refer to vectors.

For the matrix YHP of N samples of high-pass filtered data
from M recording sites, and the covariance matrix CM×M =
S

(
YT

HPYHP

)
S,where

S =

⎡
⎢⎢⎢⎣

1/σ1 0 . . .

0
. . .

...
... 0 1/σM

⎤
⎥⎥⎥⎦ ,

and σi = standard deviation of high-passed filtered signal from the
ith recording site, YHP,i, the singular value decomposition of CM×M

is obtained as

CM×M = [u1, u2, . . . , uM]

⎡
⎢⎢⎢⎣

λ1 0 . . .

0
. . . 0

... 0 λM

⎤
⎥⎥⎥⎦ [u1, u2, . . . , uM]T,

where ui are eigenvectors, and λi are eigenvalues of CM×M. The
spatial filter is defined as

WSVD = S
(
IM×M − u1uT

1

)
S−1,

where IM × M is the identity matrix. The spatial filter is applied to
the unfiltered data, Y, as

YSVD = YWSVD.

The purpose of the initial high-pass filtering in computing the
spatial filter, WSVD, is to minimize the influence of long-range
physiological correlations, which tend to be associated with low
frequency oscillations (Leski et al. 2013), on CM×M, while preserving
zero-lag correlations arising from reference contamination and
other potential artifactual sources.

Connectivity analysis
For connectivity analysis, the orthogonalized gamma band (30–
70 Hz) power envelope correlation (Hipp et al. 2012) was used.
This measure avoids artifacts due to volume conduction by dis-
counting connectivity near zero phase lag. We focused here on a
specific functional connectivity measure (orthogonalized power
envelope correlations) and a specific frequency band (gamma)
because a parallel study demonstrated their utility for performing
DME analysis (Banks et al. 2022). Gamma band connectivity is
also strongly related to connectivity derived from functional MRI
(Hacker et al. 2017), allowing comparisons to neuroimaging stud-
ies of anesthesia and sleep. We show that the main result of the
paper regarding DE is largely robust to choice of frequency band
(Supplemental Fig. 5). Data were divided into 60-s segments and
envelope correlations estimated for each pair of recording sites
as in (Hipp et al. 2012), except time-frequency decomposition was
performed using the demodulated band transform (Kovach and
Gander 2016), rather than wavelets. Briefly, the procedure was as
follows. Envelope correlations were calculated between each pair
of recorded voltages x(t) and y(t). The time-frequency representa-
tions X(t,f) and Y(t,f) were calculated using the demodulated band
transform (Kovach and Gander 2016). For each pair of complex
signals X(t,f) and Y(t,f), one was orthogonalized to the other by
taking the magnitude of the imaginary component of the product
of one signal with the normalized complex conjugate of the other:

Yorth = ∣∣Im {
Y × X∗/|X|}∣∣

Gamma power at each time bin was then calculated as the
average (across frequencies) log of the squared amplitude. Both
power signals were bandpass filtered (0.2–1 Hz), and the Pearson
correlation calculated between signals. The process was repeated
by orthogonalizing in the other direction and the overall envelope
correlation for a pair of recording sites was the average of the two
Pearson correlations.

Prior to DME, connectivity matrices were thresholded by saving
at least the top third (rounded up) connections for every row, as
well as their corresponding columns (to preserve symmetry). We
also included any connections making up the minimum spanning
tree of the graph represented by the element wise reciprocal of the
connectivity matrix to ensure the graph is connected.

To confirm that the results presented were robust to the spe-
cific threshold chosen, two additional thresholds were tested: (i)
a stricter procedure, as above except saving only the top 10%, or
(ii) a more permissive procedure, only thresholding out negative
correlations.

Diffusion map embedding
See Banks et al. (2022) for details about DME. In brief, cosine
similarity was applied to the functional connectivity matrix to
yield the similarity matrix K = [k(i,j)], which was normalized by
degree to yield a diffusion matrix P = D−1K. D is the degree matrix,
i.e. the diagonal elements of D = ∑N

j=1k
(
i, j

)
, where N is the number

of recording sites, and the off-diagonal elements of D are zero. If
the recording sites are conceptualized as nodes on a graph with
edges defined by K, then P can be understood as the transition

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad249#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad249#supplementary-data
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probability matrix for a “random walk” or a “diffusion” on the
graph (see Coifman et al. 2005; Coifman and Hirn 2014). DME
consists of mapping the recording sites into an embedding space
using the eigen decomposition of P,

�(t) (xi) = [
λ1

tψ1 (xi) , λ2
tψ2 (xi) , . . . , λM

tψM (xi)
]

,

Where M < N is the number of retained dimensions (see below).
λi and ψ j are the eigenvalues and eigenvectors of P, respectively.
Because of the properties of P, λ1 = 1 and its corresponding eigen-
vector is approximately constant and thus does not contribute to
the structure of the data in embedding space. Thus, it is standard
practice to omit that first dimension (Coifman and Hirn 2014) and
that was done here. The parameter t is the number of time steps
in that random walk; here, we fix t = 1. DME can be implemented
alternatively based on a symmetric version of diffusion matrix
Psymm = D-0.5KD-0.5. Basing DME on Psymm has the advantage that
the eigenvectors of Psymm form an orthogonal basis set (unlike
the eigenvectors of P), providing some additional convenience
mathematically that is beyond the scope of this paper (Coifman
and Hirn 2014). Of note, the eigenvalues of P and Psymm are
identical.

Effective dimensionality
We used effective dimensionality (DE) (Del Giudice 2021), a graph
theoretic measure of network complexity, to characterize the
shape of the spectrum of Psymm, or equivalently the complexity of
its community structure. DE was calculated from the eigenvalue
spectrum |λi | of Psymm and normalized to the total number of
dimensions (N; equal to the number of recording sites) as

DE =
(∑N

i=2
λi

)2

/
∑N

i=2
λ2

i / (N − 1) .

To maintain consistency with DME above, the first dimension,
for which λ1 = 1, is omitted. DE gives information about how data
is distributed in N dimensions. DE = 1 for a random graph, as the
data are distributed equally in every dimension and the spectrum
is flat. A graph with structure, e.g. nodes that connect to each
other more than the rest of the graph, has a peaked spectrum and
DE < 1.

Clustering of functional regions in embedding space
Two measures were used to quantify the arrangement of nodes
in embedding space according to brain region. First, the dis-
tance between regions in embedding space was measured by the
pairwise (by region) Euclidean distance between centroids (mean
position across nodes within each region). Second, the Calinski-
Harabasz index of cluster quality [the ratio of between-cluster
variance to within-cluster variance; (Caliński and Harabasz 1974)]
was used to quantify the extent to which nodes segregated in
embedding space according to these pre-identified functional
regions.

Local distance
To quantify the tendency of nodes to be functionally distinct from
other nodes (or, conversely, to aggregate in embedding space and
be less differentiated) without needing to rely on assignments of
nodes to pre-defined ROIs or regional groupings, we defined a
measure called “local distance” as the mean Euclidean distance
in embedding space from a given node to each of the 5% closest
other nodes, divided by the median distance to all pairs of nodes.

Dimensionality reduction via low rank approximations
to Psymm

When calculating distances or evaluating clustering in embed-
ding space, we used a low rank approximation, discarding dimen-
sions associated with small eigenvalues that are likely dominated
by noise. We used an algorithm to identify the inflection point
kinfl beyond which eigenvalues are small and decrease gradually
(Satopaa et al. 2011), and the number of dimensions retained
set equal to kinfl – 1. The algorithm calculates points of maxi-
mum curvature in smoothed data. Since each data segment can
potentially have a different inflection point and to avoid using a
different number of dimensions for each data segment, we used
the 90th percentile across data segments for all segments for
each participant in that experiment. For propofol, the median # of
dimensions kept was 14, range [6, 21]; for sleep, the median was
14, range [8, 21].

Spectral analysis
For each participant, power was calculated using the demodu-
lated band transform (Kovach and Gander 2016) in delta (1–4 Hz)
and gamma (30–50 Hz) bands for each recording site and then
averaged (mean) across recording sites.

Statistical modeling
All measures (DE, centroid distance, Calinski-Harabasz index,
local distance) were computed for individual data segments, then
averaged within each participant across all segments of the with
the same stage label (WA, S, U, WS, N1, N2, N3, REM). The study
design has minimal potential for bias on the effect of stage, as
participants were not assigned or filtered into groups; instead,
each participant provided data from stages associated with both
high and low probability of consciousness. Linear mixed effects
models were fit to these measures with behavioral state as a
fixed effect and participant as a random effect; fit models were
compared to a reduced model omitting the fixed effect for stage
using a likelihood ratio test. Mixed effects models control for
confounding by repeated measures in the same individuals and
are suitable for factorial designs with missing data; no attempt to
impute missing data was performed. No other predictor variables
besides stage were included in the models. Pairwise planned
contrasts were tested between WA-S, WA-U, and S-U for propofol
experiments, and WS-N1, WS-N2, WS-N3, WS-REM, N1-N2, N2-
N3, N2-REM, and N3-REM for sleep experiments; P-values were
adjusted using a multivariate t-distribution that accounts for
correlations among tested hypotheses. Statistical analyses were
performed in R version 4.2.1 using the packages lme4 (Bates et al.
2015) and emmeans (Lenth 2019).

In the primary analysis, recordings from all brain areas were
used to derive each measure from the diffusion matrix or embed-
ding space. However, it is possible that specific brain areas are
responsible for the observed differences between stages. There-
fore, we conducted sensitivity analyses by excluding brain regions
as if those regions were not recorded. Statistical models were the
same as described above.

Data and code availability
Data reported in this paper will be shared by the lead contact
upon request. All original code and the data that appears in the
figures have been deposited at Zenodo https://doi.org/10.5281/
zenodo.7897507 and is publicly available as of the date of
publication.

http://dx.doi.org/10.5281/zenodo.7897507
http://dx.doi.org/10.5281/zenodo.7897507


Bryan M. Krause et al. | 9857

Fig. 2. Network organization varies during anesthesia and sleep. Data from a representative participant (L372). (a) Electrode coverage in this participant.
Recording sites are color-coded according to the ROI group. White symbols denote sites excluded from the analysis due to excessive noise, artifacts,
location within seizure focus, in white matter, or outside the brain. Black symbols denote depth electrode insertion points. (b) Diffusion matrices Psymm
during propofol anesthesia for the participant in (a). Each matrix is from 1 min of data. (c) Spectra of Psymm calculated from the example matrices in
(b). For these examples, DE(WA) = 0.30, DE(S) = 0.20, DE(U) = 0.10. (d) Diffusion matrices Psymm during sleep for the participant in (a). Each matrix is from
1 min of data. (e) Spectra of Psymm calculated from the matrices in (d). For these examples, DE(WS) = 0.31, DE(N1) = 0.30, DE(N2) = 0.14, DE(REM) = 0.32. For
panels (b)–(e), data recorded during anesthesia and sleep experiments were divided into segments of length 60 s, and the diffusion matrix and spectrum
computed for each segment. Matrices and spectra shown are from the segments with effective dimensionality closest to the median value for each
stage of anesthesia and sleep in this participant.

Results
Summary of experiments and recordings
Resting state iEEG recordings were obtained in neurosurgical
patients undergoing intracranial monitoring for the purpose of
identifying seizure foci. Demographic information is summarized
in Table 1. Summaries of the brain parcellation scheme and of
electrode coverage across all participants are shown in Fig. 1 and
Supplemental Table 1, respectively. Typical electrode coverage is
shown for one participant in Fig. 2a. Each recording site was
assigned to a ROI, color-coded according to a functional par-
cellation scheme illustrated in Fig. 1a. This scheme was derived
from analysis of resting state iEEG data from a complemen-
tary dataset obtained during daytime wake (Banks et al. 2022).
To investigate changes in cortical network organization during
transitions in arousal and awareness, data were recorded during
induction of propofol anesthesia just prior to removal of elec-
trodes (N = 14 participants; see Table 1 and Supplemental Fig. 1),
and during overnight sleep (N = 15 participants; see Table 1 and
Supplemental Fig. 2). As in our previous work, we identified stages
of anesthesia (WA: pre-drug wake; S: sedated but responsive; U:
unresponsive) using the OAA/S, a standard clinical assessment
tool (Chernik et al. 1990; Banks et al. 2020). Sleep stages were
identified using standard polysomnography (WS: wake; N1: light
sleep; N2, N3: non-REM; REM). Three anesthesia participants had
no data segments labeled “S,” three sleep participants had no
data segments labeled “N3,” and three sleep participants had no
data segments labeled “REM”; all other stages were present in all
participants.

Altered cortical network organization during
anesthesia and sleep
Functional connectivity was calculated as orthogonalized gamma
band power envelope correlations (Hipp et al. 2012; Banks
et al. 2022), yielding for each 1 min data segment an electrode ×
electrode connectivity matrix. The first steps of DME analysis are
to create a similarity matrix by applying cosine similarity to the

functional connectivity matrix, then to normalize, threshold, and
make symmetric the similarity matrix to yield a diffusion matrix
Psymm. Psymm describes the diffusion of an input signal applied
to nodes (i.e. recording sites) on the graph (Coifman and Hirn
2014). When Psymm is sorted by brain region (indicated by colored
bars in Fig. 2b), increasing community structure becomes evident
in states of reduced consciousness under propofol anesthesia
(sedated/S, unresponsive/U). The degree of community structure
can be quantified by examining the eigenvalue spectrum of
Psymm (Fig. 2c). Random graphs, i.e. those with maximal entropy,
have spectra that are approximately flat. Graphs with strong
community structure have spectra that are more peaked. The
underlying entropy of the graph, and hence the shape of the
spectrum, can be quantified using the effective dimensionality
DE ∈ (0, 1), a function of the eigenvalue spectrum and a graph
theoretic measure of complexity (see Materials and methods).
Importantly, the eigenvalue spectrum and calculation of DE do
not require nodes to be ordered or labeled. Like anesthesia, non-
REM sleep was associated with a more structured Psymm and more
peaked spectrum (Fig. 2d and e).

The time series of DE computed for each 60-s data segment
recorded during an experiment reveals striking changes in net-
work structure during both anesthesia and sleep experiments,
with transitions into S and U during anesthesia and into N2 during
sleep accompanied by sharp decreases in DE (Fig. 3a). Notably,
DE was consistently higher during stages associated with higher
probability of consciousness (WA, S, WS, N1, REM). Two additional
examples from participants recorded during both propofol anes-
thesia and during sleep are shown in Supplemental Fig. 3.

Data were summarized across participants by first averaging
DE within participant across all segments associated with each
stage of anesthesia and sleep. DE varied significantly by stage
for both propofol anesthesia and sleep (likelihood ratio test for
omitting stage: propofol χ2(2) = 42.0, P < 0.0001; sleep χ2(4) = 79.3,
P < 0.0001) (Fig. 3b). For propofol anesthesia, mean DE decreased
progressively from WA to S to U (Table 2). During sleep, DE

for N1 and REM were not significantly different from WS,

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad249#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad249#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad249#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad249#supplementary-data
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Fig. 3. Changes in DE in states of reduced consciousness. (a) Time series
of DE from an example participant. Changes during anesthesia and sleep
are shown in left and right panel, respectively. Each data point represents
1 min of data. Time is depicted relative to the start of recording. Same
participant (L372) as in Fig. 2. (b) Summary of changes in DE in states of
reduced consciousness across all participants. Changes during propofol
anesthesia and sleep are shown in left and right panel, respectively.
Symbols are mean within a participant, connected by lines for data
points from the same participant. Dashed lines are used to connect
points when data in the intervening stage (S; N3) is not available for
that participant. P-values are from paired post-hoc comparisons, adjusted
using multivariate t-distribution.

but DE decreased in N2 and decreased further in N3. These
results were robust to the choice of threshold in calculating
Psymm (Supplemental Fig. 4). Results were also robust to the
choice of frequency band, with similar results obtained for
alpha, beta, and high gamma band power envelope correlations
(Supplemental Fig. 5). By contrast, spectral power alone did not
reliably distinguish between stages of anesthesia and sleep
(Supplemental Fig. 6).

Changes in cortical network organization are not
regionally specific
It is plausible that observed changes in DE between network states
could be dominated by changes in a subset of recording sites
in specific brain regions. We performed sensitivity analyses by
repeating the analysis of Fig. 3b after excluding recording sites
from groups of cortical functional regions (Supplemental Fig. 7;
groups of regions were: Auditory, Limbic, Visual + Ventral,
Ventromedial Prefrontal + Lateral Prefrontal + Executive, and
Dorsal + Action). The significant decrease in DE during states
of reduced consciousness was observed in all cases, regardless
of which regions were omitted. These results indicate that the

changes in network structure associated with transitions into
states of reduced consciousness could not be explained by
connectivity changes of any single brain region. Thus, anesthesia
and sleep are associated with global reorganization of cortical
networks.

Changes in effective dimensionality reflect
decreased differentiation and functional
integration
We’ve shown that DE indexes entry and exit from states of reduced
consciousness based on only the spectrum (eigenvalues) of Psymm.
The observed changes in DE indicate a reorganization of brain
networks; however, because there is no unique mapping between
a spectrum and a network, changes in spectra do not identify
the specific features of this reorganization. To gain insight into
these features, we can apply the next steps in DME analysis and
consider data in the embedding space defined by the spectral
decomposition of Psymm.

A simple toy model is useful in this regard (Fig. 4a). We sim-
ulated a modular network consisting of five regions, with nine
nodes in each region. Two types of connectivity were present
in the model: (i) uniform random connectivity linking nodes
regardless of region, and (ii) stronger within-region connectivity
imposed on this nonspecific random connectivity. The strength
of within-region connectivity was varied from weak (Fig. 4a, left
column) to strong (Fig. 4a, right column), corresponding to an
increasingly modular organization of the network. This increase
in modular organization (Fig. 4a, top row) was associated with
more peaked eigenvalue spectra (insets in Fig. 4a) and decreased
DE. DME conveys the functional geometry of these changes in
community structure by mapping the data into a lower dimen-
sional embedding space using the eigenfunctions and eigenvalues
of Psymm (Fig. 4a, bottom row). Nodes that are connected similarly
to the rest of the network are mapped to nearby locations in the
embedding space, indicating their functional similarity. A more
modular network organization results in more tightly clustered
nodes within each region; the neural responses of this more
modular network would exhibit reduced differentiation. This is
easily illustrated by considering the extreme case (right), in which
the nodes within each region are so tightly coupled as to ren-
der them nearly equivalent, essentially transforming the original
45-node network into a 5-node network with a vastly reduced
repertoire of possible network states. In addition, regions become
more distinct and more distant from each other as modularity
increases, corresponding to a decrease in functional integration
across the whole network.

We observed similar changes in embeddings of functional con-
nectivity data derived from intracranial recordings (Fig. 4b). Data
recorded during states of reduced consciousness during propofol
anesthesia (e.g. U; Fig. 4b, top row) or sleep (e.g. N2 or N3; Fig. 4b,
bottom row) were “clumpier” in embedding space and regional
clusters of nodes moved farther apart from each other, suggesting
an increase in modularity.

We quantified these effects both with and without a priori
assignments of electrodes to labeled clusters. Using labels from
the nine regions illustrated in Fig. 1c, we assessed changes in
cluster organization within embeddings. We measured inter-
cluster distances between cluster centroids and regional grouping
of nodes using an index of cluster quality (Calinski-Harabasz
index) calculated as the ratio of between-cluster to within-cluster
dispersion. We also considered the position of nodes in embedding
space relative to their neighboring nodes without a priori
assignments to functional regions. The analysis is illustrated in

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad249#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad249#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad249#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad249#supplementary-data
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Table 2. Post-hoc pairwise comparisons.

Measure Contrast Estimate, 95% CI df t P

Mean DE, propofol S–WA −0.048 [−0.090, −0.0068] 23.9 −2.92 0.020
U–WA −0.15 [−0.19, −0.11] 23.4 −9.74 <0.0001
S–U 0.099 [0.058, 0.14] 23.9 6.01 <0.0001

Mean DE, sleep N1–WS −0.018 [−0.051, 0.016] 50.0 −1.47 0.55
N2–WS −0.086 [−0.12, −0.052] 50.0 −7.04 <0.0001
N3–WS −0.13 [−0.17, −0.10] 50.2 −10.3 <0.0001
R–WS 0.0047 [−0.031, 0.041] 50.2 0.362 1.00
N1–N2 0.068 [0.034, 0.10] 50.0 5.57 <0.0001
N2–N3 0.049 [0.013, 0.086] 50.2 3.78 0.0032
N2–R −0.090 [−0.13, −0.054] 50.2 −6.91 <0.0001
N3–R −0.14 [−0.18, −0.10] 50.2 −10.1 <0.0001

Centroid distance, propofol S–WA 0.075 [0.019, 0.13] 23.1 3.34 0.0077
U–WA 0.18 [0.13, 0.23] 23.0 8.96 <0.0001
S–U −0.11 [−0.16, −0.052] 23.1 −4.83 0.0002

Centroid distance, sleep N1–WS 0.016 [−0.027, 0.059] 50.0 1.02 0.82
N2–WS 0.059 [0.016, 0.10] 50.0 3.81 0.0028
N3–WS 0.12 [0.069, 0.16] 50.0 6.92 <0.0001
R–WS 0.021 [−0.025, 0.067] 50.0 1.24 0.70
N1–N2 −0.043 [−0.086, −0.00037] 50.0 −2.79 0.047
N2–N3 −0.056 [−0.10, −0.010] 50.0 −3.38 0.0097
N2–R 0.038 [−0.0077, 0.084] 50.0 2.30 0.14
N3–R 0.095 [0.046, 0.14] 50.0 5.36 <0.0001

Cluster quality, propofol S–WA 3.9 [−1.1, 8.9] 23.4 1.97 0.14
U–WA 10.7 [6.1, 15.2] 22.4 5.84 <0.0001
S–U −6.8 [−11.7, −1.8] 23.4 −3.41 0.0064

Cluster quality, sleep N1–WS 1.9 [−2.9, 6.6] 50.3 1.09 0.78
N2–WS 5.7 [0.98, 10.5] 50.3 3.33 0.011
N3–WS 8.1 [3.0, 13.2] 50.9 4.38 0.0005
R–WS 1.7 [−3.4, 6.8] 50.9 0.941 0.86
N1–N2 −3.8 [−8.6, 0.90] 50.3 −2.24 0.16
N2–N3 −2.4 [−7.4, 2.7] 50.8 −1.28 0.67
N2–R 4.0 [−1.1, 9.1] 50.9 2.16 0.19
N3–R 6.3 [0.94, 11.7] 51.1 3.25 0.014

Local distance, propofol S–WA −0.064 [−0.11, −0.015] 23.2 −3.31 0.0084
U–WA −0.19 [−0.24, −0.15] 22.2 −10.8 <0.0001
S–U 0.13 [0.080, 0.18] 23.2 6.68 <0.0001

Local distance, sleep N1–WS −0.019 [−0.050, 0.013] 49.9 −1.64 0.44
N2–WS −0.078 [−0.11, −0.046] 49.9 −6.82 <0.0001
N3–WS −0.13 [−0.17, −0.10] 50.1 −10.9 <0.0001
R–WS −0.0058 [−0.040, 0.028] 50.1 −0.473 0.99
N1–N2 0.059 [0.028, 0.091] 49.9 5.18 <0.0001
N2–N3 0.056 [0.022, 0.090] 50.1 4.54 0.0003
N2–R −0.072 [−0.11, −0.038] 50.1 −5.87 <0.0001
N3–R −0.13 [−0.16, −0.092] 50.1 −9.82 <0.0001

CI = confidence interval; df = degrees of freedom, adjusted by Satterthwaite method.

Fig. 5a. For each node, we calculated a normalized “local distance”
as the average pairwise distance to the 5th-percentile closest
nodes normalized to the median distance to all nodes. Much
like cluster quality, this measure captures combined aspects of
differentiation (distance among similar nodes) and integration
(distance between dissimilar nodes), but without requiring label
assignments.

Systematic changes in all three measures were observed
across stages of anesthesia (Fig. 5b, example participant). In
U, inter-cluster distances increased, cluster quality improved,
and local distances decreased. These results were consistent
across subjects (likelihood ratio test for omitting stage: inter-
cluster distance χ2(2) = 37.8, P < 0.0001; cluster quality χ2(2) = 22.8,
P < 0.0001; local distance χ2(2) = 47.9, P < 0.0001; see pairwise
comparisons in Table 2). Accordingly, effective dimensionality

was negatively correlated with inter-cluster distance and
cluster quality, and positively correlated with local distance
(Fig. 5c). Similar relationships with sleep stage were observed
in an example participant (Fig. 5d) and across participants
(likelihood ratio test for omitting stage: inter-cluster distance
χ2(4) = 42.7, P < 0.0001; cluster quality χ2(4) = 22.5, P = 0.00016;
local distance χ2(4) = 81.6, P < 0.0001; see pairwise comparisons
in Table 2) and were correlated with effective dimensionality
(Fig. 5e).

For both sleep and anesthesia, the strongest correlations were
observed between local distance and effective dimensionality.
Local distance captures the reorganization in embedding space,
and effective dimensionality allows for tracking changes in anes-
thesia or sleep stage, both without relying on a priori assumptions
about the data.
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Fig. 4. Embedding space representation of community structure. (a) Toy example showing effects of stronger community structure on embeddings. Top
row: Diffusion matrix (Psymm) representation of weak, intermediate, and strong community structure (left, middle, and right panel, respectively). Insets
depict Psymm spectra. DE = 0.44, 0.35, 0.18, respectively. Bottom row: Embedding space representation of weak, intermediate, and strong community
structure (left, middle, and right panel, respectively). Mean centroid distance = 0.35, 0.42, 0.50, respectively. (b) Changes in functional geometry during
anesthesia and sleep in example participants. Top row: Arrangement of recorded data in embedding space (first three dimensions) during anesthesia in
an example participant (R399). Each symbol represents an individual recording site. Colors indicate assignment to functional regions (legend). Bottom
row: Arrangement of data in a second participant (L423) during sleep.

Discussion
Changes in effective dimensionality reflect
changes in complexity, differentiation, and
integration
We link changes in the organization of cortical networks with
changes in consciousness during anesthesia and sleep using DE.

DE is related to spatial complexity, in that fewer dimensions
are required to represent a less complicated network. Thus, the
results presented here are consistent with decreased spatial com-
plexity and smaller repertoire of distinct network configurations
reported during LOC (Lee et al. 2010; Hudetz et al. 2014; Hutchi-
son et al. 2014; Barttfeld et al. 2015; Lee et al. 2017a). Changes
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Fig. 5. Changes in embedding geometry are correlated with effective dimensionality. (a) Calculation for one node in one participant of normalized local
distance, defined as the averaged distance between a node of interest and the 5% closest nodes, divided by the median distance to all nodes. Axes reflect
distance along the first two dimensions from the reference node (red square). Shown are the closest 5% nodes (filled blue circles) and all other nodes (open
circles). The closest nodes in the two dimensions shown are not necessarily the closest nodes in the higher-dimensional space. The radius of the dashed
circle depicts the median Euclidean distance from the reference node to all nodes. Compared to awake, in unresponsive the closest nodes are even
closer, while the median is larger. (b) Examples for a single participant (R399) of the relationships between DE and centroid distance (left), cluster quality
(middle), and local distance (right). Each point represents a 60-s segment of data. (c) Summary across participants of correlations between DE and each
embedding measure. Centroid distance and cluster quality are negatively correlated with DE and presented on a reversed axis. The strongest association
with DE is with local distance. (d) Same as (b), but for sleep in L423. (e) Same as (c), but for sleep participants.

in simulated network modularity are reflected by changes in
DE (Fig. 4): when nodes are more tightly connected within each
sub-network relative to connections to other sub-networks, DE

decreases. (We note that there is not a strict relationship between
DE and modularity, as it is theoretically possible to create a
biologically unrealistic network with no modularity but low DE.)
In embedding space, this increase in modularity is reflected in
increased cluster quality and a decrease in local distance (Fig. 5).
Thus, the observation that DE decreases during both anesthesia
and sleep (Fig. 3) links the results presented here with previous
fMRI results showing increased modularity during non-REM sleep

(Boly et al. 2012b). Reported decreases in within-network connec-
tivity during anesthesia (Boveroux et al. 2010; Golkowski et al.
2019) are harder to reconcile with increased modularity, though
this could reflect differences in the spatial scale of the analyses.

Proximity in embedding space corresponds to similarity in
functional connectivity to the rest of the network. During states
of reduced consciousness, recording sites become closer to their
nearest neighbors (less distinguishable) in embedding space,
suggesting reduced differentiation of their activity patterns.
Consistent with these results, perturbational complexity, a
measure of differentiation (Sarasso et al. 2021), shows consistent
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decreases during anesthesia and sleep (Massimini et al. 2005;
Ferrarelli et al. 2010; Casali et al. 2013; Sarasso et al. 2015). Similar
results have been obtained using spatiotemporal complexity
derived from resting state activity (Schartner et al. 2015; Schartner
et al. 2017; Varley et al. 2020).

The results presented here also speak to functional integration
across the network, previously reported to decrease during anes-
thesia (Schrouff et al. 2011; Luppi et al. 2021), though interestingly
not during non-REM sleep (Boly et al. 2012b). This is mostly easily
visualized in embedding space, where functional regions tend to
move farther apart during states of reduced consciousness (Fig. 5).
Decreased functional integration and differentiation during sleep
and anesthesia likely play a role in reducing network efficiency
during anesthesia and in disorders of consciousness (Monti et al.
2013; Chennu et al. 2014; Hashmi et al. 2017).

We found that changes in DE were remarkably robust to the
choice of frequency band, with comparable results in alpha, beta,
and high-gamma bands, and a similar trend in the theta band.
DE measures the complexity of the network organization, and
changes in effective dimensionality during sleep and anesthesia
reflect changes in that network organization, specifically that
locally, brain areas are more tightly coupled and less distinguish-
able, and globally are less tightly coupled and thus less integrated.
The variability of resting state functional connectivity across
frequency band during the wake state likely reflects the tendency
of different regions of the brain to communicate on different time
scales. However, our results show that no matter the time scale
that communication is altered in a similar manner by anesthesia
and sleep.

A recent study applied DME to BOLD fMRI data to investigate
changes in the functional geometry of cortical networks during
anesthesia and in unresponsive wakefulness syndrome (Huang et
al. 2023). Similar to the results presented here, levels of awareness
and wakefulness in that study were related to position of cortical
resting state networks in embedding space. Interestingly, Huang
and colleagues reported a decrease in the range in embedding
space that specific networks cover during states of reduced con-
sciousness, suggesting that separate networks are less distinct
rather than more distinct as we report here. It is possible that the
different measurement modality (iEEG versus fMRI) contributes
to this discrepancy because RS iEEG and cerebral blood flow may
capture fundamentally different signals in the brain (Maier et
al. 2008; Claron et al. 2023). It is also possible that the different
analytical approaches emphasized different features of the data
and changes in those features during anesthesia and sleep. For
example, the DE measure we employ here estimates the number
of dimensions that characterize functional networks in a given
brain state. Huang and colleagues instead focus on three partic-
ular dimensions that best characterize awake resting state net-
works and examine how networks in other states map onto those
dimensions.

Network transitions during anesthesia and sleep
The dynamics of network transitions are a rich vein of inquiry for
understanding the neural basis of consciousness (Golkowski et al.
2019; Huang et al. 2021b). Although these dynamics were not a
focus of the current study, the framework presented here readily
lends itself to their exploration. For example, simple clustering
can distinguish integrated from segregated network states in rest-
ing state functional connectivity derived from functional MRI data
and enable exploration of the dynamics of state transitions during

resting state and cognitive tasks (Shine et al. 2016; Fukushima
et al. 2018). These dynamics are altered under anesthesia, with
a shift toward greater time spent in the segregated state and
decreases in network complexity and information capacity (Luppi
et al. 2019; Luppi et al. 2021).

Although we have divided stages of anesthesia and sleep into
two categories, one of reduced consciousness and the other of
relatively intact consciousness, this is clearly an oversimplifica-
tion. These stages of anesthesia (S, U) and sleep are undoubtedly
superpositions of the more generally relevant states of uncon-
sciousness, disconnected consciousness (i.e. dreaming), and con-
nected consciousness. Stages of reduced consciousness (U, N2,
N3) are likely dominated by segments of unconsciousness, but
also include periods of disconnected consciousness (Leslie et al.
2009; Siclari et al. 2013). Similarly, S and N1 are likely mixtures
of connected consciousness, disconnected consciousness, and
unconsciousness. This continuum is reflected in the smoothly
varying changes across stage in DE and other metrics presented
here.

Theories of consciousness
Central to the ongoing debate about the neural correlates of
consciousness are their loci in the brain (Boly et al. 2017; Odegaard
et al. 2017). Global Neuronal Workspace Theory (Mashour et al.
2020) places prefrontal cortex and its connections with parietal
regions central to these correlates, whereas Integrated Informa-
tion Theory (Tononi et al. 2016) sites these correlates in the “back”
of the brain, a region spanning temporal, occipital, and parietal
cortex. Although clinical considerations precluded an exhaustive
and invariant sampling of brain regions in our cohort of partici-
pants, our results indicate that transitions into and out of states
of reduced consciousness involve a global network reorganization
rather than relying on specific regions (Supplemental Fig. 7). How-
ever, observation of global network changes during anesthesia
and sleep does not exclude the possibility that local changes in
key regions (i.e. prefrontal or parietal cortex) are sufficient to
cause LOC. Additionally, even global cortical changes are likely
coordinated by small brain areas with broad reach, such as central
lateral thalamus (Redinbaugh et al. 2020).

Previous work investigating mechanisms of anesthesia focused
on disruptions in connectivity, especially feedback cortico-cortical
connectivity. Studies in both human subjects and animal models
showed reduced feedback connectivity at doses of anesthetics
causing LOC (Boly et al. 2012a; Lee et al. 2013; Raz et al. 2014;
Murphy et al. 2019). These data are consistent with the Global
Neuronal Workspace Theory, in which feedback from prefrontal
cortex to wide areas of the brain is critical for conscious experi-
ence, and on a central role for predictive processing in conscious-
ness (Friston 2010; Mashour and Hudetz 2017). However, several
findings are not easily reconciled with these models, including
reports of increases in connectivity (Murphy et al. 2011; Boly
et al. 2012b; Lee et al. 2017b) and the reported suppression of
feedforward connectivity (Sanders et al. 2018).

By focusing on network reorganization during states of
reduced consciousness, we shift the focus beyond pathway-
specific changes during LOC and ROC and explore how local
and global changes in connectivity combine to disrupt both
differentiation and integration in the unconscious brain. We
note that functional integration is not the same as information
integration central to Integrated Information Theory, as the latter
distinguishes causal from non-causal interactions. Indeed, it is

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad249#supplementary-data
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not possible to ascertain information integration using purely
observational data. However, theoretical work has shown that
differentiation can be used to establish an upper bound on
integrated information (Marshall et al. 2016). Thus, the results
presented here, when viewed through the lens of differentiation,
are consistent with a decrease in information integration during
reduced states of consciousness.

Caveats and limitations
Because participants in the current study had a neurological
disorder, results may not generalize to a healthy population. This
caveat is inherent to all human intracranial electrophysiology
studies, as discussed previously (Banks et al. 2020). However,
we note that results presented in this study were consistent
across participants with different seizure foci, clinical histories,
and drug regimens. It is possible that seizures, ASM use, and
the hospital environment may affect sleep and sensitivity to
anesthesia. Seizures can disrupt sleep architecture (Touchon et
al. 1991; Derry and Duncan 2013; Jain and Kothare 2015), but in
the one participant with overnight seizures (L403), data collected
after seizures began were excluded. Similarly, although ASMs
can alter the structure of sleep (Jain and Glauser 2014), partici-
pants had the dosages and number of their ASMs reduced before
collection of overnight sleep data. We note that the patients’
ASM regimens at the time of sleep and anesthesia data collec-
tion varied, and this may have contributed to across-participant
variability in results. The quality and structure of sleep may
also have been affected by the hospital environment, possibly
contributing to the absence of N3 sleep in three participants.
Because we had sufficient representation of all studied sleep
stages in the cohort (Table 1), the likelihood of entering a partic-
ular stage was not a confound. Similarly, while the use of ASMs
could lead to a reduction in propofol requirement (Ouchi and
Sugiyama 2015), the present study relied on behavioral assess-
ment of arousal. Thus, the definition of stages of anesthesia was
not affected by factors secondary to the participants’ history of
epilepsy.

Future directions
These results contribute to our understanding of the neural corre-
lates of consciousness. Next steps should include recapitulation of
these results using scalp EEG, which would enhance the transla-
tional relevance of these findings. Assessments in clinical settings
often require monitoring of consciousness in real time. Accord-
ingly, tracking the dynamics of DE and of data in embedding space
will enable identification of rapid changes in brain state under-
lying consciousness transitions. Finally, extending DME analysis
to apply to effective connectivity would enable more thorough
investigation of causal structure theories of consciousness such
as Integrated Information Theory.
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Caliński T, Harabasz J. A dendrite method for cluster analysis. Com-
mun Stat. 1974:3:1–27.

Casali AG, Gosseries O, Rosanova M, Boly M, Sarasso S, Casali KR,
Casarotto S, Bruno MA, Laureys S, Tononi G, et al. A theoretically
based index of consciousness independent of sensory processing
and behavior. Sci Transl Med. 2013:5(198):198ra105.

Chennu S, Finoia P, Kamau E, Allanson J, Williams GB, Monti MM,
Noreika V, Arnatkeviciute A, Canales-Johnson A, Olivares F, et al.
Spectral signatures of reorganised brain networks in disorders of
consciousness. PLoS Comput Biol. 2014:10(10):e1003887.

Chernik DA, Gillings D, Laine H, Hendler J, Silver JM, David-
son AB, Schwam EM, Siegel JL. Validity and reliability of
the Observer’s assessment of alertness/sedation scale: study
with intravenous midazolam. J Clin Psychopharmacol. 1990:10(4):
244–251.

Chiou R, Jefferies E, Duncan J, Humphreys GF, Lambon Ralph MA.
A middle ground where executive control meets semantics: the
neural substrates of semantic control are topographically sand-
wiched between the multiple-demand and default-mode sys-
tems. Cereb Cortex. 2023:33(8):4512–4526.

Claron J, Provansal M, Salardaine Q, Tissier P, Dizeux A, Deffieux
T, Picaud S, Tanter M, Arcizet F, Pouget P. Co-variations of cere-
bral blood volume and single neurons discharge during resting
state and visual cognitive tasks in non-human primates. Cell Rep.
2023:42(4):112369.

Coifman RR, Hirn MJ. Diffusion maps for changing data. Appl Comput
Harmon Anal. 2014:36(1):79–107.

Coifman RR, Lafon S, Lee AB, Maggioni M, Nadler B, Warner F, Zucker
SW. Geometric diffusions as a tool for harmonic analysis and
structure definition of data: diffusion maps. Proc Natl Acad Sci
USA. 2005:102(21):7426–7431.

Dehaene S, Changeux JP. Experimental and theoretical approaches
to conscious processing. Neuron. 2011:70(2):200–227.

Del Giudice M. Effective dimensionality: a tutorial. Multivar Behav Res.
2021:56(3):527–542.

Derry CP, Duncan S. Sleep and epilepsy. Epilepsy Behav. 2013:26(3):
394–404.

Destrieux C, Fischl B, Dale A, Halgren E. Automatic parcellation of
human cortical gyri and sulci using standard anatomical nomen-
clature. NeuroImage. 2010:53(1):1–15.

Destrieux C, Terrier LM, Andersson F, Love SA, Cottier JP, Duvernoy
H, Velut S, Janot K, Zemmoura I. A practical guide for the identifi-
cation of major sulcogyral structures of the human cortex. Brain
Struct Funct. 2017:222(4):2001–2015.

Eer AS, Padmanabhan U, Leslie K. Propofol dose and incidence of
dreaming during sedation. Eur J Anaesthesiol. 2009:26(10):833–836.

Elvsåshagen T, Mutsaerts HJMM, Zak N, Norbom LB, Quraishi SH,
Pedersen PØ, Malt UF, Westlye LT, van Someren EJW, Bjørnerud

A, et al. Cerebral blood flow changes after a day of wake, sleep,
and sleep deprivation. NeuroImage. 2019:186:497–509.

Feinsinger A, Pouratian N, Ebadi H, Adolphs R, Andersen R,
Beauchamp MS, Chang EF, Crone NE, Collinger JL, Fried I, et al.
Ethical commitments, principles, and practices guiding intracra-
nial neuroscientific research in humans. Neuron. 2022:110(2):
188–194.

Ferrarelli F, Massimini M, Sarasso S, Casali A, Riedner BA, Angelini G,
Tononi G, Pearce RA. Breakdown in cortical effective connectivity
during midazolam-induced loss of consciousness. Proc Natl Acad
Sci USA. 2010:107(6):2681–2686.

Friston K. The free-energy principle: a unified brain theory? Nat Rev
Neurosci. 2010:11(2):127–138.

Fukushima M, Betzel RF, He Y, van den Heuvel MP, Zuo XN, Sporns
O. Structure-function relationships during segregated and inte-
grated network states of human brain functional connectivity.
Brain Struct Funct. 2018:223(3):1091–1106.

Gan TJ, Glass PS, Windsor A, Payne F, Rosow C, Sebel P, Man-
berg P. Bispectral index monitoring allows faster emergence and
improved recovery from propofol, alfentanil, and nitrous oxide
anesthesia. BIS utility study group. Anesthesiology. 1997:87(4):
808–815.

Golkowski D, Larroque SK, Vanhaudenhuyse A, Plenevaux A, Boly
M, Di Perri C, Ranft A, Schneider G, Laureys S, Jordan D, et al.
Changes in whole brain dynamics and connectivity patterns dur-
ing Sevoflurane- and Propofol-induced unconsciousness identi-
fied by functional magnetic resonance imaging. Anesthesiology.
2019:130(6):898–911.

Hacker CD, Snyder AZ, Pahwa M, Corbetta M, Leuthardt EC.
Frequency-specific electrophysiologic correlates of resting state
fMRI networks. NeuroImage. 2017:149:446–457.

Hashmi JA, Loggia ML, Khan S, Gao L, Kim J, Napadow V, Brown EN,
Akeju O. Dexmedetomidine disrupts the local and global effi-
ciencies of large-scale brain networks. Anesthesiology. 2017:126(3):
419–430.

Hipp JF, Hawellek DJ, Corbetta M, Siegel M, Engel AK. Large-scale
cortical correlation structure of spontaneous oscillatory activity.
Nat Neurosci. 2012:15(6):884–890.

Hong SJ, Vos de Wael R, Bethlehem RAI, Lariviere S, Paquola C,
Valk SL, Milham MP, Di Martino A, Margulies DS, Smallwood J,
et al. Atypical functional connectome hierarchy in autism. Nat
Commun. 2019:10(1):1022.

Huang Z, Tarnal V, Vlisides PE, Janke EL, McKinney AM, Pic-
ton P, Mashour GA, Hudetz AG. Anterior insula regulates
brain network transitions that gate conscious access. Cell Rep.
2021a:35(5):109081.

Huang Z, Tarnal V, Vlisides PE, Janke EL, McKinney AM, Pic-
ton P, Mashour GA, Hudetz AG. Asymmetric neural dynamics
characterize loss and recovery of consciousness. NeuroImage.
2021b:236:118042.

Huang Z, Mashour GA, Hudetz AG. Functional geometry of the
cortex encodes dimensions of consciousness. Nat Commun.
2023:14(1):72.

Hudetz AG. General anesthesia and human brain connectivity. Brain
Connect. 2012:2(6):291–302.

Hudetz AG, Humphries CJ, Binder JR. Spin-glass model predicts
metastable brain states that diminish in anesthesia. Front Syst
Neurosci. 2014:8:234.

Hutchison RM, Hutchison M, Manning KY, Menon RS, Everling S.
Isoflurane induces dose-dependent alterations in the cortical
connectivity profiles and dynamic properties of the brain’s func-
tional architecture. Hum Brain Mapp. 2014:35(12):5754–5775.



Bryan M. Krause et al. | 9865

Jain SV, Glauser TA. Effects of epilepsy treatments on sleep archi-
tecture and daytime sleepiness: an evidence-based review of
objective sleep metrics. Epilepsia. 2014:55(1):26–37.

Jain SV, Kothare SV. Sleep and epilepsy. Semin Pediatr Neurol.
2015:22(2):86–92.

Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization
for the robust and accurate linear registration and motion cor-
rection of brain images. NeuroImage. 2002:17(2):825–841.

Katsumi Y, Zhang J, Chen D, Kamona N, Bunce JG, Hutchinson JB,
Yarossi M, Tunik E, Dickerson BC, Quigley KS, et al. Correspon-
dence of functional connectivity gradients across human isocor-
tex, cerebellum, and hippocampus. Commun Biol. 2023:6(1):401.

Kovach CK, Gander PE. The demodulated band transform. J Neurosci
Methods. 2016:261:135–154.

Langs G, Golland P, Tie Y, Rigolo L, Golby AJ. Functional geometry
alignment and localization of brain areas. Adv Neural Inf Process
Syst. 2010:1:1225–1233.

Lee U, Oh G, Kim S, Noh G, Choi B, Mashour GA. Brain networks main-
tain a scale-free organization across consciousness, anesthesia,
and recovery: evidence for adaptive reconfiguration. Anesthesiol-
ogy. 2010:113(5):1081–1091.

Lee U, Ku S, Noh G, Baek S, Choi B, Mashour GA. Disruption of frontal-
parietal communication by ketamine, propofol, and sevoflurane.
Anesthesiology. 2013:118(6):1264–1275.

Lee H, Noh GJ, Joo P, Choi BM, Silverstein BH, Kim M, Wang J,
Jung WS, Kim S. Diversity of functional connectivity patterns is
reduced in propofol-induced unconsciousness. Hum Brain Mapp.
2017a:38(10):4980–4995.

Lee M, Sanders RD, Yeom SK, Won DO, Seo KS, Kim HJ, Tononi G, Lee
SW. Network properties in transitions of consciousness during
propofol-induced sedation. Sci Rep. 2017b:7(1):16791.

Lenth RV. Emmeans: estimated marginal means, aka least-squares means;
2019 R package version 1.3.3. https://cran.r-project.org/web/
packages/emmeans/.

Leski S, Linden H, Tetzlaff T, Pettersen KH, Einevoll GT. Frequency
dependence of signal power and spatial reach of the local field
potential. PLoS Comput Biol. 2013:9(7):e1003137.

Leslie K, Sleigh J, Paech MJ, Voss L, Lim CW, Sleigh C. Dreaming
and electroencephalographic changes during anesthesia main-
tained with propofol or desflurane. Anesthesiology. 2009:111(3):
547–555.

Li Y, Wang S, Pan C, Xue F, Xian J, Huang Y, Wang X, Li T, He H.
Comparison of NREM sleep and intravenous sedation through
local information processing and whole brain network to explore
the mechanism of general anesthesia. PLoS One. 2018:13(2):
e0192358.

Liu ZQ, Betzel RF, Misic B. Benchmarking functional connectivity by
the structure and geometry of the human brain. Netw Neurosci.
2022:6(4):937–949.

Luppi AI, Craig MM, Pappas I, Finoia P, Williams GB, Allanson J,
Pickard JD, Owen AM, Naci L, Menon DK, et al. Consciousness-
specific dynamic interactions of brain integration and functional
diversity. Nat Commun. 2019:10(1):4616.

Luppi AI, Golkowski D, Ranft A, Ilg R, Jordan D, Menon DK, Stamatakis
EA. Brain network integration dynamics are associated with loss
and recovery of consciousness induced by sevoflurane. Hum Brain
Mapp. 2021:42(9):2802–2822.

Maier A, Wilke M, Aura C, Zhu C, Ye FQ, Leopold DA. Divergence of
fMRI and neural signals in V1 during perceptual suppression in
the awake monkey. Nat Neurosci. 2008:11(10):1193–1200.

Margulies DS, Ghosh SS, Goulas A, Falkiewicz M, Huntenburg JM,
Langs G, Bezgin G, Eickhoff SB, Castellanos FX, Petrides M,
et al. Situating the default-mode network along a principal

gradient of macroscale cortical organization. Proc Natl Acad Sci
USA. 2016:113(44):12574–12579.

Marshall W, Gomez-Ramirez J, Tononi G. Integrated information
and state differentiation. Front Psychol. 2016:7:926. https://doi.
org/10.3389/fpsyg.2016.00926.

Mashour GA. Top-down mechanisms of anesthetic-induced uncon-
sciousness. Front Syst Neurosci. 2014:8:115.

Mashour GA, Hudetz AG. Bottom-up and top-down mechanisms of
general anesthetics modulate different dimensions of conscious-
ness. Front Neural Circuits. 2017:11:44.

Mashour GA, Hudetz AG. Neural correlates of unconsciousness in
large-scale brain networks. Trends Neurosci. 2018:41(3):150–160.

Mashour GA, Roelfsema P, Changeux JP, Dehaene S. Conscious pro-
cessing and the global neuronal workspace hypothesis. Neuron.
2020:105(5):776–798.

Massimini M, Ferrarelli F, Huber R, Esser SK, Singh H, Tononi G.
Breakdown of cortical effective connectivity during sleep. Science.
2005:309(5744):2228–2232.

Meng Y, Yang S, Xiao J, Lu Y, Li J, Chen H, Liao W. Cortical gradient of
a human functional similarity network captured by the geometry
of cytoarchitectonic organization. Commun Biol. 2022:5(1):1152.

Monti MM, Lutkenhoff ES, Rubinov M, Boveroux P, Vanhaudenhuyse
A, Gosseries O, Bruno MA, Noirhomme Q, Boly M, Laureys S.
Dynamic change of global and local information processing in
propofol-induced loss and recovery of consciousness. PLoS Com-
put Biol. 2013:9(10):e1003271.

Murphy M, Bruno MA, Riedner BA, Boveroux P, Noirhomme Q, Land-
sness EC, Brichant JF, Phillips C, Massimini M, Laureys S, et al.
Propofol anesthesia and sleep: a high-density EEG study. Sleep.
2011:34(3):283–291.

Murphy C, Krause B, Banks M. Selective effects of isoflurane on
cortico-cortical feedback afferent responses in murine non-
primary neocortex. Br J Anaesth. 2019:123(4):488–496.

Nourski KV, Howard MA 3rd. Invasive recordings in the human
auditory cortex. Handb Clin Neurol. 2015:129:225–244.

Nourski KV, Steinschneider M, Rhone AE, Kawasaki H, Howard MA
3rd, Banks MI. Auditory predictive coding across awareness states
under Anesthesia: an intracranial electrophysiology study. J Neu-
rosci. 2018:38(39):8441–8452.

Nourski KV, Steinschneider M, Rhone AE, Mueller RN, Kawasaki
H, Banks MI. Arousal state-dependence of interactions between
short- and long-term auditory novelty responses in human sub-
jects. Front Hum Neurosci. 2021:15:737230.

Odegaard B, Knight RT, Lau H. Should a few null findings falsify pre-
frontal theories of conscious perception? J Neurosci. 2017:37(40):
9593–9602.

Oldehinkel M, Tiego J, Sabaroedin K, Chopra S, Francey SM,
O’Donoghue B, Cropley V, Nelson B, Graham J, Baldwin L, et al.
Gradients of striatal function in antipsychotic-free first-episode
psychosis and schizotypy. Transl Psychiatry. 2023:13(1):128.

Ouchi K, Sugiyama K. Required propofol dose for anesthesia and time
to emerge are affected by the use of antiepileptics: prospective
cohort study. BMC Anesthesiol. 2015:15(1):34.

Palanca BJ, Mitra A, Larson-Prior L, Snyder AZ, Avidan MS, Raichle
ME. Resting-state functional magnetic resonance imaging cor-
relates of Sevoflurane-induced unconsciousness. Anesthesiology.
2015:123(2):346–356.

Parkes L, Kim JZ, Stiso J, Calkins ME, Cieslak M, Gur RE, Gur RC, Moore
TM, Ouellet M, Roalf DR, et al. Asymmetric signaling across the
hierarchy of cytoarchitecture within the human connectome. Sci
Adv. 2022:8(50):eadd2185.

Picchioni D, Pixa ML, Fukunaga M, Carr WS, Horovitz SG, Braun AR,
Duyn JH. Decreased connectivity between the thalamus and the

https://cran.r-project.org/web/packages/emmeans/
https://cran.r-project.org/web/packages/emmeans/
https://doi.org/10.3389/fpsyg.2016.00926
https://doi.org/10.3389/fpsyg.2016.00926


9866 | Cerebral Cortex, 2023, Vol. 33, No. 17

neocortex during human nonrapid eye movement sleep. Sleep.
2014:37(2):387–397.

Pines A, Keller AS, Larsen B, Bertolero M, Ashourvan A, Bassett
DS, Cieslak M, Covitz S, Fan Y, Feczko E, et al. Development
of top-down cortical propagations in youth. Neuron. 2023:111(8):
1316–1330.e5.

Ranft A, Golkowski D, Kiel T, Riedl V, Kohl P, Rohrer G, Pien-
tka J, Berger S, Thul A, Maurer M, et al. Neural correlates
of Sevoflurane-induced unconsciousness identified by simulta-
neous functional magnetic resonance imaging and electroen-
cephalography. Anesthesiology. 2016:125(5):861–872.

Raz A, Grady SM, Krause BM, Uhlrich DJ, Manning KA, Banks MI.
Preferential effect of isoflurane on top-down versus bottom-
up pathways in sensory cortex. Front Syst Neurosci. 2014:8:191.
https://doi.org/10.3389/fnsys.2014.00191.

Redinbaugh MJ, Phillips JM, Kambi NA, Mohanta S, Andryk S, Doo-
ley GL, Afrasiabi M, Raz A, Saalmann YB. Thalamus modu-
lates consciousness via layer-specific control of cortex. Neuron.
2020:106(1):66–75.e12.

Rohr K, Stiehl HS, Sprengel R, Buzug TM, Weese J, Kuhn MH.
Landmark-based elastic registration using approximating thin-
plate splines. IEEE Trans Med Imaging. 2001:20(6):526–534.

Sanders RD, Banks MI, Darracq M, Moran R, Sleigh J, Gosseries O,
Bonhomme V, Brichant JF, Rosanova M, Raz A, et al. Propofol-
induced unresponsiveness is associated with impaired feedfor-
ward connectivity in cortical hierarchy. Br J Anaesth. 2018:121(5):
1084–1096.

Sarasso S, Boly M, Napolitani M, Gosseries O, Charland-Verville V,
Casarotto S, Rosanova M, Casali AG, Brichant JF, Boveroux P,
et al. Consciousness and complexity during unresponsiveness
induced by Propofol, xenon, and ketamine. Curr Biol. 2015:25(23):
3099–3105.

Sarasso S, Casali AG, Casarotto S, Rosanova M, Sinigaglia C, Massi-
mini M. Consciousness and complexity: a consilience of evidence.
Neurosci Consciousness. 2021:7(2):1–24.

Satopaa V, Albrecht J, Irwin D, Raghavan B editors. Finding a "Knee-
dle" in a haystack: Detecting knee points in system behavior,
2011 31st International Conference on Distributed Computing Systems
Workshops, 20–24 June 2011, 2011, pp. 166–171

Schartner M, Seth A, Noirhomme Q, Boly M, Bruno MA, Laureys
S, Barrett A. Complexity of multi-dimensional spontaneous EEG
decreases during propofol induced general anaesthesia. PLoS One.
2015:10(8):e0133532.

Schartner MM, Pigorini A, Gibbs SA, Arnulfo G, Sarasso S, Barnett
L, Nobili L, Massimini M, Seth AK, Barrett AB. Global and local

complexity of intracranial EEG decreases during NREM sleep.
Neurosci Consciousness. 2017:2017:niw022.

Scheinin A, Kantonen O, Alkire M, Langsjo J, Kallionpaa RE, Kaisti K,
Radek L, Johansson J, Sandman N, Nyman M, et al. Foundations
of human consciousness: imaging the twilight zone. J Neurosci.
2021:41(8):1769–1778.

Schrouff J, Perlbarg V, Boly M, Marrelec G, Boveroux P, Vanhauden-
huyse A, Bruno MA, Laureys S, Phillips C, Pelegrini-Issac M, et al.
Brain functional integration decreases during propofol-induced
loss of consciousness. NeuroImage. 2011:57(1):198–205.

Shine JM, Bissett PG, Bell PT, Koyejo O, Balsters JH, Gorgolewski
KJ, Moodie CA, Poldrack RA. The dynamics of functional brain
networks: integrated network states during cognitive task perfor-
mance. Neuron. 2016:92(2):544–554.

Siclari F, Larocque JJ, Postle BR, Tononi G. Assessing sleep conscious-
ness within subjects using a serial awakening paradigm. Front
Psychol. 2013:4:542.

Sleigh J, Warnaby C, Tracey I. General anaesthesia as fragmen-
tation of selfhood: insights from electroencephalography and
neuroimaging. Br J Anaesth. 2018:121(1):233–240.

Spoormaker VI, Schroter MS, Gleiser PM, Andrade KC, Dresler M,
Wehrle R, Samann PG, Czisch M. Development of a large-scale
functional brain network during human non-rapid eye move-
ment sleep. J Neurosci. 2010:30(34):11379–11387.

Timmermann C, Roseman L, Haridas S, Rosas FE, Luan L, Kettner H,
Martell J, Erritzoe D, Tagliazucchi E, Pallavicini C, et al. Human
brain effects of DMT assessed via EEG-fMRI. Proc Natl Acad Sci
USA. 2023:120(13):e2218949120.

Tononi G, Boly M, Massimini M, Koch C. Integrated information
theory: from consciousness to its physical substrate. Nat Rev
Neurosci. 2016:17(7):450–461.

Touchon J, Baldy-Moulinier M, Billiard M, Besset A, Cadilhac J. Sleep
organization and epilepsy. Epilepsy Res Suppl. 1991:2:73–81.

Varley TF, Luppi AI, Pappas I, Naci L, Adapa R, Owen AM, Menon DK,
Stamatakis EA. Consciousness & Brain Functional Complexity in
Propofol anaesthesia. Sci Rep. 2020:10(1):1018.

Wang S, Li Y, Qiu S, Zhang C, Wang G, Xian J, Li T, He H. Reorganiza-
tion of rich-clubs in functional brain networks during propofol-
induced unconsciousness and natural sleep. Neuroimage Clin.
2020:25:102188.

Yang C, Zhang W, Liu J, Yao L, Bishop JR, Lencer R, Gong Q, Yang
Z, Lui S. Disrupted subcortical functional connectome gradient
in drug-naïve first-episode schizophrenia and the normalization
effects after antipsychotic treatment. Neuropsychopharmacology.
2023:48(5):789–796.

https://doi.org/10.3389/fnsys.2014.00191

	 Analogous cortical reorganization accompanies entry into states of reduced consciousness during anesthesia and sleep
	 Introduction
	 Materials and methods
	 Results
	 Discussion
	 Acknowledgments
	 Supplementary material
	 Funding
	 Author contributions


