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Abstract 
Inflammatory bowel diseases (IBDs) are chronic immune-mediated conditions characterized by significant gut tissue damage due to uncon-
trolled inflammation. Anti-inflammatory treatments have improved, but there are no current prorepair approaches. Organoids have developed 
into a powerful experimental platform to study mechanisms of human diseases. Here, we specifically focus on its role as a direct tissue repair 
modality in IBD. We discuss the scientific rationale for this, recent parallel advances in scientific technologies (CRISPR [clustered regularly 
interspaced short palindromic repeats]/Cas9 and metabolic programming), and in addition, the clinical IBD context in which this therapeutic ap-
proach is tractable. Finally, we review the translational roadmap for the application of organoids and the need for this as a novel direction in IBD.

Lay Summary 
We provide an overview of the translational potential of human intestinal organoids as a prorepair therapy in inflammatory bowel disease. We 
focus on the key areas of clinical application and the necessary steps toward tangible progress in this novel approach.
Keywords: IBD, CD, UC, repair, organoids, stem cells

Introduction
The therapeutic approaches to Crohn’s disease (CD) and ul-
cerative colitis (UC), collectively the inflammatory bowel 
diseases (IBDs), are evolving rapidly. Since the first introduc-
tion of biologics, infliximab in 1999, multiple specific drug 
targets within the inflammatory pathways, via the use of mon-
oclonal antibodies (eg, tumor necrosis factor α [TNFα], inter-
leukin-23, interleukin-17) and, more recently, small molecules 
(eg, JAK inhibitors), have been developed.1 Notwithstanding 
these advances, there is a “therapeutic ceiling,” and despite 
the escalation of immune suppression, complete mucosal 
healing and steroid-free remission are difficult to achieve and 
are seen in <50% of patients.2 Such consistent observations 
emphasize the need for novel and complementary treatment 
strategies, particularly in those with extensive and severe dis-
ease features.

We previously reviewed the role for tissue repair approaches 
in IBD and posited a dual theoretical approach for complete 
mucosal healing encompassing parallel anti-inflammatory and 
proresolution/repair therapies.3 Many of the current drugs in 
the development pipeline or in clinical trials target inflamma-
tory pathways and potentially modify cellular phenotype and 
composition of innate and adaptive immune cells within the 
inflamed IBD gut.4 Distinct from this, the last 10 years have 
seen dramatic progress in the development of organoid tech-
nology, the ability to grow and expand miniaturized organs 

in vitro, and the potential to use these organoids to repair 
tissue damage in many human diseases. Human intestinal 
organoids (HIOs) are now increasingly utilized to study rel-
evant disease-related pathways/mechanisms and provide an 
improving platform to screen for drug targets with a strategic 
shift away from animal studies.5

In this review, we specifically focus on the translational ap-
plication of adult stem cell (ASC)–derived HIOs as a defined 
tissue repair approach in IBD. We provide insights from re-
lated human diseases and remarkable progress seen in animal 
models, in particular, we discuss the future clinical context 
for its use. Finally, we illustrate how the creative synergistic 
recombination of HIO therapy with current technologies can 
lead to tangible progress from bench to clinic.

The gut epithelium and the therapeutic 
rationale for HIOs in IBD
The gastrointestinal tract is lined by a single layer of co-
lumnar intestinal epithelial cells—a sophisticated mul-
tifaceted barrier that comprises several specialized cell 
types, each with a distinct function. Crucial to this lies in 
the ability of the gut epithelium to regenerate and renew 
in the face of a dynamic and hostile luminal environment. 
The constantly dividing intestinal stem cells (ISCs) that re-
side at the base of intestinal crypts continuously self-renew 
and proliferate replenishing specialized epithelial cells by 
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differentiating and migrating toward the tip of the villus 
(Figure 1).6,7

In considering the rationale in the application of HIOs 
as a tissue repair approach in IBD, 2 factors are pertinent. 
Firstly, multiple lines of evidence point to a dysfunctional ep-
ithelium (innate and acquired) as a pathogenic factor leading 
to a breakdown in gut homeostasis and loss of barrier func-
tion in IBD (Figure 2).7-9 Secondly, specific damage to the 
ISCs results in further de-regulation and the loss of the ca-
pacity to regenerate a functional epithelium with a full com-
plement differentiated cells.10-12 More importantly, there is 
accumulating evidence to show that ISC function is affected 
in IBD.13,14

In human CD, a reduction in the ISC population is observed 
within active disease compared with nonaffected gut mu-
cosa.15 This is shown by correlating pathological assessment 
of activity with ISC frequency using in situ hybridization of 
the LGR5 stem cell marker. Similarly, in UC single-cell RNA 
sequencing (scRNA-seq) has provided in-depth analysis, 
confirming that ISC populations (via transcriptomic annota-
tion) are reduced when comparing active with noninflamed 
epithelium.16 Here, the authors also found that noninflamed 
epithelium possessed a significantly enriched ISC popula-
tion when compared with control samples. These lines of 
data suggest that perturbation of ISC function or potential 
may contribute to failure of IBD mucosa to heal or return 
to normal homeostasis. It is of interest that a low ISC popu-
lation appears to predict future clinical recurrence in CD.15 
On retrospective testing of noninflamed surgical resection 
margins, it was determined that crypts with both low levels 
of LGR5 expression and LGR5 expression in upper crypts 
were independently associated with ensuing disease recur-
rence.15 Thus, these early studies provide the premise for an 
intervention that is targeted toward the correction of ISCs 
in the IBD gut (either by replacement with healthy ISCs or, 
in the future, more precise scientific modification, augmen-
tation, or restoration of ISC function, discussed in the fol-
lowing sections).

From concept to development of HIOs
Intestinal organoids, derived from adult ISCs are unique, self-
organizing, multicellular, 3-dimensional cell culture systems that 
retain certain in vivo functions eg, secretion, absorption, con-
traction.17-19 Organoids can be cultured from isolated biopsies 
and expanded in vitro (Figure 3). Present techniques now allow 
differentiation into a full complement of cell subtypes repre-
sentative of normal human tissue namely, stem cells, mature 
enterocytes, goblet, tuft, and enteroendocrine cells.20-23

The tissue regeneration field, as a modern scientific dis-
cipline, came of age in the early 1990s (Figure 4).24 First, 
Vacanti et al25 showed that dissociated murine intestinal epi-
thelium could be grown on polymer scaffolds and then subse-
quently transplanted in vivo into the omentum or mesentery 
of recipient animals. Despite its nonintestinal site of en-
graftment, transplanted cells developed villus-like structures 
with an epithelium populated with characteristic intestinal 
cell subtypes—suggesting an innate regenerative poten-
tial and property. Tait et al26 transplanted small bowel epi-
thelial cells to denuded colonic mucosa in vivo, at 14 days 
the transplanted epithelium had engrafted and, of interest, 
had generated an epithelium with small bowel morphology. 
Despite the promise of these early pioneers, the field of trans-
plantation failed to advance, limited by the inability to ex-
pand stem cell populations in vitro and the lack of knowledge 
in the mechanisms of gut tissue regeneration.27

A key discovery came with the discovery of the LGR5 
marker for stem cells of the intestine and colon.28 Subsequently, 
Sato et al17 successfully demonstrated that the addition of key 
growth factors29-32 permitted in vitro culture of LGR5 stem 
cells from intestinal crypts, thus establishing the initial plat-
form for organoid culture. The seminal paper by Yui et al33 
displayed successful differentiation of murine colonic ISCs 
in vitro, demonstrating microvilli development and forma-
tion of junctional complexes within the cultured enterocytes. 
The authors subsequently performed orthotropic organoid 
transplant via the expanded EGFP-labeled stem cell popu-
lation onto dextran sulfate sodium (DSS)–mediated colitis. 
Several key findings are noteworthy. Firstly, the transplanted 
HIOs engrafted growing into self-renewing crypts were 
histologically indistinguishable from native epithelium. 
Secondly, there was a functional physiological improvement 
in the recipient mice compared with those that did not receive 
the organoids. Thirdly, transplanted organoids engrafted in 
areas with colonic mucosal damage. These collective data 
point to an early potential for organoids as a tissue repair 
approach in humans.

Following this breakthrough, further key questions were 
resolved, namely (1) whether ISCs can maintained in in vitro 
culture long term34,35; (2) whether transplanted ISCs can dif-
ferentiate into relevant and functional competent enterocytes 
that respond to systemic signaling36; and (3) if ISCs can be 
successfully expanded into sufficient quantities for transla-
tional purposes.37 However, the most immediate translational 
step concerns the bridging the predominantly mouse work 
into humans.

HIOs in IBD: From mouse to humans
While there is exciting progress in this field, there are real-
istic limitations to progress toward human translation. To 
date, all but 1 trial modeling organoid transplant38 has used 

Key messages

1. Novel restorative therapies are required in inflamma-
tory bowel disease (IBD).

2. Organoid therapy is based on in vitro culture, followed 
by selection and expansion of healthy intestinal stem 
cells with a view to transplant into human intestinal 
mucosa.

3. Transplanted intestinal organoids can be applied to 
promote epithelial regeneration and restore normal in-
testinal physiology.

4. Key questions regarding organoid behavior on expo-
sure to in vivo IBD conditions remain unanswered.

5. Further research is required to satisfy concerns re-
garding immunogenicity of allogenic and autologous 
organoid transplant as well as cumulative tumorigene-
sis risk.

6. Prorepair organoid therapy represents an important 
parallel approach to advanced immune-modulation 
drug treatment in defined clinical IBD settings.
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Figure 1. Structure of the intestinal epithelium. The intestinal epithelium is organized into units that consist of crypts and—in the small bowel—
protrusions called villi. At the base of the intestinal crypt lies the stem cell compartment, where LGR5 intestinal stem cells (ISCs) divide and replicate, 
whereas +4 stem cells act as reserve stem cells. As ISCs divide, they advance along the crypt villus axis, first entering the transit-amplifying zone 
before differentiating into the specialized, terminally differentiated cells of the epithelium (eg, goblet, tuft, and enteroendocrine cells). Finally, at the tip 
cells undergo anoikis and shed into the lumen.

Figure 2. Overview of the causes of epithelial barrier dysfunction in inflammatory bowel disease (IBD). Genome-wide association studies and 
microarray studies of IBD patients have identified multiple risk loci in key epithelial genes (eg, HNF4a, CDH1, REG4). Furthermore, alterations in 
expression of key junctional proteins increase permeability and susceptibility to IBD. Specific alterations in function of epithelial cell subtypes are seen 
in IBD, for example a reduction in goblet cell abundance and the corresponding reduced mucus barrier layer seen in ulcerative colitis and Paneth cell 
aberrations in Crohn’s disease. Finally, metabolic and mitochondrial injury—of which DNA and mitochondrial encoding genes are frequently the most 
downregulated in active IBD—can lead to energy deficient states that reduce the epithelial barrier’s ability to regenerate after injury. DAMP, damage-
associated molecular pattern; ER, endoplasmic reticulum.
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immunodeficient mouse recipients,33,36,37,39-42 and clearly, fur-
ther evaluation in hosts with more complex immune sys-
tems is required. Also, the predominantly used DSS-colitis 
model in these studies is more akin to an injury model that 
does not recapitulate the complex multifactorial immune-
mediated human IBD pathogenesis.33,41,43 Notwithstanding 
these caveats, in the mouse, scRNA-seq analysis of colonic 

epithelium after orthotopic transplantation has shown that 
transplanted regions regained a similar cellular compo-
sition to normal healthy epithelium, maintaining similar 
populations of goblet, Paneth, enteroendocrine, and tuft cells, 
and enterocytes.44 Hence, there is confidence that a full com-
plement of enterocytes, rather than a selected population, 
can arise following organoid transplantation in mouse.45 

Figure 4. Timeline highlighting advances in organoid technology and transplantation. The first studies predated discovery of specialized media that drive 
intestinal stem cell (ISC) growth and expansion, instead digesting tissue whole and transplanting onto denuded animal intestine. Subsequent advances 
leveraged the discovery of the canonical WNT pathway and its influence on LGR5 stem cell in vitro culture. More recent studies have explored animal 
and later human intestinal organoids to heal damaged animal intestine and the restoration in normal physiology that this can generate. DSS, dextran 
sulfate sodium.

Figure 3. Human intestinal organoid culture. During routine endoscopy, 2 to 4 biopsies are sampled and stored on ice. Crypts are then liberated after 
incubation in EDTA solution for 60 minutes. During in vitro expansion, HIOs are maintained in a growth media that enforces a stem cell state. The 
expanded growth medium is modified by withdrawing growth factors and adding components that facilitate differentiation, as evidenced by increasing 
thickness, granularity, budding, and accumulation of intraluminal debris (scale bar = 250 µm).
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However, in human IBD scRNA-seq studies, there are clear 
differences in epithelial cell populations seen in both CD 
and UC with alterations in proportions of epithelial, goblet, 
tuft, enteroendocrine, and M cells as well as proportions 
of colonocytes.16,46,47 It is not yet known if HIO transplan-
tation into IBD gut can similarly restore normal enterocyte 
population.

Furthermore, clinical pertinent scientific questions also 
become obvious as more human-focused primary organoid 
work continues to emerge in human IBD. Primarily, what 
is the effect of environmental cues on the characteristics 
of ISCs and HIOs, especially inflammation? More funda-
mentally, are IBD ISCs inherently programmed to retain 
proinflammatory properties that predispose to IBD in the 
first place?

Initial studies displayed that HIOs generated from 
inflamed gut quickly (~2 weeks) lose their inflammatory 
transcriptomic profiles and phenotype during in vitro cul-
ture, as evidenced in more traditional bulk RNA sequencing 
data.48,49 Instead, IBD-derived HIOs (from both inflamed 
and uninflamed tissues) coalesce, maintaining distinct 
transcriptomic and epigenetic phenotypes to that of con-
trol populations.45,49,50 Specifically, there has been a reported 
90% concordance between differently expressed genes in 
tissue and in tissue-derived organoids in CD.49 These studies 
suggest that the presence of inflammation does not trans-
late to a unique and imprinted proinflammatory IBD HIO 
transcriptomic pattern in cultured conditions. Following this, 
Arnauts et al48 showed that reintroduction of the inflamma-
tory environment with a cocktail of TNFα, interleukin-1β, 
and flagellin resulted in a higher proinflammatory gene ex-
pression response in UC than non-IBD HIOs. This suggests 
HIOs from IBD may display the same proinflammatory 
potential upon re-entry into an inflammatory environment 
such as the active IBD gut milieu; however, the mechanisms 
for this are unclear.

Alongside the reduced ISC populations observed in 
IBD,15 the impaired capacity of IBD-derived organoids to 
grow in vitro51,52 further contributes to the notion that 
ISCs in IBD are dysfunctional.53 In the mouse gut, a re-
cent study identified 3 distinct stem cell populations based 
on scRNA-seq, indicating that ISC biology may be more 
complex.54 Type I slow cycling stem cells are enriched in 
LGR5, possessing more stem-like features, whereas type II 
and III ISCs are more differentiated and proliferative, con-
currently expressing major histocompatibility class II. The 
balance of these distinct populations is important. Biton 
et al54 showed that upon exposure to inflammation (here, 
Salmonella infection was used), there is a suppression of 
type I ISCs with a shift to type II + III ISCs, toward the 
nonconventional antigen-presenting cell type. Kanke et al14 
subsequently confirmed this finding in human CD, whereby 
nonactive areas were found to possess not only a reduction 
in overall ISC number, but also a significant downregulation 
of ISC type I, and upregulation of type II + III ISC subtypes. 
Finally, in CD organoids, inflammatory stimulation with 
interferon γ led to a upregulation of major histocompat-
ibility class II expression when analyzed through both 
immunohistochemistry and bulk RNA sequencing.55 Thus, 
it is conceivable that in IBD the ISCs are fundamentally dif-
ferent, in that not only are they reduced in number, but also 
those that are present are not suited to assist in repair and 

regeneration of the epithelium. Whether this is a precursor 
or in response to previously undetected inflammation re-
mains unclear.

Toward clinical application: Lessons from 
relevant human diseases
Synergistic advances in relevant scientific fields provide new 
directions for research toward HIO clinical translation—
namely CRISPR (clustered regularly interspaced short pal-
indromic repeats) for gene editing, metabolic programming, 
and the development of a cogent approach linking mouse and 
human data in the development of an apposite ex vivo model 
in tissue regeneration. These are at an early stage in devel-
opment, and we provide an overview of their potential rel-
evance. In simple terms, these scientific tools may make the 
idea of correcting specific defects and replacing ISCs possible, 
in very defined clinical situations in IBD (to be discussed in 
the following sections).

CRISPR/Cas9 gene editing
In cystic fibrosis, the first successful CRISPR-based gene cor-
rection was reported in gut organoids from cystic fibrosis 
patients. Here, the CFTR locus of affected organoids was 
modified by insertion of a normal CFTR gene using CRISPR/
Cas9, with targeted organoids displaying a restored swelling 
response to forskolin induced swelling assay.56 In colo-
rectal cancer, CRISPR/Cas9 is exploited to develop a closer 
human colorectal cancer model using HIOs. Roper et al58 
introduced deletion of APC and p53 tumor suppressor genes 
into murine organoids that were subsequently orthotropically 
transplanted into murine colon,57 providing a faster approach 
over traditional colorectal cancer models. Both examples pro-
vide a scientific opportunity to modify the IBD ISC genetic 
susceptibility (for example, in NOD2 mutations in Paneth 
cell dysfunction in CD)59 and to develop a human IBD ep-
ithelial experimental model with the ability to perturb and 
interrogate function with gene editing.60

Metabolic programming
Because mitochondrial dysfunction is a notable pathogenic 
component in ISCs and IBD,61 and with recent strides in 
metabolic programming in epigenetic imprinting of cellular 
function,62 2 recent studies provide insights into how correc-
tion of mitochondrial-metabolic factors in HIOs resulted in 
improvement in ISC function. Jackson et al63 showed that 
deletion of prohibitin-1 (Phb1), a gene encoding a major com-
ponent protein of the inner mitochondrial membrane protein, 
caused mitochondrial dysfunction and clinical spontaneous 
murine ileitis. They then subsequently showed that mito-
chondrial antioxidant therapy64 prevented Phb1 deletion–
mediated ileitis with parallel data to show a positive effect 
on intestinal organoid growth from Phb1iΔiec mice. Similarly, 
another study focusing on metabolic reprogramming in IBD 
observed that crypts from inflamed regions of TNFΔARE mice 
fail to grow into organoids.15 The authors then reinforced mi-
tochondrial respiration through addition of dichloroacetate 
(DCA) to organoid growth media. DCA, a Food and Drug 
Administration–approved drug, acts to shift adenosine tri-
phosphate generation from glycolysis to oxidative phospho-
rylation through targeting of pyruvate dehydrogensase.65 
Resultantly, DCA addition facilitated successful organoid 
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culture from inflamed regions. Remarkably, after 8 days of 
treatment, removal of DCA did not lead to a reversal in the 
phenotype or morphology of organoids from inflamed re-
gions as compared with wild-type mice, suggesting that these 
effects could be long lasting. These lines of data open the pos-
sibility to reprogram metabolically defective ISCs and subse-
quent downstream epithelial phenotypes using HIOs.

Tissue engineering and repair
Driven by a major unmet clinical need, organoid technology 
has received much attention, particularly in the field of bile 
duct surgery in which supply of donor tissue is a major lim-
iting factor for reparative surgery for bile duct disorders.66 
In this context, 2 elegant sequential studies by Sampaziotis 
et al67,68 combined human and mouse work with subsequent 
creative development of an ex vivo perfusion model to dem-
onstrate how cholangiocyte organoids can be used to regen-
erate bile ducts. First, they showed that human cholangiocyte 
organoids impregnated on polyglycolic scaffolds can facilitate 
the healing gallbladder incisions and replace sections of the 
common bile duct in mouse.67 These recipient mice survived 
for over 1 month, retaining normal liver function, and the 
engineered epithelium was able to self-renew, maintaining 
a patent bile duct lumen. In a follow-up study, they also 
demonstrated that intraductal organoid infusion of gallbladder 
cholangiocytes can heal induced cholangiopathy.68 Building 
on the success of murine models, Sampaziotis et al have sub-
sequently bridged the gap toward human therapy by using 
an ex vivo organ perfusion model. Here, they transplanted 
labeled cholangiocytes into the ducts of normothermic per-
fusion circuit liver grafts taken from deceased human donor’s 
with ischemic duct injury.68 Transplanted organoids success-
fully grafted and regenerated 40% to 85% of intrahepatic 
bile ducts. Intervention recipients showed evidence of ultra-
sonographic healing of bile ducts, while control recipients 
showed ischemic injury and loss of epithelial continuity. The 
significance of these findings is potentially major, with di-
rect relevance to liver transplantation and bile duct surgery, 
paving the way for the first human trials.

These 3 examples of scientific technological advances, 
while disparate in nature, provide directions to the next trans-
lational steps of HIO technology in IBD. Notwithstanding the 
necessary progress still required at this early stage, we discuss 
the clinical context for the use of HIOs in IBD in the fol-
lowing section.

Clinical context for therapeutic application 
HIOs in IBD
In terms of realistic clinical translation, the approach taken 
by local application of mesenchymal stem cell therapy for pe-
rianal fistulas provides an roadmap for translation of HIOs 
into the clinic.69 Therapeutics in this field have been through 
multiple trial phases culminating in the Adipose derived 
mesenchymal stem cells for induction of remission in peri-
anal fistulizing Crohn’s disease study, a phase 3 randomized 
controlled trial involving 212 patients.70 Although this treat-
ment has not gained wide clinical acceptance, in lieu of cost 
and limited long-term efficacy, the concept of transitioning 
a stem cell–based treatment from the bench to bedside and 
scaling of trials for regulatory approval provides promise to 
replicating the same for HIO therapy.71

How widely applicable HIOs are in the real-world clinic 
is unclear, given the present early stage of research. We en-
visage several hypothetical clinical scenarios in which HIOs 
might be relevant (Figure 5): (1) in medically refractory 
IBD with significant gut damage; (2) in early postopera-
tive recurrence of CD with localized inflammation in the 
operative anastomosis; (3) in fibrostenosing CD, in which 
animal studies have provided some data to suggest benefit; 
(4) in targeting of specific defects with known functional 
implications (eg, NOD2 gene variants with associated 
Paneth cell dysfunction, mitochondrial bioenergetics defects 
in UC)15,63,72; and (5) in the increasing prevalent advanced-
age IBD in which the impaired ageing gut barrier function 
is more relevant.73,74

In studies investigating organoid therapy to restore the 
epithelial barrier function, Sugimoto et al40 used EDTA and 
a mechanical treatment to remove areas of epithelium of 
colonic murine colon. Onto these areas they subsequently 
transplanted GFP-labeled human colonic organoids with 
overall engraftments of 75% with similar rates being found 
in other studies.75 The engrafted organoids successfully 
healed areas of epithelium and retained a human phenotype 
both in terms of shape and size of villi, but also function-
ally, as delineated by AB+ and PAS+ goblet cell distribution 
within crypts. Jee et al44 also found that orthotropic en-
graftment was able to restore epithelial barrier integrity, as 
tested by exposure to TRITC-dextran. In a model more rep-
resentative of IBD, after exposure to DSS colitis, organoid 
transplant recipient mice were found to have areas of 
healed mucosa, with a full complement of differentiated 
cell types.33 Moreover, transplantation was associated with 
a significant increase in body weight when compared with 
sham.

HIOs could potentially be applicable in fibrostenosing CD. 
Jee et al44 modeled orthotropic organoid transplantation to 
heal damage induced by radiation exposure. Organoids were 
transplanted at 6 and 10 days after radiation exposure (50 
Gy). In addition to successful regeneration of murine mucosa, 
there was also a significant reduction in collagen accumula-
tion and reduction in submucosal thickness, suggesting that 
HIOs can also ameliorate postinjury fibrosis.

ASC-derived vs pluripotent stem cell 
organoids
While our review has focused on ASC HIOs with its clearer 
translational pathway, pluripotent stem cells (PSCs) derived 
from embryonic tissue or reprogrammed somatic cells (in-
duced pluripotent) offer an alternative approach. Here, PSCs 
can be differentiated into nearly any cell type via differen-
tiation protocols that recreate embryological pathways.76 
The differences of ASC HIOs vs PSC HIOs are summarized 
in Table 1. Unlike ASC HIOs, when intestinal PSCs are cul-
tured in a 3-dimensional environment, they generate more 
complex models that contain both mesenchymal and epi-
thelial tissue.36,77 This more complex composition may have 
theoretical implications, in that they are better suited to mu-
cosal healing ambitions with the additional involvement of 
the mesenchyme offered by PSC HIOs. In fact, this approach 
has been tested successfully in murine colonic injury models, 
although its efficiency has not be directly compared with that 
of ASC HIO transplantation.41,42
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However, this added multilineage cell complexity also 
presents formidable hurdles to clinical translation. For ex-
ample, there is greater risk of genomic instability and thus 
development of undesirable cell type development (or even 
teratoma risk).78 Notwithstanding this, significant progress 
in PSC-derived organoids is evident and highly relevant as a 
human intestinal experimental platform to study the develop-
ment and homeostatic processes of the gut.79

Barriers to translation of HIO transplantation 
in IBD
There remain many formidable practical considerations in 
the translational development (Box 1). Relevant to ASC-
derived HIOs, generation of large batch “healthy” organoids 
for clinical use will introduce new challenges in scaling, 

standardization, and automation of production. The method 
of application (ie, direct endoscopic injection), how to per-
form first-in-human testing, and in what IBD subgroup this 
will be relevant are key questions. Importantly, there is a 
question surrounding the potential immunogenicity of trans-
plant medium. Currently the most utilized substance in exper-
imental models is a commercially available substance called 
Matrigel (Corning).80,81 With its undefined composition de-
rived from Engelbreth-Holm-Swarm mouse sarcoma and is-
sues with batch-to-batch variability, licensing for medical use 
in humans would be challenging.82,83 Here, PSC-derived HIOs 
that are differentiated under xenogeneic-free conditions offer 
an advantage. Some research groups have transitioned trans-
plant medium toward using substances such as fibrin, which 
is already licensed for human use,44,84 and hydrogel, which 
can be readily genetically altered and can adapted to mimic 

Figure 5. Proposed application of human intestinal organoid (HIO) therapy. First, HIOs are isolated from patient via endoscopic sampling for subsequent 
autologous application. HIOs are expanded in vitro to generate a healthy pool of organoids. Once sufficient quantities have been achieved, HIOs are 
transplanted endoscopically. Specific clinical situations for which HIO application may be utilized include restoration of epithelial barrier as rescue 
therapy for medically refractory inflammatory bowel disease (IBD), fibrosing Crohn’s disease phenotypes, and early postoperative recurrence. Future 
in vitro culture therapy may include correction of aberrant metabolic phenotypes with mitochondrial therapy or targeted genetic therapy for specific 
pathogenic mutations. CRISPR, clustered regularly interspaced short palindromic repeats; mtROS, mitochondrial reactive oxygen species.
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the gastrointestinal microenvironment.83,85 It remains unclear 
whether use of 3-dimensional growth matrices during the in 
vitro expansion phase of organoid culture has any carryover 
immunogenic effect upon transplant.

Conclusions
Our review presents the conceptual opportunity and vision 
of using HIOs as a tissue repair approach in IBD. Organoid 

technology is a perceptible advance in translational science 
and the study of human diseases. From a human experimental 
model perspective, it is salutary to note that this is unlikely to 
capture the complexities of a multifaceted immune-mediated 
condition such as IBD, and some realistic appraisal is needed. 
From a tissue repair approach, different but equally formi-
dable challenges into how this can be applied in the clinic are 
noteworthy. Recent studies in bile duct repair provide a tem-
plate for how HIOs can be further developed and applied in 
IBD. Furthermore, mesenchymal stem cell therapy in perianal 
CD (now in the clinical space) provides a roadmap for the 
translational process.86 Presently, HIO tissue repair approach 
is mostly likely to be relevant in a defined IBD group. While 
challenges remain, highly exciting progress that is driven by 
the clinical unmet need of repairing tissue damage in the IBD 
gut and many other human diseases provides optimism for 
future clinical application of this novel approach.
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