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Abstract

Recent work within neuroimaging consortia have aimed to identify reproducible, and

often subtle, brain signatures of psychiatric or neurological conditions. To allow for

high-powered brain imaging analyses, it is often necessary to pool MR images that

were acquired with different protocols across multiple scanners. Current retrospec-

tive harmonization techniques have shown promise in removing site-related image

variation. However, most statistical approaches may over-correct for technical,

scanning-related, variation as they cannot distinguish between confounded image-

acquisition based variability and site-related population variability. Such statistical

methods often require that datasets contain subjects or patient groups with similar

clinical or demographic information to isolate the acquisition-based variability. To

overcome this limitation, we consider site-related magnetic resonance (MR) imaging

harmonization as a style transfer problem rather than a domain transfer problem.

Using a fully unsupervised deep-learning framework based on a generative adversar-

ial network (GAN), we show that MR images can be harmonized by inserting the style

information encoded from a single reference image, without knowing their site/

scanner labels a priori. We trained our model using data from five large-scale multisite

datasets with varied demographics. Results demonstrated that our style-encoding

model can harmonize MR images, and match intensity profiles, without relying on

traveling subjects. This model also avoids the need to control for clinical, diagnostic,

or demographic information. We highlight the effectiveness of our method for clinical

research by comparing extracted cortical and subcortical features, brain-age esti-

mates, and case–control effect sizes before and after the harmonization. We showed
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that our harmonization removed the site-related variances, while preserving the ana-

tomical information and clinical meaningful patterns. We further demonstrated that

with a diverse training set, our method successfully harmonized MR images collected

from unseen scanners and protocols, suggesting a promising tool for ongoing collabo-

rative studies. Source code is released in USC-IGC/style_transfer_harmonization

(github.com).
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1 | INTRODUCTION

Neuroimaging studies often need to collect data across multiple sites

to ensure the sample size and power required to obtain reliable and

robust results. Combining multisite magnetic resonance imaging

(MRI) data, however, is a nontrivial issue as images are subject to

both acquisition- and cohort-based variability. Acquisition-based

variability is often due to scanning factors such as manufacturer,

magnetic field strength, coil type, positioning and immobilization

procedures, number of channels, and parameters such as image reso-

lution and those related to the pulse sequence, for example, TR, TE,

and flip angle. Even when imaging parameters are prospectively

planned to be as consistent as possible across scanning sites, the

need for retrospective harmonization is often inevitable. Scanners in

long-running studies such as the Alzheimer's Disease Neuroimaging

Initiative (ADNI), a multisite initiative that has been ongoing for

nearly two decades (Jack Jr et al., 2008), may undergo scanner drift

(Vos et al., 2017), or scanner or software upgrades that alter image

contrast or signal-to-noise ratios (SNRs). International neuroimaging

consortia have shown the need for effective retrospective neuroim-

aging harmonization methods. For example, the ENIGMA consortium

has pooled information from hundreds of data collection sites

around the world for collaborative initiatives aimed at identifying

brain signatures of psychiatric or neurological conditions, charting

brain trajectories, and even mapping the genetic architecture of

brain structure. Collaborative efforts such as ENIGMA continue to

expand, incorporating additional data from various sources. How-

ever, machine learning studies that rely on such extensive datasets

face particular challenges due to the influence of site-specific fac-

tors. While initial efforts focused on harmonizing analytical plans

toward coordinated meta-analyses, pooling individual-level data

allows researchers to pose more targeted questions about factors

that may not be similarly distributed across participating sites such

as disease staging, or infrequent conditions, such as clinical diagno-

ses for transdiagnostic studies of history of suicide attempts

(Schmaal et al., 2020). These population-based differences are

another source of inter-site differences. Even with the data collected

from the same scanners/sites, the images collected may also show

slight variance (Tong et al., 2020). These discrepancies can result

from short-term repositioning influences, long-term physiological

changes, and biases in repeated acquisitions due to scanner drift.

Existing retrospective data harmonization techniques have shown

promise in removing site-related variance from different studies to

allow for such pooled analyses. Most harmonization methods fall into

two broad categories: (1) harmonization of image-derived features

using statistical properties of the distribution, for example, ComBat

(Chen et al., 2022; Pomponio et al., 2020; Zhao et al., 2019); (2) har-

monization the of the results of specific tasks, such as a regional seg-

mentation, disease classification, or age prediction. That is, to ensure

that images from various sources produce consistent and reliable out-

comes when used in the same tasks. The main drawback of the first

category of harmonization techniques is that it requires many statisti-

cal assumptions that may be difficult to satisfy. An extensive review

of the first category of harmonization techniques was performed by

Bayer et al. (2022). The second category, which seeks to circumvent

the statistical assumption pitfalls by avoiding the harmonization of

datasets directly but focusing on the MR image output, is largely com-

posed of deep learning-based approaches, namely domain adaptation

techniques (Guan et al., 2021; Wang, Chaudhari, & Davatzikos, 2022).

Domain transfer learning and domain adversarial learning have been

applied for MRI harmonization (Dinsdale et al., 2021).

While task-specific harmonization can be powerful for a particular

outcome, if a wide range of tasks were to be performed on images,

harmonization would need to be performed separately for each task,

resulting in inconsistent, task-dependent harmonization schemes

(Wang, Bashyam, et al., 2022). There are also some applications, like

cortical surface construction, that cannot be directly embedded into a

deep learning framework (Dong et al., 2020). Such cases require image

translation, which in the context of artificial intelligence refers to the

process of converting an input image from one representation or

domain to another, for MRIs. Several image translation-based harmo-

nization methods have been proposed. Supervised methods typically

require traveling subjects and must be planned prospectively (Dewey

et al., 2019). Unsupervised methods, such as variational auto-

encoders (Moyer et al., 2020) or CycleGAN (Zhao et al., 2019)—a type

of GAN that employs two competing neural networks for generating

realistic synthetic data—often separate MR images into well-defined

domains in terms of scanners or sites. These methods may be prone

to overcorrection, by which we mean correcting for biological factors

in addition to, or perhaps instead of, technical scanning-related vari-

ables. As each site gets a different label, two different sites with scan-

ning protocols that are similar, and populations that are different, may
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inadvertently adjust for biological differences rather than scanner

differences.

In addition to the common challenges in unsupervised harmoniza-

tion, most existing domain-based harmonization algorithms may not

generalize to previously unseen sites (Zuo et al., 2021). When there is

a new dataset to be harmonized that was not included in the training

set, the harmonization usually cannot perform well and retraining to

include the new dataset is typically required. Domain-based harmoni-

zation approaches, therefore, lack flexibility. They restrict the image

harmonization to a very limited number of groups with clear borders

and any images beyond the scope of these borders may not ade-

quately harmonize. This could limit the applicability of those harmoni-

zation methods in large-scale consortia settings where there are a

large number of studies with relatively small sample sizes with diverse

acquisition protocols that are iteratively being added to studies.

Recently, deep learning methods have successfully completed

diverse image translations by disentangling the image into “content”
and “style” spaces (Bashyam et al., 2022; Huang et al., 2018; Liu

et al., 2021). Contents represent high-level information in images, often

carrying semantic information such as the contours and orientations of

objects or structures. On the other hand, styles can be considered low-

level information, representing the basic properties of an image, such as

colors and textures. Images within the same group (e.g., site or scanner)

share the same content space but may show different styles. In MR

images, we can consider the biologically defined anatomical information

as the content, and the non-biological information such as intensity var-

iation, SNR, and contrasts as styles. Dewey et al. (2020) used this

breakdown to show promising results for MRI harmonization when

paired image modalities from the same subjects were available to

supervise the extraction of the content information; unfortunately, the

same two sets of paired images are not always available across multiple

datasets. In other work, Jiang and Veeraraghavan (2020) also used a

similar framework to facilitate the cross-domain image translations,

where each image modality (i.e., CT, T1w, and T2w) was treated as a

domain. The problem faced by Jiang and Veeraraghavan (2020) was

that styles that span multiple domains must be modeled together using

a variational auto-encoder with a universal prior.

Here, we propose to harmonize images using a modified version

of the well-established deep learning model, StarGANv2 (Choi

et al., 2020). Unlike the original StarGANv2 model, which treats

images from various sites as separate “domains,” we consider that

every single image belongs to a unique “domain,” and can be disen-

tangled into its own content and style. Image harmonization is consid-

ered as a pure style transfer problem rather than a domain transfer

problem, which is presumed by conventional domain-based

approaches. We consider anatomical patterns (or contents) from MR

images collected from different sites to share the same latent space,

such that it is not necessary to separate them into different

“domains”. These style-irrelevant patterns can be learned using an

unsupervised cycle consistency generative adversarial network (GAN)

model, and thus, paired modalities or any other paired information are

not needed from the same subjects. Due to scanner shifts, and soft-

ware upgrades, the styles for all the images, even those collected from

the same scanner may be different. We consider every single image as

a unique “domain” with its own style, and the styles can be learned

flexibly using an adversarial approach, instead of using a universal

prior distribution as in Jiang and Veeraraghavan (2020). Furthermore,

inspired by Choi et al. (2020), we proposed that the style information

needed for harmonization can be encoded from a single reference MR

image directly. In short, the entire harmonization process depends

solely on a source image and a reference image, which can originate

from any subjects or scanners. The source image supplies the content,

while the reference image provides the desired style information.

To illustrate the clinical effectiveness of our approach, we train

our model on healthy subsets of five publicly available neuroimaging

datasets, including: the UK Biobank (UKBB), Parkinson's Progression

Markers Initiative (PPMI), ADNI, Adolescent Brain Cognitive Develop-

ment (ABCD), and International Consortium for Brain Mapping

(ICBM). We use automated software, specifically FreeSurfer, to

extract several commonly used metrics of interest and compare the

features extracted before and after the harmonization. We show that

our harmonization method successfully removes the site-related vari-

ances, while preserving the anatomical information as demonstrated

by retaining case/control effect sizes before and after harmonization.

Using subjects from the site that is not involved in training phase, we

further illustrate that our model successfully harmonized MR images

collected from unseen scanners and protocols, suggesting a promising

tool for ongoing collaborative studies.

2 | MATERIALS AND METHODS

2.1 | The architecture of style-encoding GAN

Let X be a set of single slices from full brain MR images. Given an

image x � X, our goal is to train a single generator G that can generate

diverse images that correspond to the image x with a style code s,

where s is associated with the style (non-biological) patterns from

another image. The style code s is generated by a mapping network

M from sampling a given latent vector z (s = M(z)), which is then

injected into different layers of the generators to control various

levels of detail and style features in the synthesized image. Karras

et al. (2021) explain the rationale for using s instead of z. Then, the

generator G translates an input image x into an output image G(x, s)

that reflects the style of s. To validate that the style code s has been

successfully injected into the output image G(x, s), another style

encoding network E was designed to encode the style of s from

images. That is, given an image x, the encoder E extracts the style

code s = E(x) of x. The style code s is a 1�64 vector in our experi-

ment to ensure E can produce diverse style codes using different

images. This also allows G to synthesize an output image reflecting

the style, s, from different reference images of X. The goal of the net-

work is to train E so that E(G(x, s))= s, meaning that if an image was

generated based on style code s, then s can also be extracted when

this image was input into the style encoder E. Adaptive instance nor-

malization (Huang & Belongie, 2017) was used to inject s into G.
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Finally, the discriminator D learns a binary classification determining

whether an image is a real image or a fake image as produced by G, G

(x, s). As with Choi et al. (2018), our model includes only one genera-

tor, one discriminator, and one style encoder (Figure 1).

2.1.1 | Network training

Given an image x � X, we train our framework using the following

objectives: an adversarial loss; a cycle consistency loss; a style recon-

struction loss; and a diversification loss, all of which we describe

below.

• Adversarial loss. During training, we sample a latent code z �

Z randomly, and the mapping network M learns to generate a tar-

get style code s = M (z). The generator G takes an image x and style

s as inputs and learns to generate an output image G(x, s) that is

indistinguishable by the discriminator D from real images via an

adversarial loss:

LGAN ¼ Ex logD xð Þ½ �þEx,z log 1�D G x,sð Þð Þð Þ½ �

• Cycle-consistency loss. To guarantee that the generated images are

consistent with the original images and properly preserving the

style-irrelevant characteristics (e.g., anatomical patterns) of input x,

an additional cycle consistency loss (Zhu et al., 2017) is defined as

the difference between original and reconstructed images:

Lcyc ¼ Ex,z x�G G x,sð Þ,sxð Þk k1
� �

where sx = E(x) is the estimated style code of the input image x. By

encouraging the generator G to reconstruct the input image x with

the estimated style code sx, G learns to preserve the original charac-

teristics of x while changing its style faithfully.

• Style reconstruction loss. In order to enforce the generator G to use

the style code while generating the image G(x, s), we incorporate a

style reconstruction loss:

Lsty ¼ Ex,z s�E G x,sð Þð Þk k1
� �

Our learned encoder E allows G to transform an input image x, to

reflect the style of a reference image.

• Style diversification loss. To further enable the generator G to pro-

duce diverse images, we explicitly regularize G with the diversity

sensitive loss (Wang et al., 2018):

Ldiv ¼ Ex,z1,z2 G x,s1ð Þ�G xð ,s2Þk k1
� �

where the target style codes s1 and s2 are produced by M conditioned

on two random latent codes z1 and z2 (i.e., si ¼M zið Þ for i � (Jack Jr

et al., 2008)). Maximizing the regularization term forces G to explore

the image space and discover meaningful style features to generate

diverse images.

Put together, our full objective function can be summarized as

follows:

L G,M,E,Dð Þ¼ LGANþλcycLcycþ λstyLsty�λdivLdiv ,

where λcyc, λsty , and λdiv are hyperparameters for each term. If the

groups of images to be harmonized are confounded by demographic

or clinical/pathological differences, such biological differences could

F IGURE 1 (a) The architecture of the style-encoding generative adversarial network (GAN). The generator learns to generate an image by
inputting a source image and a style code. The style code s is generated by a mapping network from sampling a given latent vector, or encoded by
a style encoder. The quality of the generated image is controlled by the discriminator which learns a binary classification determining whether an
image is a real image or a fake image. (b) The detailed architecture of the generator in the network. In each of the blocks in the process, the three
numbers represent the number of input channels, number of output channels, and the image size. The style code is injected into different layers
of the generators to control various levels of detail and style features in the synthesized image. An instance normalization normalizes a mini-batch
of data across each channel for each observation independently.
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also be inadvertently learned during the harmonization. To avoid this,

we tuned the λcyc in our model to preserve the style-irrelevant charac-

teristics, including anatomical structure.

We set λcyc ¼10 to make sure the biological content can be well

preserved. We also set λsty ¼10 and λdiv ¼1. To stabilize the training,

the weight λdiv is linearly decayed to zero over the 200K iterations.

We adopted the non-saturating adversarial loss (Goodfellow

et al., 2014) with R1 regularization (Mescheder et al., 2018) using

γ=1. We used the Adam (Kingma & Ba, 2014) optimizer with β1 ¼0

and β2 ¼ :99. The learning rates for G, D, and E are set to 10�4, while

that of M is set to 10�6.

2.1.2 | 3D image reconstruction

Due to the GPU memory limitations, our network architecture has

been designed for 2D images. This is in contrast to modern MRI scans

which are 3D volumes (Dewey et al., 2019). We hence reconstructed

the MRI 3D volumes by stacking the 2D slices. The model can be

extended to a fully 3D deep network if GPU memory allows. Stacking

2D slices does not work well for slices at the more peripheral edges of

the structure of interest, in this case, the brain; these slices contain

fewer brain tissue types/contrasts to help ensure the model learns

style features properly. To balance the GPU memory limitation and

the edge-slice effect, we applied the harmonization on partial-3D-vol-

umes, stacking three consecutive slices together. Using a sliding win-

dow, we generated ns�2 such partial-3D-volumes from each MRI

image that contains n slices. This also allows for a larger training data

pool since each image slab is unique. On the other hand, three natural

orientations—axial, sagittal, and coronal—are available for use. To

avoid the bias from the three orientations and to provide additional

robustness to artifacts that may exist in the data, we pooled all

partial-3D-volumes from the three orientations together during the

training process. So, an ns�ns�ns MRI image can yield 3� ns�2ð Þ
training samples. For each of the orientations, we generated a 3D vol-

ume by stacking all the partial-3D-volumes together. In this case, if

one slice belongs to multiple partial-3D-volumes the output is gener-

ated by averaging the specific slice from all partial-3D-volumes. The

final MRI volume is the average of the three 3D volumes generated

using all three orientations. Furthermore, during the harmonization,

we applied a slice-matched harmonization strategy which relies on the

brain registration. That is, after the registration, the reference slice

selected for harmonization lies in the same coordinates as the source

slice to be harmonized.

2.2 | Model inputs

2.2.1 | Datasets

We obtained T1-weighted brain MR images from five publicly avail-

able datasets: UKBB, PPMI, ADNI (adni.loni.usc.edu. The ADNI was

launched in 2003 as a public-private partnership, led by Principal

Investigator Michael W. Weiner, MD. The primary goal of ADNI has

been to test whether serial MRI, positron emission tomography,

other biological markers, and clinical and neuropsychological assess-

ment can be combined to measure the progression of mild cognitive

impairment [MCI], and early Alzheimer's disease [AD]), ABCD, and

ICBM. See Acknowledgments section for more information on

datasets.

Scans used in this study were collected from subsets of disease-

free participants (UKBB: n = 200, age range 45–55 years old; PPMI:

n = 76 age range 67–70 years old; ADNI: n = 42, age range 67–

70 years old; ABCD: n = 200, age range 9–11 years old; and ICBM:

n = 200, age range 19–54 years old), among which 90% were used

as training/validation sets and 10% testing sets. To ensure we can

validate the disentangling of style from biological variables, we kept

some cohorts overlapping in age, a demographic variable with very

large effects. This way, the styles extracted from the cohorts over-

lapping in age can be compared directly without concern for whether

they were determined by major biological factors, specifically age. As

in most organic cases, the number of scans per dataset was not kept

equal. All image acquisition information for these public resources

can be found elsewhere, but briefly they vary in terms of scanner

manufacturer, field strength, TR/TE, type of sequence, voxel size,

and more, often within the same study. A list of manufacturers and

field strength of the five datasets used in our study can be found in

Table 1.

TABLE 1 Scanner manufacturer, field strength, and age range specifications for the five dataset subsets used for training the model. The
selection of images used here might not be representative of the entire dataset.

Datasets

Scanner manufacturers Field strength

Number of subjects Age range (years)GE PHILIPS SIEMENS ELSCENT 1.5 T 2 T 3 T

ADNI3 ✓ ✓ 42 67–70

ICBM ✓ ✓ ✓ ✓ ✓ ✓ 200 19–54

UKBB ✓ ✓ 200 45–55

PPMI ✓ ✓ ✓ ✓ ✓ 76 67–70

ABCD ✓ ✓ ✓ ✓ 200 9–13

Abbreviations: ABCD, Adolescent Brain Cognitive Development; ADNI, Alzheimer's Disease Neuroimaging Initiative; ICBM, International Consortium for

Brain Mapping; PPMI, Parkinson's Progression Markers Initiative; UKBB, UK Biobank.
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2.2.2 | Image processing

Many image processing steps are well established, can be implemented

quickly, and can help reduce unnecessary variability in site differences that

might be attributable to style. Rather than start from raw MRI images, all

the images were skull-stripped using HD-BET (Isensee et al., 2019), nonu-

niformity corrected using N3 approach, and linearly registered to the

1 mm3 MNI152 template using FSL flirt (nine degrees of freedom). The

images were then resized to 0.8 mm3 isotropic 256 � 256 � 256 voxels

to help prepare for 3D processing in all orientations.

2.3 | Experimental datasets for model evaluation

We evaluated our harmonization model on images that were not

included in the training set, but were part of the datasets used in training

(see details in Table 2). To make sure the images did not have major bio-

logical differences, we selected MR images from healthy subjects who

were scanned between 55 age and 65 years from three datasets: UKBB

(n = 300; age¼60:06�2:96yearsold); PPMI (n=185; age¼59:68

�3:17yearsold); and ADNI (n=290; 60:09�2:55yearsold). To test

whether the harmonization would over-correct the pathological alter-

ations, we further harmonized scans from ADNI participants diag-

nosed with dementia within the same age range (n=350;

age¼59:96�2:74yearsold) referenced by a random healthy scan

from the UKBB. Within the ADNI dataset, we tested whether dementia

versus control differences remained consistent after harmonization.

To further validate our harmonization model, we applied the trained

harmonization model to two traveling subjects datasets. The first dataset

was a select portion of the ADNI-1 dataset: 44 subjects scanned with

both a 1.5 T scanner and a 3 T scanner within 30 days of each other.

We note, no scans from the 1.5 T ADNI-1 dataset were used in model

training. This dataset was used to test whether our model can harmonize

the images from the same subjects scanned at different field strength

MRIs to extract the same metrics. The second was the data described in

Tong et al.( 2020), where three subjects were scanned 12 times at 10 dif-

ferent sites within 13 months. Among the 12 scans, 9 were at unique

sites, and the remaining 3 scans were at the same site for every subject.

The established acquisition protocols, including the type of scanner,

imaging sequences, imaging parameters and positioning of the subject

during scanning, are stringently adhered to in all scan sessions.

2.4 | Evaluation metrics

The following evaluations were conducted on the experimental data-

set, to compare datasets before and after the harmonization.

2.4.1 | Histogram comparisons

To quantitatively compare the intensity histogram of the harmonized

images and reference images, we select all test images from ADNI, T
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and harmonize them with all test images (age and sex matched) from

PPMI. Participants were matched for age and sex to ensure approxi-

mately similar volumes of each tissue type. We compared the histo-

grams of all paired brain-extracted MR images (one source ADNI scan

and one target PPMI scan), and the histogram of the image after the

ADNI scan was translated to the PPMI domain, using Jensen–

Shannon (JS) divergence, which represents a symmetric, smoothed

measure of divergence between two probability distributions, quanti-

fying their similarity or dissimilarity.

2.4.2 | Intrasubject and intersubject image similarity

Ideally, MR image harmonization methods should not only remove the

site-related variances, but also rigorously maintain the anatomical

information within subjects. To test whether the anatomical informa-

tion in MR images were preserved after harmonization, we compared

the intrasubject similarity and intersubject differences across the har-

monizations. We selected 10 random subjects from the UKBB testing

set as source images, and 100 randomly selected images from other

datasets as reference images. That is, for each subject, we generated

100 harmonized images.

To determine how well the intrasubject similarity was preserved,

we compared the similarity between images from the same subject

across harmonizations, and the similarity of the images between pairs

of subjects harmonized using identical reference images. The similarity

was measured using intensity correlation (r), the structural

similarity index measure (SSIM), and/or the peak SNR (PSNR) as met-

rics (Table 3).

To determine whether the intersubject differences were also pre-

served, we first quantified the intersubject differences by using the

intensity differences to compute a Euclidean distance (Zhao

et al., 2019) between any two scans, forming a distance matrix,

denoted as Dk�k
ij ¼ Ii� Ij

�� ��
2
, where k=10 is the number of scans, and

I the whole-image voxel intensity vectors for scans i and j. The goal

was to estimate how the distances were preserved relative to each

other before and after harmonization. We computed the correlation r

between the two distance-matrices (only upper triangle) before and

after harmonization.

2.4.3 | T-distributed stochastic neighbor embedding
of style-codes

To illustrate whether the 1 � 64 style code was successfully injected

into the harmonized images, a t-distributed stochastic neighbor

embedding (t-SNE) plot (Van der Maaten & Hinton, 2008) was used to

visualize the style representations of images randomly selected from

the ADNI, UKBB and PPMI datasets, respectively. Briefly, t-SNE is a

nonlinear dimensionality reduction method for visualizing high dimen-

sional data, where more similar data points are closer together, and

dissimilar points further apart. The style code was extracted from the

style encoder trained in the model before and after the images were

harmonized.

2.5 | Task-specific evaluation analyses

2.5.1 | Comparisons of FreeSurfer derived cortical
and subcortical measures

Cortical surface reconstruction and subcortical volume segmenta-

tion were performed using the freely available FreeSurfer 7.1.0

image analysis software (http://surfer.nmr.mgh.harvard.edu/)

(Fischl, 2012). The stream encompasses various stages in recon-

structing the cortical surface, which include motion correction,

intensity normalization, skull stripping, tissue segmentation, surface

reconstruction, surface registration, cortical parcellation, and thick-

ness estimation. Volumes in regions of interest (ROIs), thicknesses

of cortical ROIs were obtained. FreeSurfer's cortical thickness algo-

rithm calculates the mean distance between vertices of a corrected,

triangulated estimated GM/WM surface and GM/CSF (pial) surface

(Fischl & Dale, 2000).

Our FreeSurfer features of interest included: lateral ventricle

volumes, hippocampal volumes, cerebral gray matter (GM) and cere-

bral white matter (WM) volume, and cortical GM thickness. These

features were used to compare case/control effect sizes before and

after harmonization, and used to determine site-related similarities

in extracted feature values for subjects scanned across multiple

scanners.

TABLE 3 Three metrics used in measuring the similarities between images, their brief explanations and formulas.

Metric Explanation Formula

IIC Measures the linear relationship between pixel intensities in

two images.

IIC¼ cov X,Yð Þ= σ Xð Þ�σ Yð Þð , where cov is the covariance, and σ is the

standard deviation.

SSIM Evaluates the structural, luminance, and contrast differences

between two images.
SSIM X,Yð Þ¼ 2μXμY þ c1ð Þ 2σXY þ c2ð Þ= μ2X þμ2X þc1

� �
σ2X þσ2X þ c2
� �� �

,

where μ is the mean, σ2 is the variance, σXY is the covariance, and c1
and c2 are constants.

PSNR Compares the quality of a compressed or reconstructed image

to the original, with a higher value indicating better quality.

PSNR¼20log max Ið Þð Þ�10log MSEð Þ, where max Ið Þ is the maximum

possible pixel value, and MSE is the mean squared error between the

images.

Abbreviations: IIC, image intensity correlation; PSNR, peak signal-to-noise ratio; SSIM, structural similarity index measure.
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2.5.2 | Brain age

Brain age is a relatively new concept aimed at providing the age that

would be predicted for an individual given their brain MRI scan. In

older individuals, a brain age prediction higher than the individual's

true age may suggest accelerated aging (Smith et al., 2019). We used

a deep-learning based brain age prediction model as in Gupta et al.

(2021) to predict the brain age before and after the harmonization.

The brain age prediction model applied in this study took a 3D scan as

input and encodes each slice using a 2D-convolutional neural network

encoder. Next, it combined the slice encodings using an aggregation

module, resulting in a single embedding for the scan. Finally, this

embedding was passed through the feed-forward layers to predict the

brain age. In short, the model involved feeding the entire 3D MR vol-

ume into the model to generate an age prediction directly. The model

was trained end-to-end using MSE loss. An overview of the network

architecture of the brain age prediction model can be found in Gupta

et al. (2021).

Here, the brain age prediction model was trained using the brain

MR images of 1400 healthy UKBB participants between the ages of

45 and 76 years old. After the model was trained, it was applied to

the T1-weighted images of a separate set of healthy subjects from the

UKBB (n = 200; age range 47.3–77.4 years old), ADNI (n = 220; age

range 55.6–74.8 years old), and PPMI (n = 190, age range: 47.2–

75.5 years old) datasets. We then harmonized the ADNI and PPMI

images using a reference image randomly selected from the UKBB

dataset and applied the brain age prediction model for a pre- and

post-harmonization comparison of predicted brain age. We hypothe-

sized that following the harmonization process, the mean absolute

error (MAE) for ADNI and PPMI test images will be comparable to

UKBB images and will be reduced in comparison to their pre-

harmonization values.

2.6 | Traveling subjects evaluation analyses

2.6.1 | Traveling subjects who were scanned on
1.5 T and 3 T scanners

To provide a ground truth, we applied our harmonization model on

two traveling subjects cohorts. One is from the ADNI dataset, who

were scanned on 1.5 T and 3 T scanners. FreeSurfer metrics were

extracted from all the images and compared between 1.5 T images

and 3 T images before and after the harmonization. The percent vol-

ume differences (delta volume) were calculated by dividing the

volume differences values by the average of the two volumes (aver-

age of 1.5 T and 3 T), and then compared. To prove the effectiveness

of our method, we further harmonized the structural volume using a

classic harmonization method for image derived features, namely

ComBat (Fortin et al., 2018), and then compared the volume differ-

ences between ComBat and our method. Specifically, for each cortical

structure, the structural volumes were divided into two groups (1.5 T

and 3 T) referring to the field strength. The ComBat then harmonized

the structural volumes by removing the group difference according to

their distributions. Sex, age, and whether the participants were

healthy/MCI/Dementia were considered as the covariates in ComBat

analysis.

2.6.2 | Traveling subjects who were scanned at
10 sites

For the evaluation on the second traveling subjects cohort from Tong

et al. (2020), we highlighted how the reference can be to an image

from a dataset not in the initial model training. One randomly selected

image from the PPMI dataset was chosen as the reference image to

harmonize all other MR images for all subjects of the Tong cohort.

The PSNR and SSIM were measured between all pairs of images for

the same subjects for comparisons between images before and after

harmonization.

2.7 | Comparisons with other harmonization
networks

We compared our method to two other state-of-the-art unsupervised

deep learning harmonization methods referred to as cycleGAN and

starGAN. The images of 10 ADNI subjects were harmonized to a single

UKBB subject. Input and output images were subtracted to compare

preservation of anatomical structure. Furthermore, to quantitatively

compare the results, we trained another two models of cycleGAN and

starGAN using 40/44 of the ADNI 1.5 T–3 T traveling subjects' cohort

and use the left 4/44 for test. The PSNR and SSIM between images

before and after harmonization were compared across methods.

3 | RESULTS

3.1 | Hyperparameter tuning

Figure 2 shows an example of an image harmonized using the same

model but with different λcyc values. In this example, the source image

is from ADNI and the reference image is from ABCD. There is a

58-year age difference between these subjects, and very evident dif-

ferences in anatomical structure, including larger lateral ventricles in

the older adults. If λcyc ¼0, meaning none of the style-irrelevant char-

acteristics are needed, the model learns everything from the reference

image, generating an image completely identical to the reference. If

λcyc ¼1, then the model learns the style from the reference image but

also some biological patterns, such as smaller lateral ventricles and

thicker GM cortices. If λcyc ¼10, then the model learns only the style

information from the reference and rigorously maintains the style-

irrelevant characteristics (i.e., ventricle and other regional volumes)

from the source images.
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3.2 | Image-wide evaluations

3.2.1 | Comparisons across cohorts before and
after harmonization

Figure 3 illustrates the harmonized images among the five datasets

according to nine randomly selected reference images from across

the datasets. Qualitatively, harmonized images are noticeably more

similar in contrast and intensity to those of the reference images,

and their anatomical structures were well-maintained. In a quantita-

tive comparison of the age- and sex-matched participants of the

ADNI and PPMI datasets, the JS divergence between the histograms

of the ADNI and the translated ADNI ! PPMI image (0.047 ± 0.005)

was significantly higher than that of the PPMI and the

ADNI ! PPMI translated image (0.023 ± 0.006; p < .0001), suggest-

ing the histograms of the ADNI image harmonized to PPMI has an

average intensity profile more similar to PPMI than ADNI, from

which it came.

Our t-SNE results of the style representations reveal that before

harmonization, the style features produced are separable by datasets,

especially the PPMI dataset. After the harmonization the style fea-

tures become jointly embedded and the style feature embedding is

not informative of datasets (Figure 4), suggesting the effectiveness of

the proposed method.

3.2.2 | Intrasubject similarity

When testing the intrasubject similarities between UKBB source

subjects and reference subjects from other datasets, the average

correlation between the intensity of the images from the same sub-

jects across harmonizations was 0:991�0:013 and the average

SSIM was 0:801�0:068. The average correlation between the inten-

sity of the images from two different subjects in identical harmoniza-

tion were r¼ :889� :048 and SSIM¼0:517�0:087. For both sets of

F IGURE 2 Small cycle consistency loss coefficients bias the
generated images toward the reference images, while larger cycle
consistency coefficients rigorously maintain the structure of the
source images, only altering the style.

F IGURE 3 The style-encoding generative adversarial network (GAN) can harmonize images based on a single reference image.
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values, the intrasubjects similarities after different harmonizations

were significantly higher than the intersubject similarities after identi-

cal harmonizations, indicating the intrasubject anatomical information

was preserved after the harmonization compared to intersubject

variances.

3.2.3 | Intersubject differences

When computing the correlation r between the two image-

to-image wide Euclidean distance-matrices as described, before

and after harmonization, our model achieved an average correlation

of r = .979 (range: [.954, .994]) between the distance-matrices

before harmonization and the 100 distance-matrices after harmoni-

zation, indicating the intersubject difference was reliably preserved

after harmonization.

3.3 | Task-specific evaluation of downstream
analyses on 3D reconstructions

3.3.1 | FreeSurfer cortical thickness and regional
volumes

We illustrated the downstream applications of our harmonization

method using cortical features extracted from automated processing

software, in this case, FreeSurfer. Cortical thickness, surface area for

all cortical regions, and volumes of key subcortical brain structures

were generated from healthy subjects aged 55 to 65 years across

three datasets (UKBB, ADNI, and PPMI). Figure 5 displays a compari-

son of cortical measurements between any pair of datasets. The first

row in paired-cohort comparison indicates Cohen's d scores in corti-

cal regions with significant differences, without adjusting for multi-

ple testing, while the second row represents Cohen's d scores in

F IGURE 4 T-distributed stochastic neighbor embedding (t-SNE) representation of the style code extracted in images from three datasets
(ADNI, UKBB, and PPMI) before and after the harmonization.

F IGURE 5 Surface are, cortical thickness, and brain structural volumes comparisons among the three datasets before and after the
harmonization.
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cortical regions after applying multiple testing correction using the

false discovery rate approach. It is evident that following harmoniza-

tion, the differences in cortical measurements between pairs of

cohorts are substantially reduced overall, although not entirely

eliminated.

3.3.2 | Maintaining case/control effect size
differences

To illustrate that the pathological features can be well-preserved

after harmonization using our method without overcorrection, we

compared the hippocampal volumes between AD patients and

healthy subjects in the ADNI dataset, before and after the harmoni-

zation to a UKBB reference. Age, sex, and intracranial volume were

incorporated as covariates. Hippocampal volume was extracted for

left and right hemispheres respectively. Before harmonization, the

left and right hippocampal volumes in AD patients (left:

2127:9�985:8mm3, right: 2676:2:9�1026:6mm3) were signifi-

cantly smaller than that of healthy subjects (left:

3130:7:6�1009:1mm3; right: 3835:6�1023:8mm3; left: p< .0001,

Cohen's d=�0.98; right: p< .0001, Cohen's d=�1.14). As depicted

in Figure 9, these differences remained robust after harmonization as

well; the hippocampal volumes in AD patients (left:

2298:6�1010:1mm3; right: 2858:6�923:5mm3) compared to con-

trols (left: 3129:9�1008:3mm3, right: 3930:2�953:0mm3) remained

significant with effect size differences nearly identical to those before

harmonization (left: p< .0001, Cohen's d=�0.83, right: p< .0001,

Cohen's d=�1.13) (Figure 6).

3.3.3 | Brain age prediction

In the UKBB healthy brain age test set, an MAE of 3.47 years was

achieved between the true chronological age and the predicted brain

age, and the Pearson correlation coefficient was 0.82. We observed

poor generalization ability to other datasets before harmonization (for

ADNI: MAE = 4.9 years, Pearson correlation coefficient = 0.45; for

PPMI: MAE = 4.8 years, Pearson correlation = 0.79). After harmoni-

zation of images from ADNI and PPMI to a reference image from

UKBB, we found an improvement in the generalization performance

of our predictor (for ADNI: MAE = 3.8 years, Pearson correlation

coefficient = 0.58; and for PPMI: MAE = 3.9 years, Pearson

correlation = 0.84; Figure 7).

3.4 | Traveling subjects evaluations

3.4.1 | Harmonization of traveling subjects scanned
on 1.5 T and 3 T scanners

After harmonization, volume differences between 1.5 T image and 3 T

images were smaller than before harmonization for all the brain struc-

tures we evaluated. Paired t-tests indicate that after harmonization,

volume difference between 1.5 T and 3 T images is significantly smal-

ler than before harmonization for hippocampal volume (p = .002).

comparisons of the volume differences between ComBat and our

method showed that our method outperformed the ComBat for sig-

nificantly smaller volume difference between 1.5 T and 3 T for hippo-

campal volume (p = .004). Our method also exhibited comparable

F IGURE 6 Hippocampal volume comparisons among participants with an Alzheimer's disease (AD) diagnosis to cognitively healthy controls
within the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, before and after the harmonization. Harmonization does not affect the
within-cohort statistical case/control differences.
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effects as ComBat for other brain structures (p's > .21) in this applica-

tion (Figure 8).

3.4.2 | Harmonization of traveling subjects from
10 sites

In the traveling subjects' cohort from Tong et al. (2020), we quantita-

tively highlighted how the model can also harmonize images unseen

to the initial model training. One randomly selected image from the

PPMI dataset was chosen as the reference image to harmonize all

other MR images for all subjects in Tong's cohort. The PSNR and SSIM

were measured between all pairs of images for the same subjects.

That is, for each subject, we have 45 pairs of images acquired from

different sites (using 9 scanners) and 6 pairs of images from the same

site (with 3 scans from the same scanner). The average and standard

deviation values for each subject are shown in Figure 9, which shows

that the harmonized images, either for site-related scans and same-

site scans, are more similar in appearance. Quantitative results for the

traveling subjects show a dramatic improvement in similarity using

both SSIM (0.954 for original images vs. 0.969 for harmonized images)

and PSNR (M = 26.1 for original images and M = 28.2 for harmonized

images), paired t tests, p's < .01.

To evaluate whether the harmonization was affected by the ref-

erence images, we harmonized the Tong's cohort using another five

images not included in the training datasets; results showed that after

harmonization, the SSIM and PSNR both increased regardless of the

reference images (Table 4).

We further evaluated our model by harmonizing images from the

unseen dataset (one randomly selected image from the traveling sub-

jects in Tong et al., 2020) to the images in our training datasets.

Figure 10 shows, qualitatively, that our model successfully captures

the styles of the unseen/traveling subject and renders these styles

correctly to the source images.

F IGURE 7 Brain age prediction comparisons among the three datasets before and after the harmonization. The brain age prediction model
was trained using 1400 healthy scans from the UK Biobank (UKBB) dataset. Before harmonization, the mean absolute errors (MAEs) were much
lower when the test set was from the same data collection site as the training data than other datasets, but after harmonization, the errors from
the other cohorts were minimized.

F IGURE 8 Cortical structural volume differences for traveling subjects scanned by 1.5 T scanner and 3 T scanner within 30 days. The
comparison was made among the volume differences before the harmonization, after the harmonization using our method, and after
harmonization using combat.
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F IGURE 9 Image similarity
comparisons using the structural
similarity index (SSIM) and peak
signal-to-noise ratio (PSNR) for
three traveling subjects, each
scanned 12 times at 10 different
sites, all within 13 months.

TABLE 4 Quantitative comparison of
harmonization using different reference
images.

Site-related scans Same-site scans

SSIM PSNR SSIM PSNR

Before harm 0:928�0:033 24:573�2:713 0:952�0:008 26:409�1:078

Ref 1 0:945�0:025 26:366�2:098 0:969�0:009 28:492�1:211

Ref 2 0:942�0:021 26:781�2:278 0:971�0:012 28:189�1:009

Ref 3 0:951�0:026 26:173�2:109 0:965�0:009 27:709�1:013

Ref 4 0:948�0:027 25:891�1:889 0:968�0:007 28:610�1:468

Ref 5 0:946�0:031 26:257�2:179 0:973�0:008 27:902�1:177

Abbreviations: PSNR, peak signal-to-noise ratio; SSIM, structural similarity index.

F IGURE 10 The trained style-encoding generative adversarial network (GAN) successfully captures styles of reference images from novel
acquisition protocols and renders these styles correctly to the source images.
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3.5 | Comparisons with other harmonization
network structures

A visual inspection of harmonization from ADNI dataset to UKBB

dataset can be found in Figure 11. The results revealed that both

cycleGAN and starGAN have some deficit in brain ventricles, which is

not found in our method. Quantitative comparisons are shown in

Table 5, and we performed an inter-site harmonization using traveling

subjects not included in training. We showed that our method

improved the similarity after harmonization compared with the other

two unsupervised harmonization methods.

4 | DISCUSSION

We have developed a harmonization approach for T1-weighted MRIs

collected across multiple vendors and acquisition protocols using a

style-encoding GAN. In this work, a style-harmonized and anatomi-

cally preserved image is synthesized from a single input image from an

arbitrary site, taking the style code encoded from an arbitrary refer-

ence image (usually from another site) directly as extra information,

without knowing details of the acquisition protocols a priori. Our

model does not rely on traveling subjects or any paired modalities of

images or any other paired information from the same subjects. Fur-

thermore, because we consider the site-related harmonization as a

style transfer problem rather than a domain transfer problem, the MR

images from multiple sites do not need to be categorized into specific

domains (i.e., acquisition protocols, specific scanners, studies, clinical

conditions, age bins, etc.). Thus, the demographic and pathological

conditions do not need to be matched for the harmonization.

Unlike other harmonization approaches that work on harmonizing

image derived features, and prepare harmonized features for specific

tasks, our method works directly to harmonize the full brain MRI, from

which already harmonized features can then be extracted. We have

tested our method on several tasks including automatic image seg-

mentation software, brain age predictions, and case/control effect

size calculations. All of these applications highlighted the effective-

ness of our model.

F IGURE 11 Visual comparison across three methods (CycleGAN, StarGAN, our style-encoding generative adversarial network [GAN]) of
image harmonization using 10 images from subjects within the ADNI dataset, harmonized to a single subject within the UK Biobank (UKBB)
dataset. For each method, the first row is the harmonized images translated from the input, and the second row is the absolute difference
between the input and the harmonized images. Anatomical structure is not preserved in CycleGAN or StarGAN as specifically evident by the
alterations within the ventricles and other contrast differences around tissue boundaries.
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Most of the current image-to-image harmonization methods

translate images between different domains, such as specific acquisi-

tion protocols or studies (Bashyam, Doshi, et al., 2020; Moyer

et al., 2020). However, “domain” itself is a complex concept. While it

may seem straightforward to group images into different domains,

such as the dataset or study where they come from, a study may

oftentimes collect images across many sites, scanners, and acquisition

protocols, suggesting more complex, nested domains. Even if the

images were grouped as domains according to identical collection

sites, scanners, or acquisition protocols, they may still exhibit within-

domain variabilities, due to scanner drift over time as seen in the trav-

eling subjects' dataset from Tong et al. (2020). In short, the scenarios

where domain-based approaches can optimally fit include (a) if the

image translation is conducted among limited groups with clear defini-

tions, which is not realistic in many datasets, or (b) when the domain

is actually limited to a single specific image, as in our case. In other

words, here, we do not separate images into domains based on data-

sets but consider every single image as a unique “domain” with its

own style. While some methods make assumptions about the distribu-

tion of styles, for example, that they match a universal prior, such as a

Gaussian distribution, that spans all images and can be learned using

a variational auto-encoder as in Jiang and Veeraraghavan (2020), our

method does not make any such assumptions about the style distribu-

tions. We learn style codes adversarially using a GAN-like approach,

which does not rely on any hypothesized prior distribution and allows

us to learn style codes from every single image individually with

greater flexibility and accuracy. An important caveat in biological data

harmonization across data collection sites, including brain MRI harmo-

nization, is that the biological information (i.e., brain anatomy) and

non-biological information are convoluted, where demographic

and clinical characteristics are often also dependent on the cohort,

specifically the study inclusion and exclusion criteria. In these com-

mon instances, harmonization methods can easily “harmonize” both

sets of information, leading to inadequate image harmonization and

overcorrection (Dinsdale et al., 2021). Disentangling images into con-

tent and style spaces can overcome this issue. Disentangled latent

spaces have been used in several past image translation studies

(Dewey et al., 2020; Jiang & Veeraraghavan, 2020). These studies

both extracted the brain structures as content explicitly, which

requires an extra step to supervise the content learning using either

different modality of images from the same subjects (Dewey

et al., 2020), or an extra content decoder (Jiang &

Veeraraghavan, 2020). To preserve the content, in this case being the

anatomical information in the brain MRI, we propose not to generate

such an explicit content code. We preserve the content information

using a cycle-consistency loss by directly matching the source image

and the image translated from the target image based on source style

code. In this way, no extra paired information is needed, and we can

still avoid the overcorrection of image acquisition confounded by bio-

logically relevant information.

In our study, we proved that our method is not at danger if two

sites are harmonized to each other that have no overlap of their age

distributions. We incorporated the ABCD dataset, which consists of

participants aged 9–13 years old and has no age overlap with any

of the other datasets. The overall performance on ABCD images is

quite satisfactory. As per the reviewer's request, we conducted an

additional analysis to examine the correlation between styles and age,

which revealed no significant correlation. This suggests that the styles

inserted into the images are not age-related.

An important aspect of harmonization is, therefore, to keep the

relevant biological and clinical patterns in the images without this

overcorrection. We provide evidence that our model can preserve

these patterns using the brain age prediction and hippocampal volume

comparison in AD patients compared to age and sex matched con-

trols. Brain age estimation has become an established biomarker of

overall brain health in the neuroimaging community, exhibiting over-

lapping neuroanatomical patterns with a variety of other pathologic

processes (Bashyam, Erus, et al., 2020; J�onsson et al., 2019). Accurate

brain age estimation depends on fine neuroanatomical patterns that

can be obfuscated by site-related imaging variations. Therefore, brain

age is an excellent candidate experiment to assess harmonization per-

formance. When training our model on one dataset, we demonstrated

improved age prediction estimates in three separate sites, following

their mapping to a reference image within the dataset used to train

the brain age model. We further demonstrate how case control differ-

ences in hippocampal volumes between ADNI participants with

dementia compared to cognitive healthy controls were not affected

by the harmonization procedure. As the harmonization was to a refer-

ence image of a healthy individual, a harmonization procedure that

would overcorrect, and confound imaging and biological sources of

TABLE 5 Quantitative comparison between our method and two other unsupervised harmonization methods in ADNI traveling subjects
cohort.

1.5 T ! 3 T 3 T ! 1.5 T

IIC SSIM PSNR IIC SSIM PSNR

Original 0:931�0:027 0:855�0:023 23:172�0:983 0:931�0:027 0:855�0:023 23:172�0:983

cycleGAN 0:954�0:027 0:901�0:031 25:566�1:076 0:957�0:025 0:905�0:019 25:109�1:248

starGAN 0:948�0:021 0:908�0:021 25:331�1:145 0:955�0:023 0:909�0:028 25:482�1:379

Ours 0:966�0:014 0:922�0:018 26:189�0:909 0:971�0:018 0:935�0:024 26:015�1:182

Abbreviations: ADNI, Alzheimer's Disease Neuroimaging Initiative; GAN, generative adversarial network; IIC, image intensity correlation; PSNR, peak

signal-to-noise ratio; SSIM, structural similarity index.
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variability, would likely remove some of the anatomical variability due

to the dementia and the case/control effect sizes would be smaller

after harmonization than with the original data. That was not the case

with our harmonization approach. In other words, we demonstrated

that the degree of impairment captured by hippocampal volumes in

the patient population was preserved after the harmonization, indicat-

ing the clinical patterns in different datasets were not over-corrected

by our harmonization method.

We also show that the similarity between within-site MRI or MRI

from traveling subjects may be further increased. This suggests that

MRI scans from the same individual, even when taken in the same

sequence, can exhibit differences between separate scans. Several

factors contribute to these slight variations, including the patient's

movement, physiological changes such as alterations in blood flow or

tissue composition, and the natural fluctuations within the body. Addi-

tionally, MRI scanners might have minor variations in their magnetic

field strengths and gradients, which can result in small differences

between scans. Furthermore, it is important to consider that the sub-

jects underwent 13 scans over a period of 13 months. As a result,

age-related changes could play a significant role and should not be

overlooked.

Finally, we showed our model generalizes well even to unseen

samples, effectively being able to harmonize to a reference image not

included in any of the datasets used for model training. This is a par-

ticularly important advantage for studies with very small sample sizes,

or those using less common acquisition protocols. For example, if

investigators in charge of a relatively small, or unique, cohort wanted

to compare their subjects with data from a large, open resource, they

may use our method to avoid overcorrection and obtain similar

styled-images.

5 | LIMITATIONS

Although the model was designed to separate brain structures (con-

tents) and anatomy-irrelevant information (styles) completely, the

model sometimes may not automatically and accurately recognize

which are contents and which are styles. In other words, the styles

recognized by the model may contain some of the content. This is

controlled by the selection of hyperparameters, more experiments are

needed to test how the hyperparameters may influence the harmoni-

zation. The outcome of the harmonization is dependent on the refer-

ence image, and here, we only tested reference images from

individuals without gross brain structural abnormalities. It is possible

content and style may be conflated in cases where the reference

image may have severe artifacts, or anatomical abnormalities such as

a large lesion. Our method works on T1-weighted images only, yet a

similar framework may also be applied to harmonize images for other

modalities, or the multimodal image conversions.

In some cases, T1 sequence variations may cause a shift in the

GM and WM boundary. While the harmonization process may help to

improve the consistency of the GM/WM boundary by adjusting the

intensities of the compartments, it is not intended to correct shifts in

the actual GM/WM boundary. The shifts in the boundary may be cor-

rected by other factors, such as reduction of motion artifacts, physio-

logical changes, or scanner variability. Another potential limitation is

the influence of preprocessing steps prior to harmonization on the

harmonization outcome. In some situations, harmonization may be

necessary for native MRIs. Future studies may need to further vali-

date the effects of harmonization on native MRIs and investigate how

the quality of harmonization may be dependent on the preprocessing

steps employed. The final limitation of the methodology is that shar-

ing MRI data can raise ethical concerns in many retrospective studies,

which may necessitate designing the proposed harmonization method

with individual privacy protection in mind.

In conclusion, here, we proposed a harmonization approach for

T1-weighted MRIs using a style-encoding GAN that can be used to

harmonize entire images for a variety of international, multi-cohort,

neuroimaging collaborations.
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