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Introduction

Bipolar disorder (BD) is a severe psychiatric condition de­
fined by recurrent episodes of elevated and depressed 
mood. The onset of BD most commonly occurs during ado­
lescence.1 Diagnosis of BD relies on clinical interview and 
observation, and is often determined by recall of previous 
illness episodes. Diagnostic reliability for BD is good in 
adults and youth, but opportunities for improvement exist, 
especially for youth.2 Distinguishing between severe mental 
illnesses among youth is difficult. Although nonoverlapping 
symptoms can be helpful in this distinction, these illnesses 
have many overlapping symptoms, and adding objective 
imaging measures to standard clinical measures has the po­
tential to improve classification, compared with using clin­
ical measures alone.3 Early intervention is important for re­
ducing symptomatic burden, improving functioning and 
mitigating illness progression.4 As such, strategies for early 
identification are needed to enable early interventions and, 

in turn, optimize treatment efficacy.5 Additional research in­
tegrating clinical measures with neuroimaging measures 
and machine learning methods is needed to advance toward 
the goals of accurate classification and early identification.

Using magnetic resonance imaging (MRI), we may better 
understand group-level differences in brain anatomy and 
function among adults and youth with and without BD.6–8 
Such group-level findings have prompted predictive classifi­
cation and machine learning analyses that aimed to uncover 
phenotypes of BD in individual neuroimages rather than 
group-level aggregates, with the ultimate goal of developing 
diagnostic or prognostic measures. The feasibility of imaging-
based classification of adults with BD from healthy controls 
has been shown using neuroanatomical T1-weighted MRI; 
accuracies of 45%–81% have been reported for single-site 
studies9–11 and 65% accuracy was reported in a large multisite 
study.11 Previously, cerebral blood flow (CBF) estimates from 
the subgenual cingulate gyrus led to 81% accuracy in classi­
fying bipolar depression versus unipolar depression.12 The 

Correspondence to: B.J. MacIntosh, 2075 Bayview Avenue, Room M6-180, Toronto, Ont., M4N 3M5; brad.macintosh@utoronto.ca

Submitted Jan. 13, 2023; Revised Apr. 14, 2023; Revised May 26, 2023; Accepted May 27, 2023

Cite as: J Psychiatry Neurosci 2023 August 29;48(4). doi: 10.1503/jpn.230012

Background: Clinical neuroimaging studies often investigate group differences between patients and controls, yet multivariate imaging 
features may enable individual-level classification. This study aims to classify youth with bipolar disorder (BD) versus healthy youth 
using grey matter cerebral blood flow (CBF) data analyzed with logistic regressions. Methods: Using a 3 Tesla magnetic resonance 
imaging (MRI) system, we collected pseudo-continuous, arterial spin-labelling, resting-state functional MRI (rfMRI) and T1-weighted 
images from youth with BD and healthy controls. We used 3 logistic regression models to classify youth with BD versus controls, con-
trolling for age and sex, using mean grey matter CBF as a single explanatory variable, quantitative CBF features based on principal 
component analysis (PCA) or relative (intensity-normalized) CBF features based on PCA. We also carried out a comparison analysis 
using rfMRI data. Results: The study included 46 patients with BD (mean age 17 yr, standard deviation [SD] 1 yr; 25 females) and 
49 healthy controls (mean age 16 yr, SD 2 yr; 24 females). Global mean CBF and multivariate quantitative CBF offered similar classifi-
cation performance that was above chance. The association between CBF images and the feature map was not significantly different 
between groups (p  = 0.13); however, the multivariate classifier identified regions with lower CBF among patients with BD (ΔCBF = 
–2.94 mL/100 g/min; permutation test p = 0047). Classification performance decreased when considering rfMRI data. Limitations: We 
cannot comment on which CBF principal component is most relevant to the classification. Participants may have had various mood 
states, comorbidities, demographics and medication records. Conclusion: Brain CBF features can classify youth with BD versus 
healthy controls with above-chance accuracy using logistic regression. A global CBF feature may offer similar classification perform
ance to distinct multivariate CBF features.
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success of imaging-based classification depends on various 
factors, such as the image quality and sources of image con­
trast. Magnetic resonance imaging can yield multiple forms 
of imaging contrast, including neuroanatomical information, 
as well as neurovascular or hemodynamic information, 
through arterial spin labelling (ASL) or blood oxygenation 
level–dependent (BOLD) imaging.

We sought to use ASL-based CBF maps to classify youth 
with and without BD. Cerebral blood flow is a fundamental 
aspect of physiology and reflects disease-related changes in 
brain function and physiology; therefore, CBF may supple­
ment anatomic MRI readouts in classification schemes. A 
neurovascular measure, namely CBF, is particularly relevant 
in BD, which is thought to be related to the vascular dis­
eases.13 Previous studies have found that youth with BD had 
higher average CBF in grey matter and higher regional CBF 
in the cingulate gyrus and frontal regions, compared with 
healthy controls.14–16 Cerebral blood flow may provide classi­
fication capacity to neuroanatomical imaging. Whether 
global average CBF or multivariate regional CBF is the better 
choice for classifying individual youth with BD remains 
questionable. We sought to compare univariate and multi­
variate CBF as explanatory variables in separate classification 
models based on logistic regression and features derived 
from principal component analysis (PCA).17,18 With a paucity 
of CBF-based BD classification studies, we chose this parsi­
monious approach as a proof-of-concept to avoid possible 
spurious associations (i.e., overfitting). We hypothesized that 
multivariate CBF features would enable better-than-chance 
classification of youth with BD and healthy controls.

Methods

Participants

We recruited study participants through community ad­
vertising and set up a specialty clinic at Sunnybrook 
Health Sciences Centre in Toronto, Canada. The exclusion 
criteria included inability to provide informed consent; car­
diac, autoimmune or inflammatory illness; neurologic or 
cognitive impairment; current anti-inflammatory, anti­
platelet, antilipidemic, antihypertensive or hypoglycemic 
agents; and contraindication to MRI (e.g., ferromagnetic 
implants, claustrophobia). We established psychiatric diag­
noses using the Schedule for Affective Disorders and 
Schizophrenia for School-Age Children, Present and Life­
time Version (K-SADS-PL).19 In the standard mood sec­
tions, we selected the K-SADS Depression Rating Scale and 
the K-SADS Mania Rating Scale.20,21 Participants with BD 
could meet the criteria for BD-I, BD-II or BD-NOS (not 
otherwise specified) subtypes, where BD-NOS was defined 
using operationalized criteria from the Course and Out­
come of Bipolar Illness in Youth study.22 For each partici­
pant, we also conducted a Family History Screen interview 
and a Children’s Global Assessment Scale.23,24 Healthy con­
trol participants had no lifetime history of mood or psy­
chotic disorders and no anxiety disorders or alcohol or 
drug dependence within 3 months of recruitment.

We measured participants’ height and weight in light 
clothing to the nearest 0.5 cm and 0.1 kg following the 
anthropometry procedures of the National Health and 
Nutrition Examination Survey.25 We adjusted weight for 
clothing choice (1.4 kg for long pants and long-sleeved shirt, 
1.1 kg for short pants or short-sleeved shirt, 0.9 kg for short 
pants and short-sleeved shirt). We also recorded the blood 
pressure using an automated monitor while seated after 
10 minutes of rest (Omron).

MRI acquisition

We used a 3 Tesla MRI system (Achieva, Philips) to generate 
brain images. An 8-channel head coil receiver and paddings 
were equipped for patient comfort and to limit head motion. 
We acquired anatomic T1-weighted, ASL and BOLD images. 
The T1-weighted image used a fast field echo acquisition (rep­
etition time 9.5 ms, echo time 2.3 ms, spatial resolution 0.9 × 
0.7 × 1.2 mm, field of view 240 × 191 × 168 mm, scan duration 
8 min and 56 s). We performed the ASL scan with a pseudo-
continuous labelling scheme (labelling duration 1650 ms, 
post-label delay for the most inferior slice 1600 ms, 35 control–
label pairs) and a single-shot 2-dimensional echo planar im­
aging acquisition (repetition time 4000 ms, echo time 9.6 ms, 
spatial resolution 3 × 3 × 5 mm, field of view 192 × 192 × 
90 mm, scan duration 4 min and 48 s). We also acquired the 
proton-density images for ASL calibration (repetition 
time 10 s, acquisition otherwise identical to ASL). Finally, we 
collected BOLD fMRI data with T2*-weighted contrast using 
echo planar imaging (repetition time 1500, echo time 30 ms, 
spatial resolution 3 × 3 × 4 mm, field of view 230 × 181 mm, 
and volumes 231 for a scan duration of 5 min and 46 s).

MRI processing

We calculated the CBF maps from ASL images using a pro­
cessing pipeline built with tools from FSL (FMRIB Software 
Library).26 Pipeline steps included motion correction, 
control–label image subtraction, smoothing and registration 
to standard image space. We calculated difference images 
using sinc-interpolated subtraction of control–label images, 
spatially smoothed using an isotropic Gaussian kernel with 
a full width at half maximum of 5 mm.27 We discarded im­
ages affected by excessive head motion using the ENABLE 
(Enhancement of Automated Blood Flow Estimates) quality 
control algorithm.28 We converted the CBF-weighted images 
into mL/100 g/min units by scaling with the proton density 
image and calibrating with an established ASL MRI model, 
using literature values for model parameters.29 To facilitate 
a sensitivity analysis of the CBF maps, we corrected the par­
tial volume effect using a regression algorithm (obtained 
from the ExploreASL software package) that treated the in­
tensity of each voxel as the sum of the signal contribution 
from each tissue type (i.e., grey and white matter).30,31

We used the T1-weighted images to register the CBF 
images with the MNI152 template. We then segmented T1-
weighted images to obtain a grey matter segmentation using 
the FSL-FAST tool.32 We removed voxels adjacent to lateral 
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ventricles using an overlay of the right and left lateral ven­
tricle based on the Harvard–Oxford atlas (distributed with 
FSL, https://fsl.fmrib.ox.ac.uk/). We excluded masked 
voxels if more than 2 participants did not have ASL coverage 
in the voxel. For the BOLD fMRI data, we created fractional 
amplitude of low-frequency oscillation (fALFF) maps using 
an established pipeline.33 For each voxel in fMRI images, we 
computed the square root of the power spectrum to calculate 
the amplitude value for each voxel. We calculated fALFF by 
summing the amplitude data in each voxel, which falls in the 
0.01–0.08 Hz low-frequency range, and dividing by the sum 
of amplitude in the entire frequency spectrum.33 We ac­
counted for the effects of age and sex by regressing these 
variables against voxelwise maps across all participants in 
the study to produce adjusted images for all subsequent CBF 
and fALFF analyses.

Imaging-based classification using logistic regression

We built classification models based on binary logistic regres­
sion and fit them to the imaging data using group (healthy 
control or BD) as the dependent variable and adjusted CBF 
(or fALFF) as the explanatory variable. We used principal 
component analysis (PCA) to extract multivariate features 
representing regions with positively and negatively covary­
ing CBF across the group; these principal components are un­
correlated and are suitable as consecutive variables in the re­
gression. Importantly, principal components are calculated 
agnostic to the participant diagnostic group.

We built 3 logistic regression models to classify youth with 
BD versus controls, controlling for age and sex. Model 1 used 
mean grey matter CBF as a single explanatory variable. 
Model 2 used quantitative CBF features based on PCA. 
Model 3 used relative (intensity-normalized) CBF or fALFF 
features based on PCA. The first approach involved a single 
explanatory variable, whereas the second and the third ap­
proaches involved multiple explanatory variables. For the 
multivariate logistic regressions, we used stepwise logistic re­
gression to select the consecutive principal components that 
best explained group membership. The principal compon­
ents were calculated using a participant-by-voxel data ma­
trix, ordered by the percentage of explained variance. We 
then performed forward stepwise regression to limit the 
number of explanatory features and avoid overfitting. The 
stepwise regression started solely with the first principal 
component. We added successive principal components until 
15 were considered, corresponding to the total number of ex­
planatory variables in previous models.18,34 The most suitable 
model was defined a priori by the lowest value of the Akaike 
information criterion (AIC).35

We ran the logistic regression models with repeated 6-fold 
cross-validation, with 10 repeats, to reduce variance in the 
model performance estimate. We chose 6 folds to approxi­
mate the conventional 80:20 train-to-test split in each fold, 
and we assigned a roughly even balance of BD and healthy 
controls to each test set. We assessed the classification 
performance of each test set using the accuracy value (de­
fined as the percent of participants correctly classified) and 

the area under the receiver operating characteristic curve (area 
under the curve [AUC]) for each cross-validation fold. Of the 
2 multivariate feature sets, we selected the set with the highest 
combination of AUC and accuracy for further analysis.

Consolidation of components into a composite bipolar 
disorder–related pattern

The coefficients from the logistic regression of CBF principal 
components represent the relevance of each principal com­
ponent in classifying the 2 groups. The linear combination of 
the principal components with these coefficients as weights 
returns a composite CBF pattern related to CBF features that 
distinguish youth with BD from healthy controls. For models 
2 and 3, we quantified the expression of the composite pat­
tern by calculating the dot product of the z-scored composite 
pattern with the CBF image of the participant (i.e., the sum of 
all voxels after multiplying the 2 images). We then assessed 
the stability of the voxel estimates in the composite pattern 
by repeating the entire composite pattern calculation (includ­
ing PCA and stepwise logistic regression) 1000 times using a 
bootstrapped resampling of the participants. A z-score image 
indicated the mean and standard deviation of the 1000 pat­
terns. We assessed the significance of the voxels in this image 
using cluster-based inference via FSL’s cluster tool, with a 
primary z-score threshold of 3.29 and a secondary p-value 
threshold of 0.01, as suggested by Woo and colleagues.36

Region-of-interest analysis for the CBF multivariate models

To provide insight into the CBF group differences associated 
with the significant voxels in the composite CBF pattern, we 
performed a region-of-interest analysis using the composite 
pattern derived from the best-performing logistic regression 
model. We considered 3 sets of voxels in the group-difference 
composite pattern, namely those that were positive (i.e., BD > 
healthy controls), negative (i.e., BD < healthy controls) and the 
remaining nonsignificant grey matter voxels. For each of these 
masks, we calculated the difference between the mean relative 
CBF (i.e., CBF value normalized to a mean of 80 mL/100 g/min 
in each image) of the BD and healthy control groups. We 
chose the relative CBF for the region-of-interest analysis be­
cause the PCA analysis was designed to assess between-
region relationships rather than a global CBF effect.37

Statistical analysis

We conducted a power analysis to compute an anticipated ef­
fect size and power, given our current sample size and assum­
ing a univariate analysis of CBF data. We used G*power soft­
ware and relied on a 2-tailed t test to infer CBF differences 
between 2 independent groups. Based on assumptions of an 
α value of 0.05, power of 0.80, total sample size of 95 and a 
univariate statistic, we deduced that we would need an effect 
size of 0.51 to produce a statistically significant group differ­
ence. For group differences in mean grey matter CBF, we used 
a 2-tailed t test, controlling for age and sex, to assess the statis­
tical significance (a priori α = 0.05). For group differences in 
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composite CBF patterns, we compared the scores representing 
the similarity between the composite CBF pattern and each 
participant’s CBF image between healthy controls and partici­
pants with BD using a permutation test. We repeated the en­
tire composite pattern calculation 1000 times (including PCA 
and stepwise logistic regression), each with a different ran­
dom permutation of the group labels. For each new composite 

pattern, we calculated the difference between the mean score of 
the 2 groups; these differences formed the null distribution used 
to assign significance of the observed difference in a single-
tailed fashion (a priori α = 0.05), as we designed the analy­
sis to test whether the group with BD had a higher score. 
We also conducted a within-group linear model to test for 
an association between mean grey matter CBF and current 

Table 1 (part 1 of 2): Demographic and clinical characteristics of participants

Characteristic

No. (%) of participants*

t or χ2 p value
Healthy controls  

n = 49
Bipolar disorder  

n = 46

Demographics

   Age, yr, mean ± SD 16.30 ± 1.75 17.30 ± 1.23 –3.24 0.002

   Sex, female 24 (49.0) 25 (54.3) 0.10 0.75

   Non-White 22 (44.9) 14 (30.4) 1.88 0.17

   BMI, mean ± SD 20.98 ± 2.81 23.81 ± 3.71 –4.21 < 0.001

   Intact family 32 (65.3) 28 (60.9) 0.055 0.81

   Socioeconomic status, HI score, mean ± SD 4.35 ± 0.86 4.17 ± 0.90 0.56 0.45

   Tanner stage, mean ± SD 4.16 ± 0.59 4.33 ± 0.67 3.00 0.08

   CGAS: Most severe past episode, mean ± SD 79.0 ± 7.9 41.9 ± 8.3 7.52 < 0.001

   CGAS: Highest past year, mean ± SD 90.4 ± 5.1 67.5 ± 11.7 12.1 < 0.001

   CGAS: Past month, mean ± SD 90.7 ± 4.3 64.0 ± 12.1 14.0 < 0.001

Lifetime clinical characteristics

   BD-I 0 15 (32.6) — —

   BD-II 0 15 (32.6) — —

   BD-NOS 0 16 (34.8) — —

   Age of BD onset, yr, mean ± SD 0 14.7 ± 2.15 — —

   Psychosis 0 16 (34.8) — —

   Suicide attempts 0 7 (15.2) — —

   Self-injurious behaviour 0 23 (50.0) — —

   Suicidal ideation 3 (12.5) 29 (63.0) — —

   Physical or sexual abuse 1 (2.0) 2 (7.2) — —

   Psychiatric hospital admission 0 25 (54.3) — —

   Current depression score, mean ± SD 0.41 ± 1.47 14.15 ± 11.18 — —

   Lifetime depression score, mean ± SD 1.20 ± 2.56 29.93 ± 12.56 — —

   Current mania score, mean ± SD 0.08 ± 0.34 9.26 ± 10.12 — —

   Lifetime mania score, mean ± SD 0.63 ± 1.83 30.57 ± 10.97 — —

Lifetime comorbid diagnoses

   Attention-deficit/hyperactivity disorder 6 (12.2) 22 (47.8) — —

   Oppositional defiant disorder 0 11 (23.9) — —

   Conduct disorder 0 2 (4.3) — —

   Any anxiety disorder 1 (2.0) 35 (76.1) — —

   No. of anxiety disorders, mean ± SD 0.04 ± 0.29 1.57 ± 1.42 — —

   Substance use disorder 0 12 (26.1) — —

   Eating disorder 0 10 (21.7) — —

   Nicotine use 3 (6.1) 20 (43.5) — —

Family psychiatric history

   Mania or hypomania 0 24 (55.8) — —

   Depression 8 (16.3) 31 (72.1) — —

   Suicide attempt 5 (10.2) 16 (37.2) — —

   Anxiety 7 (14.3) 27 (62.8) — —

   Psychosis 0 11 (25.6) — —

   Substance use disorder 4 (8.2) 21 (45.7) — —

   Attention-deficit/hyperactivity disorder 3 (6.1) 10 (23.3) — —
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depression or mania score. Finally, we estimated the confi­
dence intervals (CIs) of the mean group differences in the 
region-of-interest analysis of relative CBF using bootstrap­
ping. We resampled CBF images with replacement, and re­
calculated the mean regional CBF difference between the 
groups 5000 times. We estimated the 95% CI as the 2.5th and 
97.5th percentiles of this bootstrapped distribution, and the 
p values for these region-of-interest analyses using a permu­
tation test (5000 shuffles of group membership labels).

Ethics approval

The Research Ethics Board at Sunnybrook Research Institute 
in Toronto, Canada, approved the study (no. 408-2011 and 
409-2013). All participants provided free and informed con­
sent to participate in the study. 

Results

The study included 95 youth with (n = 46) or without (n = 49) 
BD. Table 1 lists the demographic and clinical information of 
the study participants. Participants with BD were slightly 
older and had a higher body mass index than healthy con­
trols. Most participants with BD were taking medication at 
the time of the study, most commonly second-generation anti­
psychotics. Figure 1A shows the mean CBF map of the 
healthy control group and is also representative of the mean 
CBF map of the BD group. There was a significant group ef­
fect on mean grey matter CBF after controlling for age and sex 
(t = 2.4, p = 0.018). The mean grey matter CBF was 77.8 (stan­
dard deviation [SD] 13.0) mL/100 g/min in the healthy con­
trol group, and 83.2 (SD 14.9) mL/100 g/min in the BD group.

Imaging-based regressions, principal components and 
classification

From the within-group linear model for the BD group, we 
found that mean grey matter CBF was significantly associ­
ated with the current depression score (p = 0.038) but not the 
current mania score (p = 0.702). For the control group, mean 
grey matter CBF was not associated with either of these 
symptomatology scores (p = 0.911 and 0.162 for depression 
and mania scores, respectively). The results are available in 
Appendix 1, Table 1, available at www.jpn.ca/lookup/
doi/10.1503/jpn.230012/tab-related-content.

Table 2 shows the performance metrics averaged across 
all folds of repeated cross-validation for the logistic regres­
sion models with the lowest AIC. Models 1 and 2 achieved 
classification accuracy values that exceeded chance (i.e., 
95% CIs did not overlap with 0.5), whereas model 3, which 
used relative CBF multivariate features, had lower perform­
ance. For comparison, using adjusted fALFF maps did not 
yield a classification accuracy greater than chance (mean ac­
curacy 0.56, SD 0.12; Appendix 1, Table 2). The classification 
accuracy for the mean grey matter CBF (mean accuracy 
0.60, SD 0.11) and CBF principal components were similar 
(mean accuracy 0.61, SD 0.10). The classification accuracy 
for the relative CBF principal components (mean accuracy 
0.52, SD 0.10) was lower than the model using quantitative 
CBF principal components. The percent variance explained 
by the principal components calculated from quantitative 
CBF is shown in Figure 1B. Cumulatively, the principal 
components explained 57.0% of the variance in CBF across 
participants. The AIC from each model in the stepwise re­
gression is shown in Figure 1C.

Table 1 (part 2 of 2): Demographic and clinical characteristics of participants

Characteristic

No. (%) of participants*

t or χ2 p value
Healthy controls  

n = 49
Bipolar disorder  

n = 46

Lifetime medications

   Second-generation antipsychotics 0 34 (73.9) — —

   Lithium 0 12 (26.1) — —

   SSRI antidepressants 0 16 (34.8) — —

   Non-SSRI antidepressants 0 7 (15.2) — —

   Stimulants 4 (8.2) 9 (19.6) — —

   Lamotrigine 0 10 (21.7) — —

   Valproate 0 2 (4.3) — —

Current medications

   Second-generation antipsychotics 0 30 (65.2) — —

   Lithium 0 10 (21.7) — —

   SSRI antidepressants 0 4 (8.7) — —

   Non-SSRI antidepressants 0 3 (6.5) — —

   Stimulants 3 (6.1) 2 (4.3) — —

   Lamotrigine 0 10 (21.7) — —

   Valproate 0 0 — —

   Any current medication 3 (6.1) 39 (84.8) — —

BD-I = bipolar disorder subtype I; BD-II = bipolar disorder subtype II; BD-NOS = bipolar disorder not otherwise specified; BMI = body mass index; CGAS = Children’s Global Assessment 
Scale; HI = Hollingshead Index; SD = standard deviation; SSRI = selective serotonin reuptake inhibitor.
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Composite bipolar disorder–related CBF pattern

Figure 2A shows the composite CBF pattern calculated 
from quantitative CBF (model 2). Positive loadings were 
found in the right putamen, bilateral nucleus accumbens, 
right insula, left hippocampus, right caudate, right frontal 
pole and right superior occipital gyrus. Negative loadings 
were found in the precuneus, anterior cingulate gyrus, pos­
terior cingulate gyrus, left precentral gyrus and left superior–
middle frontal gyrus. We did not find a statistically signifi­
cant difference in the expression of this pattern between 
participants with BD and healthy controls (t = 1.53, p = 0.13; 
Figure 2B).

Region-of-interest analysis based on composite CBF pattern

Figures 2C and 2D shows group CBF differences for the re­
gions with positive loadings in the composite pattern and 
those with negative loading. The CBF was lower among par­
ticipants with BD for regions with positive loadings (ΔCBF = 
2.4 mL/100 g/min, 95% CI 0.3 to 5.8 mL/100 g/min; per­
mutation test p = 0.047). No significant group difference was 
observed in regions with negative loadings (ΔCBF  = 
–2.9  mL/100 g/min, 95% CI –5.9 to –0.2 mL/100 g/min; ​

permutation test p = 0.060). No significant difference was ob­
served in the remaining regions (ΔCBF = 0.1 mL/100 g/min, 
95% CI –0.1 to 0.3 mL/100 g/min; permutation test p = 0.20).

Discussion

In this study, we showed the feasibility of classifying youth 
with and without BD using logistic regression models that 
relied on univariate and multivariate quantitative CBF im­
aging features. The logistic regression models that retained 
quantitative CBF information provided meaningful classifica­
tion accuracy, whereas the relative CBF and fALFF ap­
proaches were inferior and did not classify better than 
chance. We consolidated multivariate CBF patterns into a sin­
gle imaging phenotype related to CBF group differences. The 
loadings of this composite CBF pattern enabled region-of-
interest analysis, which showed an interesting pattern of de­
creased striatum CBF in the BD group (i.e., in the caudate, 
putamen and nucleus accumbens regions).

This study showed that both univariate and multivariate 
analyses of CBF data can be used for better-than-chance 
classification of youth with BD. We observed higher per­
formance than was observed by Almeida and colleagues12 
using support vector machine analysis of CBF in adult 

Figure 1: (A) Group average cerebral blood flow (CBF) image for the healthy controls; this was visually representative of the group with bi
polar disorder. (B) Percent variance explained by the principal components, calculated from quantitative CBF data. Solid line shows mean 
across cross validation folds and translucent band shows 95% confidence intervals (CIs); note that the CI closely overlaps with the mean. 
(C) Akaike information criteria (AIC), as a function of the number of included principal components, is shown for logistic regression models fit 
using multivariate information from the quantitative CBF data. Lower AIC values indicate a better model fit. R = right hemisphere.
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females with BD. Performance was comparable to classifica­
tion analyses using structural MRI in adult BD, with 
45%–81% accuracy in single-site studies.9,11 The high signal-
to-noise ratio of univariate analysis of mean grey matter 
CBF is desirable for repeatability, whereas multivariate 
methods give insight into the regional neurophysiological 
correlates of youth BD. Using relative CBF (i.e., normalized 
to the same grey matter means in every image) produced 

poor classification, suggesting that the global grey matter 
CBF is highly pertinent for classification of BD. Such inter­
individual variability is key in the study of CBF in youth 
BD. Global mean and regional CBF features contributed to 
our ability to classify adolescents with or without BD. It is 
important to place this finding in the context of potential 
mechanistic underpinnings, and several factors can con­
tribute to CBF differences. On the one hand, bioenergetic 

Figure 2: (A) Composite cerebral blood flow (CBF) pattern associated with bipolar disorder (BD), overlaid on a reference T1-weighted image. 
Colours indicate z-scored voxel intensity and are unitless. No-coloured regions were not statistically significant after cluster-based threshold-
ing. (B) Expression scores of the CBF pattern in the CBF image of each participant. We calculated a group comparison p value through the 
permutation-based null distribution of the difference in mean scores. Panels (C) and (D) show the mean relative CBF (intensity-normalized to a 
mean of 80 mL/100 g/min) and difference between youths with and without BD in the region-of-interest analysis for positive and negative voxels, 
respectively. Horizontal lines indicate group means. Error bars indicate the 95% confidence intervals. Density plots show the bootstrapped dis-
tribution and confidence intervals for the HCs minus the BD condition. HC = healthy control; R = right hemisphere. *p < 0.05. 

A

B C D

Group

-1.5 30

35 -20

-10

0

10

-10

0

10

20

40

45

50

55

60

65

70

75

85

90

95

100

105

110

115

120

125

130

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

C
B

F
 p

at
te

rn
 s

co
re

R
el

at
iv

e 
C

B
F

, m
L/

10
0 

g/
m

in

M
ean difference

M
ean difference

R
el

at
iv

e 
C

B
F

, m
L/

10
0 

g/
m

in

BD BD HC HC
minus

BD

BD HC HC
minus

BD

HC

p = 0.13

Positive voxels Negative voxels 

R

Table 2: Performance of logistic regression classification of diagnostic group

CBF feature

Mean ± SD

AUC Accuracy

Mean grey matter CBF 0.62 ± 0.13* 0.60 ± 0.11*

Quantitative CBF principal components 0.60 ± 0.12* 0.61 ± 0.10*

Relative CBF principal components 0.56 ± 0.12* 0.52 ± 0.10

AUC = area under the receiver operating characteristic curve; CBF = cerebral blood flow; SD = standard deviation.
*Indicates the 95% confidence interval does not contain 0.50.
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factors may subserve the group differences, reflected in the 
higher cerebral metabolic rate of oxygen consumption and 
preliminary data showing higher brain temperature among 
adolescents with BD compared with controls.49,50 On the 
other hand, numerous lines of investigation posit cellular 
and molecular mechanisms that could contribute to CBF 
differences, including cellular oxidative stress and metabol­
ism, vascular dysfunction and mitochondria function.47,48

We observed a significant within-BD association between 
mean grey matter CBF and current depression score. This is 
consistent with a recent study that found CBF reductions in 
the right lateral occipital, angular and middle temporal gyrus 
in relation to depression score.38 The current study also 
showed no association between CBF and mania score. We 
identified the principal components relevant to classification 
using forward stepwise regression, and used the AIC to as­
sess goodness-of-fit. In this way, we attempted to limit the 
number of model features to those principal components 
with higher explained variance. Although disease-related 
variability may be explained by principal components ac­
counting for a small fraction of total variance, the present ap­
proach was parsimonious. This approach avoided identify­
ing spurious relationships between diagnostic group and 
sample-specific variability (i.e., it offered regularization cap­
acity) as the AIC values were moderately variable across re­
peated cross-validation.

By combining principal components according to the re­
gression coefficients of the logistic regression, we obtained 
a single brain map, weighted by the principal components’ 
relevance in the classification problem. We used region-of-
interest analysis to study the group-related CBF differ­
ences underlying this pattern. The composite CBF pattern 
identified regions with higher CBF in BD, consistent with 
the existing literature, although this difference was not sig­
nificant. These regions included the cingulate gyrus and 
bilateral frontal pole, which have been previously identi­
fied in studies of CBF in youth BD; these regions contrib­
ute to reward processing in the brain.14,15,39 The composite 
pattern also showed a set of regions with significantly lower 
relative CBF among youth with BD, compared with healthy 
controls. These included the insular gyrus, frontal gyrus 
and the ventral and dorsal striatum, which are reward- and 
mood-related regions that are thought to be central to the 
neurobiology of BD. In particular, both functional and 
structural differences have been found in these regions 
among youth with BD, compared with controls.6,40,41 These 
findings of lower CBF did not emerge from previous studies 
and may be attributed to our multivariate analysis ap­
proach that yielded additional insight on the data. In con­
trast, previous studies used univariate analysis. We also 
used relative CBF in the region-of-interest analysis, 
whereas previous studies focused on quantitative CBF 
comparisons. We found decreased striatum CBF in the BD 
group; this finding provides some physiologic context for 
clinical and cognitive symptoms in BD, which may be re­
lated to altered dopamine signalling.41 Neuroimaging 
readouts such as brain structure, regional brain activation 
and functional connectivity have been used to classify 

adult patients with BD versus healthy controls or adults 
with other psychiatric disorders.42 One study showed that 
using MRI structure images and functional connectivity 
within the default-mode network and motor network had 
good performance in classifying BD subtypes and the 
number of episodes among adults with BD.42 However, 
there is a limited understanding of classifying adolescents 
with and without BD and using CBF as a marker. Our 
work thus represents an important step toward classifying 
different clinical samples and adds to the current know­
ledge of youth BD classification.

The fALFF maps did not meaningfully classify youth 
with BD and healthy controls in the current study. This 
finding is at odds with a meta-analysis showing altered 
fMRI features in BD and another study showing good per­
formance in classifying adult BD subtypes using functional 
connectivity data.42,45 Differences in the fMRI hemodynamic 
response have also been observed when comparing BD and 
schizophrenia groups.46 These findings suggest that fMRI-
based approaches can classify adults with or without BD, 
but we used an exclusively adolescent sample. One inter­
pretation of the current findings is that CBF data appear to 
be better suited to distinguish the 2 adolescent groups rela­
tive to the fALFF maps. More research on classification ap­
proaches and MRI-based data sources is warranted. Given 
the relative availability of fMRI data, it would be desirable 
to revisit the fMRI classification of adolescents with BD with 
a larger sample size.44

Limitations

It is important to note that the current study contrasted 
youth with BD with a nonclinical control group. A natural 
extension of this research would include additional clinical 
samples, for instance, to classify youth with BD, youth with 
unipolar depression and healthy controls. We cannot com­
ment on which principal component CBF features are most 
relevant to the classification. We did not consider various 
combinations of these features beyond the ordering defined 
by explained variance. Notably, participants with BD were 
in various mood states and had various comorbidities, and 
most were taking medications, which may lead to chal­
lenges of small sample sizes and an unbalanced classifica­
tion problem. In addition, we cannot rule out that group 
demographic differences were not a factor, despite adjust­
ing for age. The univariate approach in which we used 
global grey matter CBF for classification had the advantage 
of being relatively easy to implement. Multivariate meth­
ods have the advantage of incorporating CBF data across 
all brain regions of interest; a natural extension from the 
current study would be to include additional clinical mood 
data or incorporate additional clinical samples (e.g., uni­
polar depression). The ASL-based CBF imaging had some 
limitations. This technique affords moderate test–retest 
repeatability;43 however, youth tend to have high perfusion 
levels relative to adults, resulting in high-quality ASL im­
ages. Future studies could address intermediate psychiatric 
phenotypes, namely youth with unipolar depression.
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Conclusion

We applied multivariate CBF features to distinguish youth 
with and without BD. We showed that CBF enabled classifi­
cation with above-chance performance but is still suboptimal 
for clinical applications. A multivariate approach allowed ex­
ploration and explanation of the imaging features contribut­
ing to classification and found sets of regions with anoma­
lous CBF that have been previously implicated in BD. 
Altogether, ASL MRI provides a vascular imaging readout 
that can be used to classify participant groups using a multi­
variate framework. We envision the inclusion of CBF meas­
urements in future experiments aimed at developing quanti­
tative metrics to elucidate BD symptoms, course of illness 
and treatment response.
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