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Abstract

In magnetic resonance (MR) imaging, a lack of standardization in acquisition often causes pulse 

sequence-based contrast variations in MR images from site to site, which impedes consistent 

measurements in automatic analyses In this paper, we propose an unsupervised MR image 

harmonization approach, CALAMITI (Contrast Anatomy Learning and Analysis for MR Intensity 

Translation and Integration), which aims to alleviate contrast variations in multi-site MR imaging. 

Designed using information bottleneck theory, CALAMITI learns a globally disentangled latent 

space containing both anatomical and contrast information, which permits harmonization. In 

contrast to supervised harmonization methods, our approach does not need a sample population 

to be imaged across sites Unlike traditional unsupervised harmonization approaches which often 

suffer from geometry shifts, CALAMITI better preserves anatomy by design. The proposed 

method is also able to adapt to a new testing site with a straightforward fine-tuning process. 

Experiments on MR images acquired from ten sites show that CALAMITI achieves superior 

performance compared with other harmonization approaches.
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1. Introduction

Magnetic resonance (MR) imaging is widely used in clinical studies due to its soft 

tissue contrast, imaging flexibility, and non-ionizing acquisition. For the sake of analytical 

convenience, an MR image can be understood as a function (i.e., imaging equation) of 

the underlying anatomy and the associated imaging parameters. By applying different 

imaging equations or parameters, different MR contrasts of the underlying anatomy can 

be generated. It is commonplace for multiple MR contrasts of the same anatomy to be 

acquired in a single imaging session. For example, T1-weighted (T1 − w) images are typically 

used to achieve contrast between gray matter (GM) and white matter (WM) tissue, while 

T2-weighted (T2 − w) images are good at visualizing fluid-tissue contrast (Brown and et al., 

2014). However, the flexibility of MR imaging makes it difficult to standardize acquisitions 

from site to site, or even from scanner to scanner, which yields contrast variations in the 

resultant MR images, even among images intended to have the same contrast. Common 

reasons for this state of affairs include:

1. Pulse sequence differences. There are many ways to acquire T1 − w and 

T2 − w (and other weighted) images; each can yield the desired weighting but 

intensity contrast between tissue classes can still vary significantly. For example, 

magnetic-prepared rapid gradient echo (MPRAGE) and spoiled gradient echo 

(SPGR) are two common pulse sequences used for T1 − w imaging, and they 

usually have different contrast.

2. Differences in acquisition parameters. Even for the same pulse sequence, slight 

differences in acquisition parameters will yield a contrast difference. As shown 

in Fig. 1 (a)–(c), the three MPRAGE images were acquired using different 

parameters, and consequently have a different appearance.

3. Scanner differences. Variations in field strength, hardware components, 

manufacturer, software including reconstruction algorithms, and calibration 

(American College of Radiology, 2018) can have substantial impacts on the 

appearance of images.

The contrast variation from site to site makes it difficult for computer-assisted algorithms 

to provide consistent results in multi-site studies (Remedios et al., 2020). For example, a 

machine learning (ML) model trained on MPRAGE images from Site A is likely to fail on 

SPGR images from Site B. This can be formalized as a domain shift problem, where training 

images xtrain ∈ XA and testing images xtest ∈ XB acquired at Sites A and B are from two 

different domains XA and XB. It is worth noting that “domain ” does not exclusively mean 

“site ” or even “scanner ”. T1 − w images acquired from different sites are readily understood 

as coming from different domains. In this work, we also consider T1 − w and T2 − w images 

acquired from the same site to be from different domains. 1

1This is consistent with the computer vision literature where two images of the same scene under different lighting conditions are 
considered to be from different domains
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To address the domain shift problem, two broad categories of harmonization approaches 

have been proposed, namely statistical-based harmonization (Fortin et al., 2017; Garcia-Dias 

et al., 2020; 2020; Pomponio et al., 2020; Zhu et al., 2019) and image-level harmonization 

(Dewey et al., 2019; Liu et al., 2021; Zuo et al., 2021). These two types of harmonization 

differ fundamentally in how the data is used. Statistical-based harmonization methods focus 

on image derived measurements (IDMs), such as regional volumes (Zhu et al., 2019). 

In order to generate these IDMs, statistical-based harmonization requires another method 

(i.e., segmentation) (Dewey et al., 2019). Therefore, statistical-based harmonization can be 

viewed as a post-processing step, aimed at correcting the variations within a segmentation 

method caused by the domain shift. However, when the domain shift is too severe, the 

segmentation variations cannot be corrected by these statistical models. In this paper, we 

focus on image-level harmonization, of which the input and output are both images, and 

the goal is to reduce the pulse sequence based contrast variations prior to most other 

image processing. We note that artifacts such as gradient distortion are outside the scope 

of the proposed method and to our knowledge outside the scope of other image level 

harmonization methods. However, the effects of such artifacts could potentially be corrected 

using statistical-based harmonization.

As an image-to-image translation (IIT) technique, MR image harmonization (Dewey et al., 

2018; 2019) alleviates domain shift by learning an intensity transformation f( ⋅ ) between 

mismatched domains, e.g., fA( ⋅ ):XA XB. While f( ⋅ ) manipulates image intensity, the 

underlying anatomy (geometry, tissue, etc.) should not be changed. MR harmonization can 

be performed in supervised and unsupervised ways, depending on the available training 

data. In supervised harmonization, the same anatomies are imaged across multiple sites as 

a requirement —this is known as traveling subjects or inter-site paired data. With inter-site 

paired data, pixel-to-pixel error is commonly used to train f( ⋅ ), e.g., xB − fA xA 2, where 

xA and xB are images from domains XA and XB, respectively. Recent work by Dewey et al. 

(2018, 2019) proposed a supervised harmonization approach that translates an MR image 

across sites with only a small number of traveling subjects. The inter-site paired data aspect 

of supervised harmonization is a serious limitation to its use, as acquiring inter-site paired 

data for large numbers of sites is time-consuming, expensive, and logistically untenable. 

Moreover, supervised harmonization lacks generalizability as the harmonization is limited to 

the sites used for training.

On the other hand, unsupervised harmonization does not need inter-site paired images. 

Mathematically, the goal is to approximate the joint distribution p xA, xB  from marginal 

distributions p xA  and p xB  of domains XA and XB. There are three main challenges in 

unsupervised harmonization. First, the absence of inter-site paired images means pixel-to-

pixel error cannot be easily calculated. In general, deep learning (DL) based harmonization 

relies on domain-specific models to translate images across different domains. For 

example, CycleGAN (Zhu et al., 2017) translates images from domains XA to XB by 

learning a translation model fA( ⋅ ):XA XB and a discriminator DB( ⋅ ):XB ℝ, mean-

while, an inverse translation model fB( ⋅ ):XB XA and a counter-domain discriminator 

DA( ⋅ ):XA ℝ are learned jointly. Since the harmonization performance heavily depends 

on the discriminators’ “judgement ”, geometry shift is a common drawback of DL based 
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unsupervised harmonization methods. Second, due to the use of domain-specific models 

(e.g., discriminators), current harmonization approaches do not scale well in multi-site 

imaging; CycleGAN (Zhu et al., 2017) needs O N2  intensity transformation models and 

N discriminators in an N-site harmonization task. We note that some works such as 

StarGAN (Choi et al., 2018) have a unified structure but lack interpretability in the learned 

features, which makes it difficult to understand the model’s behavior. Third, according 

to coupling theory (Lindvall, 2002), there are infinitely many possible joint distributions 

given two marginal distributions. Therefore, further constraints are needed to reduce the 

number of possible solutions. Cycle consistency is a commonly assumed constraint in 

unsupervised harmonization. UFDN (Liu et al., 2018), CycleGAN (Zhu et al., 2017), and 

UNIT (Liu et al., 2017) assume an identity transformation after applying a forward and an 

inverse transformation, i.e., I = fA fB( ⋅ ) = fB fA( ⋅ ) . Unfortunately, there is no theoretical 

guarantee that these additional constraints lead to a meaningful and unique solution (Cohen 

et al., 2018; Liu et al., 2017).

In addition to the three challenges in unsupervised harmonization, most existing 

harmonization works do not perform well on previously unseen sites. This means that 

harmonization, which is designed to alleviate domain shift in downstream tasks, suffers from 

domain shift it-self. When there is a new site involved, a re-training that includes images 

from both previous sites and the new site is typically required. This could potentially limit 

the applicability of those harmonization methods as transferring data across sites in medical 

imaging is often restricted. Fortunately, the recent development of unsupervised domain 

adaptation (UDA) enables DL models to adjust to unseen domains during testing. In general, 

a UDA model learns from a source domain with labeled data then applies itself to a target 

testing domain with unlabeled data (He et al., 2020b; Kamnitsas et al., 2017; Saito et al., 

2018; Varsavsky et al., 2020). In IIT, an intensity translation model learns to map image data 

across domains; to extend this, UDA allows a pre-trained model to adjust itself to previously 

unseen testing domains without access to the training data used to train the original model. 

He et al. (2020b, 2021) used a feature autoencoder trained in the source domain as a detector 

of domain shift, assuming the feature autoencoder will produce low reconstruction error 

on the source domain data and high reconstruction error in the new domain. Thus, at test 

time, the reconstruction error produced by the autoencoder guides the model to adjust its 

parameters until the reconstruction error falls below a threshold.

Jog et al. (2015) proposed a model-based approach to address MR harmonization that 

generates synthetic inter-site paired images to train f( ⋅ ). The approach assumed knowledge 

of the true T1, T2, and proton density (PD) maps of a set of atlas images, where T1 and T2

represent the longitudinal relaxation time and transverse relaxation time, respectively. The 

model first estimates acquisition parameters (e.g., echo time, flip angle, etc.) using prior 

knowledge of the imaging equation, then applies the estimated acquisition parameters to 

the atlas maps to generate synthetic inter-site paired images for harmonization. However, 

estimating the true acquisition parameters can be challenging and inaccurate. Additionally, 

the approach depends on random forests which can be significantly improved upon with 

current DL methods. In recent years, researchers have explored DL based disentangled 

representation learning approaches in medical imaging (Chartsias et al., 2019; Ouyang et al., 
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2021), aiming at disentangling anatomical and contrast information from medical images. 

Recently, Dewey et al. (2020) proposed an unsupervised MR harmonization approach which 

“disentangles ” the anatomical and contrast representations from the input MR images. It 

can harmonize MR images across sites by combining the anatomical representation from the 

source site with the contrast representation from the target site. However, as we discuss in 

Section 2.2, this approach could end up learning a locally disentangled latent space that fails 

to perform multi-site harmonization. We show that by incorporating information bottleneck 

theory (Tishby et al., 1999), we can improve upon this work and build a universal latent 

space of anatomy and contrast information through better disentanglement.

Based on existing work (Dewey et al., 2020; Zuo et al., 2021), we propose an unsupervised 

harmonization approach, CALAMITI (Contrast Anatomy Learning and Analysis for 

MR Intensity Translation and Integration), that overcomes common drawbacks of both 

supervised and unsupervised harmonization. CALAMITI does not require inter-site paired 

data. Instead, it takes advantage of the routinely acquired multi-contrast images of the 

same subject within each imaging session (called intra - site paired data). Therefore, pixel-

to-pixel error can be penalized during training. Once trained, CALAMITI does not need 

intra-site paired images, as it is evaluated on a single image. Furthermore, CALAMITI is 

informed by information bottleneck theory to learn a globally disentangled latent space 

of anatomy and contrast information. The model has a unified structure for multi-site 

harmonization; thus, the model size does not grow with the number of sites. Finally, 

CALAMITI contains certain aspects of UDA approaches and is able to adapt itself to 

a new testing site using a straightforward fine-tuning. We evaluated CALAMITI using a 

variety of datasets including the Baltimore Longitudinal Study of Aging (BLSA) dataset 

(Resnick et al., 2000; Thambisetty et al., 2010) as well as the publicly available IXI 2 and 

OASIS3 (LaMontagne et al., 2019) datasets to show its broad applicability. Both qualitative 

and quantitative results show that the proposed method achieves superior performance in 

harmonization compared to other unsupervised MR harmonization approaches. In addition 

to the aforementioned contributions to harmonization, we also propose a fusion network 

to achieve better slice-to-slice consistency in harmonized images. Our approach yields a 

statistically significant improvement in the consistency of brain structure segmentation in 

multi-site imaging. Furthermore, we demonstrate how the contrast latent space, arising from 

disentanglement, can be used beyond harmonization.

2. Method

2.1. The disentangling framework

CALAMITI uses intra-site paired MR images from multiple sites for model training. 

Specifically, T1 − w and T2 − w images of the same subject are used to do paired T1-to-T2

synthesis (Roy et al., 2013; Zuo et al., 2020)—i.e., supervised IIT —within each site. Here, 

we emphasize the relationship between “site ”, “domain ”, and “MR contrast ”. Given Sites 

A and B in training, there are four domains XA1, XA2, XB1, and XB2 (shown in Fig. 2), 

where an alphabetical index denotes the site (Site A or B) and a numerical index denotes 

2The IXI Brain Development Dataset downloaded from https://brain-development.org/ixi-dataset/.
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the different contrasts (T1 − w and T2 − w, respectively). Since the model is trained to do 

supervised IIT within each site, no extra constraints (e.g., cycle consistency) are needed, and 

pixel-to-pixel accuracy can be used to avoid the geometry shift problem.

The proposed framework is shown in Fig. 3. It has an anatomical encoder (Eβ), a contrast 

encoder (Eθ), a decoder (fdec), and a β-discriminator (Dβ). We show the role of each network 

component in this section and the implication of Dβ in Section 2.2. During training, Eβ

and Eθ extract anatomical (β) and contrast information (θ), respectively, from input images 

x and x′. The images x and x′ share the same contrast, but cover different portions of 

the anatomy. This training strategy prevents the contrast representation θ from capturing 

anatomical information, and is achieved by selecting different slices of the same volume. 

The learned contrast representation θ is a vector with a much lower dimension than x′. In 

CALAMITI, we assume x = fdec(θ, β), which means that the decoder fdec( ⋅ , ⋅ ) needs two 

pieces of information, θ and β, to generate a synthetic image. Since β is forced to capture 

the common information (which is anatomy) between T1 − w and T2 − w images, fdec( ⋅ , ⋅ )
seeks contrast information from θ. Since the only “useful ” information in x′ to synthesize 

x is the common contrast, we would expect θ to learn contrast information during training. 

To prevent β from capturing contrast information, we implemented the same approach as 

(Dewey et al., 2020; Liu et al., 2020), where β is a one-hot encoded multi-channel image 

generated by a Gumbel-softmax layer. As mentioned in (Chartsias et al., 2019), the one-hot 

encoding restricts the capacity of β; this, in conjunction with our training scheme, promotes 

only essential anatomical information being captured in β.

Within each site (e.g., Site A), since xA1 and xA2 share the same anatomy, we want the learned 

anatomical representations βA1 and βA2 to be the same. We encourage this β similarity during 

training in two ways. First, we employ a β similarity loss (Lβ) between the two β’s and, 

second, we implement a random selection process between βA1 and βA2 before decoding. 

The random selection operator makes a choice between βA1 and βA2 for each β channel. 

The one-hot encoding, the β similarity loss, and the random β swapping, taken together, 

discourage β from capturing undesired contrast information from the input images. Before 

decoding, the θ vector is broadcast to have the same height and width as the β map. The 

broadcast θ is then concatenated with the randomly selected β in the channel dimension, 

where β is the anatomical representation after random selection. The concatenated variable 

is then sent to the decoder, fdec, and the value of θ determines the contrast of the synthetic 

images. It is important to note that the same encoder and decoder networks are applied to all 

the sites. After the model is trained, cross-site harmonization can be achieved by combining 

a β from a source site with a θ from a target site.

The architectures of the networks in CALAMITI are shown in Fig. 4. Eβ has a U-Net 

(Ronneberger et al., 2015) structure with four levels. fdec has a similar architecture as Eβ, 

with the exception that fdec does not have an output block and the number of channels of 

the remaining blocks is doubled. Like the variational autoencoder in Kingma and Welling 

(2013), θ is assumed to have a Gaussian distribution with learnable mean and standard 
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deviations, i.e., θ ∼ N μθ, σθI . Therefore, Eθ takes an input MR image x′ and produces μθ and 

log σθ as outputs. Our β-discriminator, Dβ, is a one-class discriminator that classifies whether 

an input β is from Site A or not. Therefore, the number of output channels of Dβ is 1. Details 

and implications of our β-discriminator, Dβ, are described in Section 2.2.

2.2. Learning a global anatomical space

Since training is conducted by doing supervised IIT within each site, it is possible that, 

without coordination, Eβ will learn a distinct β space for each site. We refer to a site-specific 

β space as a locally disentangled β space. In this case, combining β and θ from different sites 

would be non-ideal. To avoid this, we want to encourage Eβ to learn a consistent anatomical 

representation across sites. In other words, β and θ should be globally disentangled, which 

leads to our use of a discriminator Dβ applied to the β spaces. The goal of the discriminator is 

to identify whether β captures site-specific information and it is implemented as a one-class 

discriminator that classifies whether an input β is from Site A or not. In Section 3.2, we 

show that Dβ also enables our model to adapt itself to a new testing site. We also tried using 

a multi-class β-discriminator that classifies the site index directly. However, this approach 

does not permit domain adaptation and, also, its performance is not significantly different 

from the one-class Dβ. Thus, in the remainder of the paper we focus exclusively on the 

one-class discriminator Dβ.

Our β-encoder, Eβ, tries to “fool ” Dβ by providing similarly distributed β’s across sites. In 

this way, our Eβ and Dβ together form an adversarial training scheme on the latent space β. 

The minimax training goal between Eβ and Dβ is given by

min
Eβ

max
Dβ

ExA logDβ Eβ xA + ExA log 1 − Dβ Eβ xA , (1)

where the subscript A denotes MR images or anatomical representations from sites other 

than Site A. Accordingly, the loss functions of Dβ and Eβ are defined as

LDβ = − EβA logDβ βA − EβA log 1 − Dβ βA (2)

LEβ = ExA logDβ Eβ xA + ExA log 1 − Dβ Eβ xA , (3)

where β = Eβ(x).

The objective of our Dβ is different from traditional IIT methods. In other unsupervised 

IIT methods, such as CycleGAN (Zhu et al., 2017) and UNIT (Liu et al., 2017), 

discriminators typically function on the image space. In our proposed method, Dβ is a 

latent space discriminator, which has several advantages. First, our unified network structure 

including Dβ means the model size remains constant when the number of sites increases. 

Compared with CycleGAN (Zhu et al., 2017), which needs dedicated site-wise generators 

and discriminators, CALAMITI offers a significant saving on the number of parameters 

—potentially enabling an infinite number of sites to be used within the framework. Second, 

CALAMITI is based on the assumption that an observed MR image is a function of the 
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underlying anatomy (β) and imaging parameters (θ). Regularizing the β space instead of the 

image space helps our decoder fdec act like a universal imaging equation that generalizes 

to various anatomies and contrasts. Third, as we show in Section 2.4, the one-class 

configuration of Dβ enables our model to adapt itself to a new testing site with a fine-tuning 

on just a subset of the testing site images (without any data from the original training sites). 

Table 1 provides a summary comparison of multiple unsupervised IIT methods, noting the 

capabilities of the proposed work in comparison to previous works.

2.3. Information bottleneck and disentangling

In our network structure, Eθ, Eβ, and fdec form a conditional variational autoencoder (CVAE) 

(Sohn et al., 2015) in which β acts as a condition and θ is the bottleneck latent variable. 

Compared with the original CVAE structure in Sohn et al. (2015), the major difference is 

that the condition variable β is not connected to the CVAE encoder Eθ. In this section, we 

show that our network structure is a special case of the CVAE due to the disentangling 

objective, and our model can be understood as solving a conditional information bottleneck 

problem.

Information bottleneck (IB) theory, originally proposed by Tishby et al. (1999), aims at 

learning compressed representations by solving a constrained optimization problem. In 

IB theory, there is an input variable X (e.g., MR image) and a task variable Y  (e.g., a 

classification label), and the goal is to learn a latent representation Z, such that Z captures 

the maximal information about the task Y  and minimal information about the input X, i.e.,

Z∗ = argmin
Z

I(X; Z) − λI(Y ; Z), (4)

where I( ⋅ ; ⋅ ) denotes mutual information, and λ is a hyperparameter. In recent years, 

IB theory has been used in understanding neural networks’ behavior and disentangled 

representation learning (Dai et al., 2018).

Theorem 1.—It can be shown that optimizing the proposed network structure is equivalent 

to solving a conditional information bottleneck problem, i.e.,

θ∗ = argmin
θ

I X′; θ − λI(X; θ ∣ β) . (5)

The proof of Theorem 1 is provided in Appendix A. An intuitive understanding of Eq. (5) 

is that we would like to learn a compressed representation θ, such that θ carries minimum 

information about the input image X′, while the conditional mutual information between θ
and the target image X is maximized. Since the only common information between X and X′
is contrast, we would expect θ to capture contrast information after training.

Eq. (5) can be re-organized as a Kullback–Leibler (KL) divergence term and a 

reconstruction term, and optimized directly as follows
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θ∗ = argmin
θ

DKL p θ ∣ x′ p(θ) − λEp θ ∣ x′ [logp(x ∣ θ, β)], (6)

where p(θ) is assumed to be N(0, I). p θ ∣ x′  and p(x ∣ θ, β) can be modeled using a 

probabilistic encoder (Eθ) and decoder (fdec), respectively. Since both p θ ∣ x′  and p(θ) are 

assumed to be Gaussian distributed, there is a closed-form| solution to the KL divergence 

term, and the expectation term in Eq. (6) is estimated using l1 loss. It is worth mentioning 

that we could also use θ as a condition variable and β as the latent bottleneck variable of the 

CVAE. However, in that case, calculating

DKL[p(β ∣ x) ∥ p(β)]

for categorical distributions —the one-hot encoded β follows a categorical distribution —

would be difficult.

The loss function for training Dβ is given by Eq. (2). It follows from Eq. (6) and the 

assumptions about p θ ∣ x′  and p(x ∣ θ, β) that the loss function for the other network 

components (i.e., Eβ, Eθ, and fdec) includes two reconstruction terms (l1 and perceptual 

(Johnson et al., 2016) losses), a KL divergence term, a β similarity loss (l1), and an 

adversarial loss for Eβ, i.e.,

L = λ1 x − x 1 + λ2 VGG(x) − VGG(x) 1
+λ3DKL p θ ∣ x′ ∥ p(θ)
+λ4 β1 − β2 1 + λ5LEβ,

where LEβ is the adversarial loss for the β-encoder given in Eq. (3). VGG(x) − VGG(x) 1

calculates the perceptual loss (Johnson et al., 2016) between x and x and λi, i = 1, …, 5, 

are hyperparameters. According to our experiments, we found that our model is not very 

sensitive to the choice of hyperparameters. Except for the KL divergence and the perceptual 

loss, the other losses are weighted to achieve a similar magnitude as the l1 reconstruction 

loss. We also conducted an ablation study, which we show in Section 3.2, to explore the 

usefulness of the perceptual loss.

2.4. Domain adaptation

When a pre-trained ML model is applied to a testing domain that is different than the 

training domain, a retraining that includes data pools from both previous and new domains 

is often required. However, for medical images, training and testing data are likely to come 

from different sources, and data sharing is often restricted. So we ask the question: how 

can we adapt our algorithm to a new domain when we do not have access to any of the 

original training data? It turns out that, because of its design, CALAMITI can be adapted to 

a new testing domain by applying fine-tuning using just a small subset of the testing domain 

images.

Specifically, suppose CALAMITI was previously trained on Sites A and B and then we 

want to apply the network to data from Site C. To do this, we use a subset of images from 
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Site C and carry out regular training —i.e., supervised IIT within Site C—except that only 

the output block of Eβ and the fully connected layers of Eθ (see Fig. 4) are allowed to be 

updated. Intuitively, this fine-tuning procedure produces a local β space for Site C, since 

Sites A and B are not involved. However, since our DB is trained to decide whether an input 

β is from Site A or not, and it is fixed during fine-tuning, DB will produce a high cost for 

Eβ until the newly learned βC matches the distribution of the β’s from Site A. After this fine 

tuning, harmonization from Site C to Site A can be done by first calculating βC on a given 

image from Site C using the fine-tuned β-encoder, Eβ
′ , and replacing the computed θC with an 

average θA as input to the decoder. In fact, data from Site C can be harmonized to any site 

included in the original training by replacing its computed θC with a desired θ value.

2.5. 3D fusion network

Due to limited GPU capacity, CALAMITI harmonizes images in 2D. In order to achieve 

better slice consistency, we propose a fusion network that combines multiple harmonized 

2D slices into a single 3D volume. The fusion network is trained after the harmonization 

network. As shown in Fig. 5 (a), Step 1 is the training of the harmonization network using a 

pool of multi-site multi-orientation 2D slices (x′ are also used in training the harmonization 

network but not shown here. See Fig. 3 for more details.). Note that for each 3D volume, 

only the center 80 axial slices, 100 coronal slices, and 100 sagittal slices are used in 

training. In Step 2, the weights of the harmonization network are frozen to train the 3D 

fusion network. As shown in Fig. 5 (b), the data to train the 3D fusion network are the 

same as those used to train the harmonization network. However, this time each 3D volume 

is decomposed into axial, coronal, and sagittal slices, and all slices are then sent to the 

pre-trained harmonization network to generate a set of synthetic 2D images. After-wards, 

2D synthetic images of the three orientations are stacked into three volumes. The three 

stacked synthetic volume images are then sent to the fusion network to create a final fused 

image. Meanwhile, an l1 reconstruction loss is calculated between the fused image and the 

original 3D image to train the fusion network. In contrast to the harmonization network, we 

train separate fusion networks for T1 − w and T2 − w images. However, for each contrast our 

fusion network has a unified structure design for all sites. We note that there are other ways 

to combine 2D slices into 3D volumes. In (Dewey et al., 2018; 2019), instead of using a 

fusion network to combine the three stacked 3D volumes, researchers used the median value 

calculated at each voxel as the intensity value of the final fused image. Detailed comparison 

between the median filter approach and the proposed fusion approach is provided in Section 

3.2.

3. Experiments

3.1. Materials and data preprocessing

Three MR datasets acquired from 10 sites (scanners) are used to evaluate the proposed 

harmonization method. Specifically, there are two sites from the IXI brain dataset (Sites A
and B), four sites from the OASIS3 dataset (LaMontagne et al., 2019) (Sites C thru F), 

and four sites from the BLSA dataset (Resnick et al., 2000; Thambisetty et al., 2010) (Sites 

G thru J). Scanner information is provided in Table 2. All subjects used in this study are 
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healthy controls. In the OASIS3 dataset, there are longitudinal scans with small intervals 

between the two visits; MR images from both visits are held out as traveling subjects for 

quantitative evaluation. In particular, for Sites C and D, there are 10 traveling subjects with a 

gap between scans of 162 ± 72 days, and for Sites E and F , there are 10 subjects with a gap 

between scans of 13 ± 5 days.

The data preprocessing steps include N4 inhomogeneity correction (Tustison et al., 2010), 

super-resolution (Zhao et al., 2020) for 2D acquired scans, registration to 1mm3 MNI 

space, and white matter peak normalization (Reinhold et al., 2019). After preprocessing, 

each volume has spatial dimension of 224 × 192 × 192. Each volume image is then 

zero-padded to 224 × 224 × 224 to guarantee that the multi-orientation slices used in 

training have the same dimensions. We used 10 subjects from each site to train both the 

harmonization network and the fusion network. In our implementation, our batch size is 8, 

and the optimizer is Adam. Our evaluations were separately conducted on multiple varieties 

of GPUs, including an Nvidia Quadro RTX 8000 (48 GB memory) and an Nvidia Tesla M40 

(24 GB memory).

3.2. Qualitative and quantitative evaluation

In this experiment, we chose θ to be a two-dimensional vector and β to be a four-channel 

one-hot encoded image. These values were chosen empirically after some experimentation. 

Fig. 6 provides examples from our 10-site harmonization experiment. T1 − w images are 

harmonized to each of Sites A, E, and J. The contrast change after harmonization can 

better be visualized in the GM, WM, and adipose. For example, the GM and WM 

contrast decreases after harmonizing the MR image of Site J to Site A, as highlighted 

by the yellow boxes. Harmonized images of the same subjects from a sagittal view 

are provided in Appendix B. Unless stated otherwise all the results of CALAMITI are 

generated using the 3D implementation described in Section 2.5. Our experiments have 

focused on the T1 − w images. With regard to the T2 − w images, we achieve similar image 

quality as the T1 − w images. In Appendix C, we provide a visualization of T2 − w images 

harmonization. Fig. 7 provides a visualization of a four-channel β from paired T1 − w and 

T2 − w images. Interestingly, three channels of β roughly capture CSF-like, GM-like, and 

WM-like structures, and the remaining channel is the background. We also notice that the 

β’s of the T1 − w and T2 − w images are not entirely identical. We view this as a limitation of 

the current method and we discuss this in more details in Section 4.2. Fig. 8 (b) provides a 

scatter plot of the θ space for all the testing images from the 10 sites. As can be seen from 

the figure, MR images with similar acquisition parameters are visually similar and have 

similar θ’s whereas images acquired using different magnetic field strengths (i.e., 1.5T vs. 

3T) are separated in θ space (especially for the T1 − w images shown using the circular disk 

markers). For example, Sites D and E have identical acquisition parameters and, thus, it is 

re-assuring to see that the θ clusters of the two sites overlap in Fig. 8. On the other hand, 

the 10 held-out traveling subjects from Sites E and F  have distinct θ clusters, despite their 

shared anatomies and very similar contrasts. This further supports our claim that the learned 

θ and β are properly disentangled. Similar θ clustering can be observed for the T2 − w images. 

Additionally, since our Dβ produces the same adversarial loss for Eβ of all non-Site A images, 
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the separation in θ space of each site is completely data-driven. In Fig. 8 (c), 10 example 

images from the 10 sites are harmonized to Site A. The harmonized images are then sent to 

Eθ to calculate a θ value. As shown in the figure, not only does the contrast of MR images 

becomes similar after harmonization, but the θ values are also clustered around the target θ
that is used in harmonization.

Since our networks form a CVAE and our decoder is trained to act like a “universal ” 

imaging equation, when we interpolate our θ space, we can generate different contrasts of 

MR images. As shown in Fig. 9, two groups of MR images are generated by interpolating 

within the θ space. On the right, a β variable is extracted from a T1 − w image denoted by 

the purple dot, then 8 different θ values combined with the extracted β are fed into the 

decoder to generate corresponding synthetic MR images. An inter-site contrast transition can 

be observed from the 3 × 3 image grid. As θ moves from left to right, synthetic images 

show more GM/WM contrast. As θ moves from top to Sites C and G, the fat tissue intensity 

becomes brighter, similar as the original images of Sites C and G (see Fig. 6). On the 

left of Fig. 9, a similar interpolation is explored with the focus being the transition area 

between the T1 − w and T2 − w contrasts in the θ space. There are some θ values that are 

located on the apparent boundary between the two contrasts. For those θ’s, the contrast of 

the corresponding synthetic images are also between T1 − w and T2 − w. Note that in Fig. 9 

we use the median filtering approach described in (Dewey et al., 2018; 2019) to generate 

3D synthetic images from 2D slices. This is because there is no real MR image with the 

interpolated θ value to train our fusion network.

To quantitatively evaluate the proposed harmonization approach, we calculated the structural 

similarity index measurement (SSIM) (Wang et al., 2004) and peak signal to noise ratio 

(PSNR) value using the held-out traveling subjects. The SSIM between two grayscale 

images x and y is defined as

SSIM(x, y) = 2μxμy + c1 2σxy + c2

μx
2 + μy

2 + c1 σx
2 + σy

2 + c2
,

where μx, μy, σx
2, σy

2, σxy are the mean values of the images x and y, the variance of the 

images x and y, and the covariance of x and y, respectively. c1 and c2 are used to stabilize 

the calculation. The PSNR between a 3D image x and a reference image y with dimensions 

M × N × K is defined as

PSNR(x, y) = 10 log10
maxI

2

MSE ,

where MaxI denotes the maximum possible intensity value of the image, and MSE denotes 

the mean squared error between x and y, i.e.,

MSE(x, y) = 1
M N K ∑

m = 1

M
∑

n = 1

N
∑

k = 1

K
[x(m, n, k) − y(m, n, k)]2 .
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In Table 3, we show these quantities for CALAMITI and three other unsupervised 

harmonization approaches: 3D histogram matching (Hist), CycleGAN (Zhu et al., 2017), 

and Dewey et al. (2020). To investigate the usefulness of the perceptual loss and the 

proposed 3D fusion network, we also conducted an ablation study. Both SSIM and PSNR 

were calculated on 3D volumes. Note that although CALAMITI supports a pseudo 3D 

implementation, both CycleGAN and Dewey et al. methods are built on 2D. To provide 

a direct and fair comparison, we use the same strategy proposed in Dewey et al. (2018, 

2019), where the authors use three-orientation 2D slices in model training, and stack slices 

from axial, coronal, and sagittal views to obtain three 3D volumes. The three volumes are 

then combined into one by calculating the median value of each voxel, we denote this by 

“median ”. We report results of CALAMITI using both “median ” and the proposed 3D 

fusion network (which we denote as “fusion ”). We also report the results of CALAMITI 

with and without the perceptual loss in training. Paired Wilcoxon signed rank tests were 

conducted between the default CALAMITI (perceptual and fusion) and the remaining 

comparison methods, including no harmonization (“no har ”). Except for the measurements 

indicated by †, the proposed method achieves significant improvements (p < .05, N = 10) 

over the comparison methods (In this comparison, the null hypothesis is that the difference 

in SSIM or PSNR between the two methods has a zero median.)

There are some interesting observations in our ablation study. First, the proposed 3D 

fusion network significantly improves harmonization performance in most cases, as can 

be observed from the fifth row and the last row in Table 3. Second, the perceptual loss does 

not have significant benefits to the final harmonization performance (last two rows of Table 

3), which is surprising to us. However, the network converges faster with the perceptual loss, 

as we show in Appendix D.

3.3. Domain adaptation

Fig. 10 provides a visual comparison before and after domain adaptation (DA). The goal is 

to harmonize images from Site C to Site D using a model trained on Sites A and D. We note 

that the clusters for Sites A, C, and D are separate in Fig. 8; the example images from Sites 

C and D shown in Fig. 10 (a) and (e), respectively, illustrate the differences in appearance 

of T1 images from these sites. We show results from three different harmonization strategies 

in Fig. 10. In Fig. 10 (b), we show a result from direct harmonization without DA. Like 

most ML approaches, without any adjustment the harmonization model is unlikely to handle 

the domain shift between the training and testing. For example, note the appearance of 

the cerebellar region highlighted by the red arrow. The result on the same image after 

harmonization using DA is shown in Fig. 10 (c). As described above, DA is achieved by fine 

tuning on a subset of Site C images without any images from Sites A and D. For comparison, 

we show in Fig. 10 (d) the result obtained on this test image after retraining using data from 

all three sites. As can be expected, a retraining produces the most satisfactory harmonization 

result. But when such retraining is not possible, fine tuning using domain adaptivity provides 

a better result than application of the original network.

To quantitatively evaluate the domain adaptivity, we used the held-out traveling subjects 

from Sites C and D. In each experiment, images from only one of the two sites combined 
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with Site A was included in training. During testing, the model was fine tuned on the 

unseen site (either Site C or D) using the strategy described in Section 2.4. We learned from 

Fig. 10 that even without fine tuning CALAMITI shows some generalizability capability. 

Therefore, we applied two strategies to prevent a drastic change in network weights during 

fine tuning. First, we applied a lower learning rate (1∕5 th) in fine tuning than the original 

training. Second, only a fraction of Eβ and Eθ parameters are updated (see Section 2.4 for 

more details). Note that Sites E and F  were not included in the evaluation because they have 

similar acquisition parameters and contrasts and the model generalizes well in this case. This 

is also reflected in Fig. 8, where θ values of Site E and F  are more closely clustered than 

those of Sites C and D. Results in Table 4 show significant improvements (p < .05, N = 10) 

after DA using a paired Wilcoxon signed rank test, where the null hypothesis is that the 

difference of SSIM or PSNR between the two methods are of zero median.

3.4. Segmentation consistency

To show that CALAMITI alleviates segmentation inconsistency caused by inter-site contrast 

variations, we applied SLANT (Huo et al., 2019), a deep learning based whole brain 

parcellation algorithm, to both the original and harmonized MR images. The original output 

of SLANT contains 133 labels including the background. For simplicity of reporting, the 

SLANT labels were merged into background and nine other labels: ventricles, cerebellum 

GM, cerebrum GM, caudate, thalamus, puta-men, brainstem, cerebellum WM, and cerebrum 

WM. The images used in this experiment are the traveling subjects from Sites C /D and E /F , 

and therefore we would expect SLANT to produce the same segmentation result for each 

pair of inter-site scans. From left to right in Fig. 11, we have the Site C acquisition, the 

Site D acquisition, and the harmonized (from C to D) image, with the T1 − w MR images 

on the bottom and corresponding SLANT images above. We observe that, although the 

MR images are from the same subject, the SLANT results are different due to the contrast 

variation across sites. As highlighted by the yellow boxes, SLANT produces more consistent 

segmentation results on the harmonized image compared with the original unharmonized 

image. That is, the right-most segmentation image more closely resembles the center 

segmentation than the left-most segmentation.

To quantitatively evaluate the effects of harmonization on segmentation, we performed an 

experiment using the two sources of traveling subjects. In each experiment, both Dice 

coefficient and percentage volume difference (PVD) were calculated. The Dice coefficient 

between two binary masks is defined as

Dice(A, B) = 2 A ∩ B
A + B ,

where A and B are the binary masks for a given label, and ⋅  denotes the number of voxels. 

PVD between two binary labels with 1 mm 3 voxels is defined as

PVD(A, B) = A − B
B × 100% .
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Note that there is no ground truth labels in this segmentation task, and the goal is to evaluate 

the segmentation consistency before and after harmonization. For no harmonization (“no 

har ”), A and B represent the segmentation labels of the original MR images from the 

source site and the target site, respectively. In comparing different harmonization results, A
represents segmentation labels of harmonized images from the source site to the target site, 

and B represents segmentation labels of self-reconstructed images from the target site. This 

is to reduce other effects (e.g., noise levels) that are irrelevant to contrast. If harmonization 

improves segmentation consistency, we could expect an increased Dice coefficient and a 

PVD that is smaller in magnitude.

Our first experiment involves harmonization from Site C to Site D. As shown in Table 2 

and Fig. 6, the two sites have quite different acquisition parameters and contrasts, where 

Site C has worse GM/WM contrast than Site D. As shown in the top row of Fig. 12, 

an overall trend of increased Dice coefficient and closer-to-zero PVD can be observed 

after applying the proposed method. Asterisks in the figure indicate statistical significance 

(p < .05, N = 10) with paired Wilcoxon signed rank tests between the proposed method and 

the others. The null hypothesis is that the difference between two measurements is drawn 

from a distribution with zero median. These results show that CALAMITI has significantly 

higher Dice coefficient than no harmonization in 8 out of 9 labels; it also outperforms 

the comparison methods in most labels. CALAMITI also shows improvements over no 

harmonization and other methods in most regions, although no statistical differences are 

observed. Results for the thalamus and the cerebrum WM are of particular interest because 

SLANT tends to yields larger volumes than the locally-trained results when no DA is carried 

out. CALAMITI harmonization yields PVDs that are closer to zero.

Our second experiment considers a harmonization scenario in which the two sites have 

similar acquisition parameters and contrasts (see Sites E and F  in Table 2 and Fig. 6). We 

make three observations about the resulting Dice and PVD plots, which are shown on the 

bottom row of Fig. 12. First, without harmonization (“no har ”), all 9 labels have relatively 

high Dice coefficients and low absolute PVD values compared with the top row of Fig. 

12; this is expected due to the similarity in image contrasts in the two sites. Second, using 

Wilcoxon tests as in the previous experment, we observe that there are 4 out of 9 labels 

showing significant differences. Since all of these differences favor CALAMITI, we can 

maintain that for MR images with similar acquisition parameters and contrasts, the proposed 

method can still boost segmentation consistency. Third, although CALAMITI is built upon 

Dewey et al.’s method (Dewey et al., 2020), it shows significant improvements over (Dewey 

et al., 2020) in multiple measurements. We hypothesize that the improvements are due to the 

globally disentangled latent space, the fusion network, and the IB theory used in our model 

design.

4. Discussion and future work

4.1. Discussion

In this work, we proposed CALAMITI, a new method for site-level MR harmonization. 

CALAMITI is a paradigm shift away from CycleGAN based methods and supervised 
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harmonization methods using traveling subjects; it takes advantage of the available intra-site 

multi-contrast MR images, which are commonly acquired in many MR imaging sessions. 

We demonstrated CALAMITI by focusing on T1 − w and T2 − w images. Our experiments 

show that CALAMITI improves contrast similarity in multi-site brain MR data. Our 10-site 

harmonization experiment showcases the broad applicability of our method. In particular, we 

can achieve translation between different T1-weighted images that are acquired with different 

field strengths, scanner types, and pulse sequence parameters (see Table 2). We highlight 

the qualitative demonstrations of harmonization in Fig. 6 and the quantitative evaluations 

in Table 3, in which we performed an inter-site harmonization using traveling subjects not 

included in training. Note that CALAMITI only requires a single image to use after training 

as demonstrated by Section 2.1 and the β-space interpolation in Fig. 8.

In Table 3, we show that CALAMITI improves the SSIM and PSNR after harmonization. 

More importantly, we demonstrate in Fig. 12 that the downstream segmentation task 

has shown improved consistency after harmonization. The mean Dice coefficients of the 

segmentation labels, before and after harmonization, are always better for CALAMITI over 

the competing methods, and it is significantly better in 19 of the 27 statistical tests. The fact 

that the mean percentage volume differences (mean PVDs) are closer to zero indicates that 

the segmentation is less biased after harmonization.

We also observe that this work answers a long-standing question in the community: In 
neuroimage analysis, is it good enough to have two similar scanners with similar imaging 
parameters, or can harmonization improve our analyses? In Table 3, when considering the 

harmonization between Sites E and F , we are addressing this question; see Table 2 and Fig. 

6 for the similarity in the scanners, sequences, and image contrasts at Sites E and F . We 

show that a higher SSIM and PSNR can still be achieved in this case, as well as an improved 

segmentation consistency.

Despite the limitations we discuss in Section 4.2, our approach offers several interesting 

possibilities in neuroimage analyses. For example, multi-site studies that have previously 

been explored using segmentation alone (e.g., the ABIDE study (Martino et al., 2014), 

BLSA study Resnick et al. (2000), Han et al. (2020) could be augmented using voxel-based 

morphetry after harmonization. We could also take advantage of our θ space given that it 

does a very good job in clustering contrast variability caused by scanner and acquisition 

differences (see Fig. 8). For example, computation of θ could serve to identify scans 

that have been acquired with incorrect imaging parameters. We note that Eθ is sensitive 

enough to capture contrast differences that are hardly noticeable to the human eye (e.g., 

Sites E and F  in Fig. 8). Therefore, even within a single site, harmonization of images 

could be beneficial for consistency of downstream analyses. It is worth mentioning that 

there is no site or modality labels used in training our θ-encoder. Therefore, our θ space 

is learned in a completely data-driven manner, which we regard as an important feature. 

Introducing a θ-classifier (or discriminator) to push θ to capture domain-specific information 

is redundant and not desired in CALAMITI. From our experiments, Sites D and E have 

identical acquisition parameters, thus they have overlapping θ clusters. This was not forced 

with any additional loss but discovered in a completely data-driven manner. Introducing a θ
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classifier to distinguish θ’s of Sites D and E would force an artificial θ separation, which is 

undesirable.

The unified network structure of our approach offers several tantalizing possibilities. First, 

our θ space is a rich area for research. We have some initial exploration in Fig. 9, in which 

we demonstrate interpolation in this space. We observe variations in T1 − w images on the 

right of Fig. 9, while having a more interesting transition from T1 − w to T2 − w on the 

left. This essentially makes our θ space and our decoder a powerful image synthesis tool 

that allows for a more straightforward interpolation in the latent θ space compared with 

existing works. Compared with StarGAN Choi et al. (2018), for example, the proposed 

method offers interpretability and flexibility during image synthesis. Due to the unified 

CVAE structure, image synthesis can be achieved by simply sampling a target θ value in 

the θ space and combining it with a β map to the decoder. In contrast, the method of Jog et 

al. (2015) requires solving a highly nonlinear imaging equation to generate new contrasts, 

which is a computationally unstable challenge. The second possibility arising from the 

unified structure of our approach is that it becomes possible, in principle, to train on an 

ever-expanding number of sites and contrasts. In this case, the decoder might generalize 

to handle an arbitrarily large number of scanner types and, in combination with the θ
space interpolation, would yield a universal digital MR scanner that can generate any MR 

contrast. This capability, in turn, might open the door for task-specific synthesis, where 

the goal is to generate synthetic images that elucidate a particular feature or structure that 

facilitates specific downstream tasks. A third potential benefit of our approach is that the IB 

theory used in its design enables the information encoded by Eθ to be quantified. Measuring 

such information in a deep network model could be helpful in understanding the model 

behavior. In CALAMITI, we show the connection between IB theory and the disentangling 

using a conditional VAE, which is well understood and theoretically attractive. It is worth 

mentioning that there are alternative formulations to achieve disentangling. For example, 

one could minimize I (X; X′|θ) to encourage the conditional independence between X and 

X′, and extract the common (i.e., contrast) information between X and X′. Finally, our β
space is domain-invariant after training, as it captures anatomical information. Atlason et al. 

(2019) and Chartsias et al. (2019) have shown that domain-invariant representations can help 

produce improved segmentation results in multiple tasks.

4.2. Limitations

Our work has some limitations. The chief limitation is the inherent assumption that the 

anatomical information from the intra-site T1 − w and T2 − w images is the same. On 

the surface, when acquiring T1 − w and T2 − w images of the same subject, we would 

expect that they represent the same anatomy. However, the very reason for obtaining 

multi-contrast images with different pulse sequences is that they reflect different aspects 

of the anatomy. This issue is particularly apparent when considering patients with WM 

lesions or brain tumors since these structures appear differently depending on the MR 

sequences. Additionally, other factors such as resolution, field of view, and artifacts could 

also contribute to the anatomy differences in the intra-site MR images. Examining how 

sensitive our training is to these differences in anatomy is an important future research 
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direction. This also brings us to rethink the necessity of the intra-site paired images for 

our method. We believe training with intra-site paired images is a reasonable requirement 

for two reasons. First, it is obvious that this requirement is less onerous than acquiring 

multiple traveling subjects as in most supervised harmonization methods. Second, the 

intra-site paired images make it possible to train our unsupervised harmonization model 

in a supervised way, which preserves geometry better over harmonization methods that 

use cycle consistency. Although cycle consistency is routinely used in most unsupervised 

IIT approaches, its fundamental assumption is that the image translation function f ⋅  is 

bijective. However, for MR imaging, the bijectivity is an arguable assumption since the same 

MR image could be acquired using different pulse sequences. We also note that there are 

instances and populations—pediatric cohorts for example —which make it impractical to 

acquire multiple images using different pulse sequences of a subject in the same session. In 

such cases, the proposed method cannot be directly applied. Fortunately, there are potential 

remedies —such as T1 − w to T2 − w synthesis —which we have not explored in this paper.

According to our experiments in Section 3.3, domain adaptivity enables our model to 

provide satisfactory results after fine tuning on a new testing site. However, the fine tuning 

process is theoretically flawed according to Goodfellow et al. (2020). To properly train 

a generative adversarial network (GAN), the generator (our Eβ) and discriminator (our 

Dβ) must be trained jointly with both positive (Site A) and negative (non-Site A) training 

instances. Unfortunately, in our fine tuning process, due to the absence of Site A images, 

our model is only fed with negative examples, and only Eβ is updated. Although we take 

actions that restrict both the trainable parameters and the learning rate during fine tuning 

(see Section 2.4) to improve practical performance, there is still a risk of causing stability 

issues since Eβ and Dβ are not updated jointly. As for the single-site Dβ, we do not regard 

this as a limitation of this work. Had our β-discriminator classified whether an input β
comes from Sites A and B (two sites) or not, then the β-discriminator is still a one-class 

discriminator. In which case it also permits domain adaptation but the β distributions of Sites 

A and B could be different.

Our fusion network (see Section 2.5) achieves better slice-to-slice consistency compared 

with the median filtering approach for combining multi-orientations images (Dewey et al., 

2018; 2019). However, our fusion network and the harmonization network are not trained 

end-to-end due to the GPU memory limit, which implies that our result is not likely to be 

optimal. We also note that as our decoder, Eβ, and Eθ form a generative model, we can use 

the decoder to generate new contrast MR images by sampling our θ space. Unfortunately, 

the failure to train the fusion network end-to-end with the decoder means that we cannot 

fuse new contrast images created by the decoder. This also explains why the presented 

interpolations of the θ space (see Fig. 9) are based on the median filtering approach instead 

of the proposed fusion network.

There are three areas of concern in our use of the longitudinal scans in the OASIS3 

dataset as traveling subjects. First, although the mean Dice coefficient increases in both 

harmonization scenarios (Sites C to D and Sites F  to E), there are particular subjects and 

labels that experience a decrease in their Dice coefficients. This may be due in part to 
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random noise effects, or it may point to other issues such as “corner cases ” for which our 

framework is somehow detrimental. The same can be observed for some subjects and labels 

with respect to the PVD criterion. A second concern is the size of the traveling subject 

cohort used in our quantitative evaluation. Although our experiments include a diverse 

set of MR data (see Table 2), there are limited numbers of subjects in the quantitative 

evaluation. To our knowledge, there are very limited public traveling subject data that have 

been imaged on two scanners within a small window of time. Future studies would benefit 

from evaluation using a larger cohort from more diverse sites. Finally, our evaluation on 

downstream processing is exclusively based on SLANT Huo et al. (2019) segmentation 

results. Although we argue that SLANT is a state-of-the-art whole brain segmentation 

method that serves to demonstrate the potential for improvement through CALAMITI 

harmonization, we acknowledge that there are a host of other processing objectives and 

methods that should be explored in the future.

4.3. Future work

In addition to previously noted potential future work, we point out six additional promising 

directions for future work. First, to further reduce the requirements on training data and 

increase the applicability of the proposed method, it is worth exploring the possibility 

of creating synthetic intra-site paired data. In this case, harmonization from just one 

MR contrast may become possible. On the other hand, if more than two MR contrasts 

are available at a given site, it would be interesting to explore the utility of such data 

in disentanglement and harmonization. Second, a deeper understanding of the theory of 

domain adaptation is needed since many domain adaptation works He et al. (2020a, 2020b, 

2021) suffer from the theoretical dilemma that we discussed in Section 4.2. Despite its 

importance, domain adaptation of medical image analysis methods remains an open issue 

in the community. Third, in our quantitative evaluation, CALAMITI achieves satisfactory 

domain adaptivity between Sites C and D. However, we believe the domain adaptivity is 

not unlimited; there exists a boundary such that the domain adaption would break down 

when the new testing site has drastically different contrast than the training sites. Given 

the 10 training sites, we were not able to test the boundary of our network, and we regard 

this as a direction that should be explored in future work. Fourth, the presented work 

has focused exclusively on healthy controls. This was done to explore the idea, develop 

the framework, and demonstrate the utility of the proposed approach. Although many 

novel medical image analysis methods were introduced in this same way, the suitability 

of CALAMITI in pathological cases must be evaluated to establish more general utility. 

Fifth, CALAMITI disentangles anatomical and pulse sequence based contrast information 

into latent representations β and θ, respectively. However, there are other factors that could 

confound the disentangling process. For example, the signal intensity of MR imaging and 

the brain morphology both change with age (Salonen et al., 1997). Whether such aging 

effects should be encoded in β or θ is unclear. Furthermore, we assume that the MR 

images from all sites are coming from the same anatomical distribution. This assumption, in 

conjunction with our Dβ, provides us with a globally disentangled β space. However, when 

the sites have different age distributions (e.g., pediatric and adult brains), the underlying 

anatomical information is differently distributed in nature. Although, we did not observe 

noticeable age effects in our harmonization experiments given that our 10 sites have 
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slightly different age distributions, we believe aging could play a role in harmonization and 

should be explored in future work. Lastly, in addition to exploring alternative downstream 

processing objectives, as mentioned above, it is necessary to explore the impact of such 

tasks on medical research and/or clinical medicine. For example, although we envision 

CALAMITI as a tool for harmonizing MRI images for multi-site studies, this remains to be 

done. Whether CALAMITI will permit us to expand such clinical studies to ever increasing 

number of subjects across sites is an important question that needs to be answered in the 

future.

5. Conclusion

In this article, we proposed an unsupervised MR harmonization approach, CALAMITI, 

that harmonizes multi-contrast multi-site MR images without inter-site paired images (i.e., 

traveling subjects). CALAMITI overcomes common drawbacks of traditional unsupervised 

harmonization methods while having the merits of multiple existing image-to-image 

translation approaches. The domain adaptability enables our model to work on a new testing 

site with a straightforward fine-tuning process. Furthermore, we established CALAMITI 

using IB theory, and used it to guide our model design, which provides a theoretical 

basis for the overall approach. Extensive experiments on a 10-site harmonization show 

that CALAMITI achieves state-of-the-art harmonization performance across sites. Results 

on the downstream task of whole-brain segmentation shows improved consistency after 

harmonization, showing potential for its application to large-scale multi-site studies.
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Appendix A. Proof of Theorem 1

Proof. To show that optimizing Eq. (5) is equivalent to optimizing the CVAE loss in Eq. (6), 

we consider the two terms in Eq. (5) separately. Using the definition of mutual information, 

it is easy to show that

I X′; θ = Ep x′ DKL p θ ∣ x′ ∥ p(θ) .

For I(X; θ ∣ β), we have
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I(X; θ ∣ β)
= H(X ∣ β) − H(X ∣ θ, β)
= H(X ∣ β) + ∑

x
∑
β

∑
θ

p(x, θ, β)logp(x ∣ θ, β)

= H(X ∣ β) + ∑
x

∑
x′

∑
β

∑
θ

p x, x′, θ, β logp(x ∣ θ, β)

= H(X ∣ β) + ∑
x′

∑
x

∑
β

∑
θ

p x′ p x, β, θ ∣ x′ logp(x ∣ θ, β)

= H(X ∣ β) + ∑
x′

∑
x

∑
β

∑
θ

p x′ p x, β ∣ x′ p θ ∣ x′ logp(x ∣ θ, β)

= H(X ∣ β) + ∑
x′

∑
x

∑
β

p x, x′, β ∑
θ

p θ ∣ x′ logp(x ∣ θ, β)

= H(X ∣ β) + Ep x, x′, β Ep θ ∣ x′ [logp(x ∣ θ, β)] .

In the above derivation, we assume the conditional independence that 

p x, β, θ ∣ x′ = p x, β ∣ x′ p θ ∣ x′ . This conditional independence holds because the only 

common information between x and x′ is contrast, and therefore given x′, observing θ
provides no extra information about x or β, and vice versa.

Combining the two terms, Eq. (5) becomes

θ∗ = arg min
θ

I X′; θ − λI(X; θ ∣ β)

= arg min
θ

Ep x′ DKL p θ ∣ x′ ∥ p(θ) −

λ H(X ∣ β) + Ep x, x′, β Ep θ ∣ x′ [logp(x ∣ θ, β)]
= arg min

θ
Ep x′ DKL p θ ∣ x′ ∥ p(θ) −

λ Ep x, x′, β Ep θ ∣ x′ [logp(x ∣ θ, β)]

= arg min
θ

1
N ∑

i = 1

N
DKL p θ ∣ xi

′ ∥ p(θ) −

λEp θ ∣ xi′ logp xi ∣ θ, βi ,

where the outside expectations are approximated by the empirical mean, and N is the 

number of training instances. □
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Fig. 13. 
Shown are the original sagittal orientation of T1 − w MR images from 10 sites and their 

corresponding harmonized images for Sites A, E, and J.

Appendix B. Qualitative harmonization results of T1 − w images

Fig. 13 shows the sagittal orientation for a 10-site harmonization experiment.
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Appendix C. Qualitative harmonization results of T2 − w images from a 

sagittal view

Fig. 14 shows the harmonization results of T2 images.

Fig. 14. 
Shown are the original T2 − w MR images from 10 sites and their corresponding harmonized 

images for Sites A.
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Fig. 15. 
The l1 reconstruction error with respect to the number of training iterations.

Appendix D. An ablation study on the perceptual loss

We conducted an ablation study to show the effects of the perceptual loss. In the experiment, 

we kept all the hyperparameters the same, the only difference is the presence of the 

perceptual loss. According to our study, we found no significant difference in SSIM and 

PSNR of the harmonized images (see Table 3), but adding a perceptual loss helps the 

network converge faster, as shown in Fig. 15.
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Fig. 1. 
(a)–(c) are T1 − w MPRAGE images with different acquisition parameters.
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Fig. 2. 
Given T1 − w and T2 − w images from Sites A and B, there are four domains XA1, XA2, XB1, 

and XB2, where an alphabetical index denotes the site (Site A or B) and a numerical index 

denotes the different contrasts (T1 − w and T2 − w, respectively). Our method learns from 

supervised image-to-image translation within each site during training, and at test time can 

do cross-site unsupervised image-to-image translation.
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Fig. 3. 
High-level framework of the proposed method. Colored arrows indicate network 

components. Dots, dashed circles, and solid circles represent images, θ’s, and β’s, 

respectively.
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Fig. 4. 
Network architecture of the proposed method. Numbers next to each box indicate the 

number of output feature channels. Cβ indicates the number of β channels.
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Fig. 5. 
Training the pseudo 3D implementation includes two parts: (a) the harmonization network is 

first trained using a pool of multi-site multi-orientation MR slices. Then (b) weights of the 

harmonization network are frozen to train the 3D fusion network. The fusion network learns 

to combine the three stacked volume images into one single fused image.
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Fig. 6. 
Shown are the original axial orientation of T1-weighted MR images from 10 sites and their 

corresponding harmonized images for Sites A, E, and J.
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Fig. 7. 
The four β-channels from a pair of T1 − w and T2 − w images.
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Fig. 8. 
(a) MR images before and after harmonization. (b) A visualization on the θ-space of all 

the testing images (Circles: T1 − w images; Diamonds: T2 − w images; Colors listed denote 

a specific site). (c) T1 − w images of 10 subjects selected from the 10 sites are harmonized 

to Site A (target θ value shown in blue). The harmonized T1 − w images are then sent to 

the θ-encoder. The arrows indicate the change in the θ values after harmonization. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.)
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Fig. 9. 
Interpolation in θ space and the corresponding synthetic images. On the left, β is calculated 

from the orange circle and nine different θ values are fed into the decoder to generate the 

corresponding synthetic images, highlighting the transition area between T1 − w and T2 − w
θ’s. In the center we display our 2D θ space, in which circles indicate θ’s for T1 − w images 

and diamonds indicate θ’s for T2 − w images, and colors correspond to sites. On the right, a 

β is calculated from the center circle and nine different θ values are fed into the decoder to 

generate corresponding synthetic images. Synthetic images and the corresponding θ values 

are matched either by numerical (left sub-panel) or alphabetical (right sub-panel) indexes.
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Fig. 10. 
Results of domain adaptation. The proposed model is trained on Sites A and D, and the 

task is to harmonize images from Site C to Site D during testing. From left to right: (a) the 

original image from Site C; (b) harmonization without domain adaptation; (c) harmonization 

with domain adaptation; (d) harmonization after a retraining that includes Sites A, C, 

and D; (e) target image (the same subject imaged at Site D). Red arrow indicates a bad 

harmonization in the cerebellum region without domain adaptation.
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Fig. 11. 
A visual comparison of segmentation on a traveling subject. From left to right are Site C
acquisition, the Site D acquisition, and the harmonized (from C to D) image. The bottom 

row are the T1 − w MR images and the top row are the corresponding SLANT (Huo et 

al., 2019) segmentation. Yellow boxes highlight improved segmentation consistency after 

harmonization.

Zuo et al. Page 38

Neuroimage. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 12. 
Strip plot of the Dice coefficient and percentage volume difference before and after 

harmonization. Wilcoxon signed rank tests are conducted on Dice coefficient between the 

proposed method and the other methods. Asterisks indicate significance with respect to a 

p < .05 and N = 10.
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Table 4

Quantitative evaluation of domain adaptation. Images from Site A and one of Sites C and D are included in the 

training. We report SSIM and PSNR; higher values are better for both.

Training Testing Before DA After DA

A, C SSIM 0.8359 ± 0.0253 0.8480 ± 0.0287

D D PSNR 27.76 ± 0.57 29.07 ± 0.71

A, D SSIM 0.7893 ± 0.0216 0.7990 ± 0.221

C C PSNR 27.12 ± 0.47 27.51 ± 0.52
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