Skip to main content
. 2023 Aug 28;18(1):20220689. doi: 10.1515/biol-2022-0689

Table 5.

Quantitative results of rice disease and deficiency disorder classification after applying DeepBatch showing precision (P), recall (R), F1, and accuracy (A) scores

Models Rice disease Rice nutrient deficiency disorder
P R F1 A P R F1 A
TL0: InceptionResNetV2 94.33 94.33 94.33 94.21 93.67 92.67 92.67 92.67
TL1: VGG19 92.33 92.33 92 92.16 86 83 82 83
TL2: XceptionNet 93.33 93 93 93.31 85.67 78 77.33 78
TL3: DenseNet201 94 93 93.33 93.22 88 85 85 85
TL4: MobileNetV2 79 53.67 49.67 53.59 77 48.67 44.33 48.67
EM2.0: InceptionResNetV2 + DenseNet201 93.33 96 96 96.20 94 93.33 93.33 93.33
EM2.1: InceptionResNetV2 + VGG19 94.67 94.67 94.67 94.47 92.67 92 92 92
EM2.2: InceptionResNetV2 + XceptionNet 95.67 95.67 95.67 95.62 94 93.33 93.33 93.33
EM2.3: XceptionNet + VGG19 95 94.67 95 94.72 89.67 88 87.67 88
EM2.4: DenseNet201 + VGG19 95.67 95.67 96 95.70 86.33 85.33 85 85.33
EM2.5: DenseNet201 + XceptionNet 94.67 95 94.67 94.79 91.33 89.33 89.67 89.33
EM3.0: EM2.2 + VGG19 96.33 96.33 96.33 96.28 92.33 91.33 91 91.33
EM3.1: EM2.2 + DenseNet201 97 96.67 97 96.94 94.67 94 93.67 94
EM3.2: EM2.3 + DenseNet201 96 95.67 96 95.62 90.67 90 89.67 90
EM3.3: EM2.5 + DenseNet201 96 96.33 96.33 96.20 90.67 90 89.67 90
EM4.0: EM2.2 + VGG19 + DenseNet201 96.67 96.67 96.67 96.61 93.33 92.67 92.33 92.67