Table 2. Correlation matrix between factor scores based on principal component extraction and different rotation techniques.
Dataset 1: Marijuana Legalization | ||||||||||
No-rotation | Varimax | Equamax | ||||||||
F1 | F2 | F3 | F1 | F2 | F3 | F1 | F2 | F3 | ||
Varimax |
F1 | 0.72 * | 0.03 | -0.69 | ||||||
F2 | 0.54 | -0.64 * | 0.54 | |||||||
F3 | 0.43 | 0.77 * | 0.48 | |||||||
Equamax |
F1 | 0.64 | 0.02 | -0.77 * | 0.99 | -0.08 | -0.08 | |||
F2 | 0.56 | 0.67 * | 0.49 | 0.09 | 0.14 | 0.99 | ||||
F3 | 0.52 | -0.74 * | 0.41 | 0.07 | 0.99 | -0.15 | ||||
Quartimax |
F1 | 0.95 * | -0.23 | -0.23 | 0.83 | 0.54 | 0.12 | 0.78 | 0.27 | 0.57 |
F2 | 0.32 | 0.77 * | 0.55 | -0.13 | -0.02 | 0.99 | -0.20 | 0.96 | -0.17 | |
F3 | -0.05 | 0.60 | -0.80 * | 0.54 | -0.84 | 0.06 | 0.60 | -0.02 | -0.80 | |
Dataset 2: Childhood Obesity | ||||||||||
No-rotation | Varimax | Equamax | ||||||||
F1 | F2 | F3 | F1 | F2 | F3 | F1 | F2 | F3 | ||
Varimax |
F1 | 0.74 * | -0.65 | -0.16 | ||||||
F2 | 0.54 | 0.72 * | -0.44 | |||||||
F3 | 0.40 | 0.24 | 0.89 * | |||||||
Equamax |
F1 | 0.60 | -0.75 * | -0.26 | 0.98 | -0.10 | -0.17 | |||
F2 | 0.58 | 0.19 | 0.79 * | 0.19 | 0.11 | 0.98 | ||||
F3 | 0.55 | 0.63 * | -0.55 | 0.08 | 0.99 | -0.12 | ||||
Quartimax |
F1 | 0.99 * | -0.11 | -0.10 | 0.82 | 0.50 | 0.27 | 0.71 | 0.47 | 0.53 |
F2 | 0.13 | 0.28 | 0.95 * | -0.23 | -0.14 | 0.96 | -0.38 | 0.88 | -0.28 | |
F3 | 0.08 | 0.95 * | -0.29 | -0.52 | 0.85 | 0.00 | -0.60 | -0.01 | 0.80 |
* Matched factors with no-rotation factors.