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Abstract

Recently, myocardial ischemia-reperfusion (I/R) injury was suggested associated with intes-

tinal flora. However, irisin has demonstrated beneficial effects on myocardial I/R injury, thus

increasing interest in exploring its mechanism. Therefore, whether irisin interferes in gut

microbiota and gut mucosal barrier during myocardial I/R injury was investigated in the pres-

ent study. Irisin was found to reduce the infiltration of inflammatory cells and fracture in myo-

cardial tissue, myocardial enzyme levels, and the myocardial infarction (MI) area. In

addition, the data showed that irisin reverses I/R-induced gut dysbiosis as indicated by the

decreased abundance of Actinobacteriota and the increased abundance of Firmicutes, and

maintains intestinal barrier integrity, reduces metabolic endotoxemia, and inhibits the pro-

duction of proinflammatory cytokines interleukin 1β (IL-1β), interleukin 6 (IL-6), and tumor

necrosis factor α (TNF-α). Based on the results, irisin could be a good candidate for amelio-

rating myocardial I/R injury and associated diseases by alleviating gut dysbiosis, endothelial

dysfunction and anti-inflammatory properties.

1. Introduction

Acute myocardial infarction (AMI) is a common cardiac emergency associated with high rates

of morbidity and mortality [1]. For patients with ST-elevation MI (STEMI), thrombolytic/

fibrinolytic therapy or percutaneous coronary intervention (PCI) is considered the effective

reperfusion strategy that should be performed [2]. Because reperfusion can induce excessive

production of reactive oxygen species, excessive inflammatory response and cell apoptosis, the

process is known as myocardial ischemia-reperfusion (I/R) injury [3]. Consequently, avoiding

the occurrence of myocardial I/R injury is important for the treatment of ischemic heart
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disease. However, an effective therapy and potential target to prevent myocardial I/R injury in

patients does not yet exist.

Although the I/R mechanism is not yet clearly established, the gut microbiota appears to

play an important role in the development as shown in an increasing number of studies [4–6].

Vancomycin decreased heart’s susceptibility to injury in an in vivo animal model of regional

myocardial I/R by reducing the abundance of gut microbiota [7]. In patients with STEMI, the

systolic function of the heart decreases, resulting in insufficient blood supply to systemic

organs including the intestine, leading to dysbiosis and changes in intestinal permeability [8].

However, the increase in intestinal permeability leads to the translocation of bacterial endotox-

ins into the blood, which contributes to a systemic inflammatory response [9]. Therefore, we

hypothesized that changes in gut microbiota and intestinal permeability were associated with

the occurrence of adverse cardiovascular events after myocardial I/R injury.

Irisin is a circulating hormone that is cleaved from the precursor protein fibronectin type

III domain containing 5 (FNDC5) [10]. Increasing evidence has shown that irisin has benefi-

cial effects on cardiovascular diseases [11–13]. Furthermore, in our previous studies, irisin

treatment was confirmed to modulate the mitochondrial function via the AMPK pathway, ulti-

mately protecting the H2C9 cardiomyocytes from hypoxia and reoxygenation injury [14]. In

addition, irisin showed potential to alleviate intestinal inflammation by altering the gut micro-

biota [15–17]. Irisin could also restore gut barrier function via the integrin αVβ5-AMPK-UCP

2 pathway [18]. Therefore, in the present study, the effects of irisin on intestinal bacteria and

intestinal barrier were evaluated in the rat model of myocardial I/R injury.

2. Materials and methods

2.1 I/R rat model establishment and treatment

Adult male Wistar rats weighing 230–250 g were purchased from the Laboratory Animal Cen-

ter of Shanxi Provincial People’s Hospital (Taiyuan, China). The rats were housed under a 12 h

light/dark cycle at 23 ± 2˚C with 40%–60% humidity, and they had free access to standard

food and water. All animal experimental procedures were approved by the ethical committee

of LinFen Central Hospital (Permit Number: 2021-29-1).

After 1 week of adaptation, all rats were randomly divided into three groups, namely, a

sham-operated group (Sham, n = 10), a myocardial ischemia reperfusion injury group (I/R,

n = 10), and an irisin group (Irisin, n = 10). The rats in the Sham and I/R groups were intraper-

itoneally injected with 0.2 mL of PBS, while those in the Irisin group were intraperitoneally

injected with 0.2 mL of irisin (100 mg/kg, Sigma, USA, SRP8039) [19]. Treatment was contin-

ued for 7 days. The myocardial I/R injury model was induced in the Irisin and I/R groups

according to the previously described procedure (S1 Fig) [20]. The rats were intraperitoneally

injected with sodium pentobarbital (50 mg/kg) and intubated with a small-animal ventilator

(Shanghai Yuyan Instruments Co., Ltd., China) set at a respiratory rate of 60–70 breaths per

minute. The surgical area was disinfected, the left chest was opened at the third intercostal

space to expose the heart, and the pericardium was separated to exteriorize the heart. The left

anterior descending coronary artery was quickly ligated with 6.0 prolene suture for 30 min,

after which the suture was removed for reperfusion for 120 min. Meanwhile, the rats under-

went electrocardiography (ECG; Shanghai Yuyan Instruments Co., Ltd., China) with limb lead

II tracing during the operation. Previous studies revealed that ischemia for 30 min would lead

to significant elevation of the ST segment of ECG, and successful model establishment could

be indicated by a decrease of the ST segment by at least 50% following 120 min of reperfusion

(S2 Fig). Meanwhile, the sham operation included all procedures except ligation of the left

anterior descending coronary artery.
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2.2 Histopathological and 2,3,5-triphenyl-2H-tetrazolium chloride (TTC)

staining

The heart, colon, and ileum tissues were fixed in 4% buffered paraformaldehyde for 48 h and

then embedded in paraffin. The sections (5 μm) were mounted on slides, deparaffinized in

xylene, rehydrated in decreasing concentrations of ethanol, and subjected to hematoxylin and

eosin (H&E) staining. The histological score was determined as previously described [21, 22].

To measure the area of MI, 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) (Solarbio, China,

T8170) staining was used. The left ventricle was cut transversely into six sections of the same

thickness and stained with 2% TTC at 37˚C for 30 min without exposure to light. After staining,

normal areas of the myocardium were stained red and infarcted areas were left unstained.

2.3 TUNEL and immunofluorescence (IF) staining

The sections (5 μm) were deparaffinized in xylene and rehydrated in decreasing concentra-

tions of ethanol. A TUNEL kit (Beyotime, China, C1088) was used for TUNEL staining

according to the manufacturer’s instructions. Apoptotic rate was counted as previously

described [23]. The sections were submerged into Tris-ethylenediaminetetraacetic acid anti-

genic retrieval buffer and heated for 5 min by pressure cooker. The sections were then treated

with 3% hydrogen peroxide in methanol, blocked with 5% bovine serum albumin, and incu-

bated with anti-zonula occludens-1 (ZO-1, 1: 1000, Abcam, UK, ab221546) and anti-occludin

antibodies (1: 200, Abcam, UK, ab216327) overnight at 4˚C followed by incubation with Alexa

Fluor 594-conjugated secondary antibodies (1: 500, Bioss, China, bs-0295G-AF594). Nuclear

staining was performed using 4’,6-diamidino-2-phenylindole (DAPI, BOSTER, China,

AR1176). An Olympus inverted fluorescence microscope was used to observe section staining.

The images were evaluated using ImageJ software.

2.4 Serum cardiac troponin I (cTnI), creatine phosphokinase (CK),

lipopolysaccharide (LPS) and Zonulin measurements

Rats were sacrificed and their blood serum centrifuged. Serum levels of cardiac troponin I

(cTnI), creatine phosphokinase (CK), lipopolysaccharide (LPS) and Zonulin were determined

using the cTnI ELISA kit (Solarbio, China, SEKR-0048), CK ELISA kit (Solarbio, China,

BC1145), LPS ELISA kit (Signalway Antibody, USA, EK3762) and Zonulin ELISA kit (Jianglai-

bio, China, JL45867) according to the manufacturer’s instructions.

2.5 Western blot analysis

Colon and ileum tissues (0.5 g) were lysed on ice with 500 μL of RIPA lysis buffer for 30 min in

the presence of protease and phosphatase inhibitors and then sonicated for 1 min at 60 Hz.

After centrifugation at 12,000 rpm for 15 min at 4˚C, the supernatant was harvested. Protein

concentrations were determined with the BCA protein assay kit (Solarbio, China, PC0020)

and the protein was thermally denatured at 100˚C for 10 min. The protein was then isolated

using sodium dodecyl sulfate polyacrylamide gels and transferred to nitrocellulose mem-

branes. After blocking the membranes with skim milk powder, the membranes were incubated

overnight at 4˚C with rabbit anti-mouse primary antibodies including interleukin 1β (IL-1β, 1:

1000, Abcam, UK, ab283818), interleukin 6 (IL-6, 1: 1000, CST, USA, 12912T), tumor necrosis

factor α (TNF-α, 1: 1000, CST, USA, 11948T), ZO-1 (1: 1000, Abcam, UK, ab221546); occludin

(1: 1000, Abcam, UK, ab216327), and β-actin (1: 1000, CST, USA, 37000T). After washing

with TBST, the membranes were incubated with goat anti-rabbit secondary antibody (1: 3000,

CST, USA, 7074) at 37˚C for 1 h followed by incubation with a chemiluminescent substrate for
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visual detection using the Tanon imaging system. ImageJ software was used to calculate the

integrated optical density (IOD).

2.6 Extraction of fecal DNA and high-throughput sequencing

The cecal contents of the rats were collected in sterile tubes and stored in a refrigerator at

-80˚C. DNA in the cecal contents was extracted using a DNA extraction kit (Accurate, China,

37000T) and the quality of DNA extraction was determined using 0.8% agarose gel electropho-

resis and quantified with a UV spectrophotometer. The 16S rRNA hypervariable region

(V3-V4) was amplified with PCR using the extracted DNA as a template. The primer

sequences were ACTGCATCCGCAGCGTCGA and CCTGTACGGTCTTGCATAT. The PCR prod-

ucts were detected using 2% agarose gel electrophoresis and purified with AXYGEN gel extrac-

tion kit. The preliminary quantification results of electrophoresis were obtained by fluorescing

the PCR-amplified products using the Quant-iT PicoGreen dsDNA assay kit (Thermo Fisher

Scientific, USA, P7589). Based on the quantitative results, purified amplicons were pooled in

equimolar amounts and paired-end sequenced on an Illumina MiSeq PE300 platform/Nova-

Seq PE250 platform (Illumina, USA) according to Majorbio Bio-Pharm Technology Co. Ltd.

(China) standard protocols.

2.7 Bioinformatic analysis

To minimize the effects of sequencing depth on α and β diversity measures, the number of 16S

rRNA gene sequences from each sample were rarefied to 20,000, which still yielded an average

Good’s coverage of 99.09%. Bioinformatic analysis of the gut microbiota was performed using

the Majorbio Cloud platform (https://cloud.majorbio.com). Based on the operation taxonomic

unit (OTU) information, rarefaction curves and α diversity indices, including observed OTUs,

Chao1 richness, Shannon index, and Good’s coverage were calculated using Mothur v1.30.1.

The similarity among the microbial communities in different samples was determined using

principal component analysis (PCA), principal coordinate analysis (PCoA), and partial least

squares discrimination analysis (PLS-DA) based on Bray–Curtis dissimilarity using Vegan

v2.5–3 package. The PERMANOVA test was used to assess the percentage of variation

explained by the treatment with its statistical significance using Vegan v2.5–3 package. The lin-

ear discriminant analysis (LDA) effect size (LEfSe; http://huttenhower.sph.harvard.edu/LEfSe)

was performed to identify the significantly abundant taxa (phylum to genera) of bacteria

among the different groups (LDA > 4.00, p< 0.05). Spearman correlation analyses were used

to assess correlations between the 10 top genus and blood parameters, the infarct area, colon

and ileum barrier function, degree of bacterial translocation, and inflammatory response.

2.8 Statistical analysis

The data are presented as the mean ± standard error of mean (SEM) of five or more indepen-

dent experiments. Normal distribution was confirmed using the Shapiro–Wilk test. One-way

analysis of variance (ANOVA), least significant difference (LSD), or Tamhane test were used

to compare the statistical differences among multiple groups. A p-value < 0.05 was considered

statistically significant. SPSS 22.0 was used for statistical analysis.

3. Results

3.1 Effects of irisin on gut microbial diversity and richness

To characterize the microbial populations in the rat gut, the bacterial populations were mea-

sured using 16S rRNA gene sequencing. The rarefaction curves of all samples indicated that
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the sequencing coverage was sufficient to reflect the composition of intestinal flora (S3A Fig).

Rank-Abundance curves showed that species were evenly distributed (S3B Fig). In gut micro-

bial α diversity, both richness and evenness were indicated based on the Chao, ACE, Simpson,

and Shannon indices. In I/R rats, ACE index and Shannon index increased and Simpson index

decreased, and irisin completely restored these effects (Fig 1A).

Principal component analysis (PCA), principal coordinate analysis (PCoA), and partial

least squares discrimination analysis (PLS-DA) were used to measure the difference between

microbial communities. The aggregation of the flora in the I/R group significantly stayed away

from Sham and Irisin groups, and the gut microbial community structure was similar between

Sham and Irisin group (Fig 1B). Notably, the difference of the rat microbial community com-

position was small in the Irisin and the Sham groups.

Among 711 OTUs, 544 of the total richness were shared among all groups, and OTUs were

observed between two groups or in each group (Fig 1C). In addition, irisin treatment

decreased OTUs in the I/R rats.

These data indicated that irisin treatment significantly improved α and β diversity of intes-

tinal microbiota.

3.2 Effects of irisin on the gut microbiota composition

Based on the results, gut microbiota was significantly changed. Therefore, the gut microbiota

composition was compared among the three groups to identify potential probiotics or harmful

bacteria of irisin intervention after I/R.

At the phylum level, I/R affected the relative abundance of Firmicutes and Actinobacteriota.

Notably, irisin treatment significantly increased the relative abundance of Firmicutes and

decreased the relative abundance of Actinobacteriota (Fig 2A).

The top 10 families were significantly affected by I/R; several families (Corynebacteriaceae,
Bifidobacteriaceae, Staphylococcaceae, Aerococcaceae, Akkermansiaceae, and Carnobacteria-
ceae) were drastically increased and others (Peptostreptococcaceae and Monoglobaceae)

Fig 1. Effects of irisin on gut microbial diversity and richness. A. Effects of irisin treatment on α diversity was determined using

Chao, Ace, Simpson, and Shannon indices; B. β diversity was. determined using Euclidean distance-based principal component

analysis (PCA), weighted UniFrac distance-based principal coordinates analysis (PCoA), and partial least squares discrimination

analysis (PLS-DA); C. Venn diagram illustrating overlap of operation taxonomic units (OTUs) in intestinal microbiota among the

samples. Data are expressed as means ± standard error of the mean (SEM; n = 11 in each group). *p< 0.05; **p< 0.01;

***p< 0.001.

https://doi.org/10.1371/journal.pone.0291022.g001
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decreased. However, irisin significantly increased Peptostreptococcaceae and Monoglobaceae
but decreased Corynebacteriaceae, Bifidobacteriaceae, Staphylococcaceae, Aerococcaceae,
Akkermansiaceae, and Carnobacteriaceae to some extent (Fig 2B).

Next, the top 10 genera were analyzed. In the I/R group, several genera (Corynebacterium,

norank_f__Erysipelotrichaceae, Bifidobacterium, Staphylococcus, and Jeotgalicoccus) were sig-

nificantly increased, however, others (Romboutsia, Turicibacter, and Monoglobus) were

markedly decreased. In contrast, irisin treatment significantly increased Romboutsia, Turici-
bacter, and Monoglobus but markedly reduced Corynebacterium, norank_f__Erysipelotricha-
ceae, Bifidobacterium, Staphylococcus, and Jeotgalicoccus (Fig 2C).

The relative abundance of 10 species was different in I/R-induced rats, with an increase of

seven species (Lactobacillus_johnsonii, uncultured_Allobaculum_sp._g__norank, Bifidobacter-
ium_animalis, Corynebacterium_stationis, uncultured_bacterium_g__Dubosiella, Staphylococ-
cus_lentus_g__Staphylococcus, and uncultured_bacterium_g__Jeotgalicoccus) and a decrease of

three species (Romboutsia_ilealis, uncultured_bacterium_g__Turicibacter, and gut_metagen-
ome_g__Lactobacillus). In the irisin group, an increase of three species (Romboutsia_ilealis,
uncultured_bacterium_g__Turicibacter, and gut_metagenome_g__Lactobacillus) and a

decrease of six species (uncultured_Allobaculum_sp._g__norank, Bifidobacterium_animalis,
Corynebacterium_stationis, uncultured_bacterium_g__Dubosiella, Staphylococcus_lentus_g__-
Staphylococcus, and uncultured_bacterium_g__Jeotgalicoccus) was observed (Fig 2D).

Fig 2. Effects of irisin treatment on the gut microbiota composition. A. Relative abundance of the major microbial phyla; B.

Relative abundance of the top 10 different families; C. Relative abundance of the top 10 different genera; D. Relative abundance of

the top 10 different species. Data are expressed as means ± standard error of the mean (SEM; n = 11 in each group).*p< 0.05;

**p< 0.01; ***p< 0.001.

https://doi.org/10.1371/journal.pone.0291022.g002
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The bacterial composition with significant differences among the sham, I/R, and irisin groups

was analyzed using LDA-LEfSe (Fig 3). In the sham group, g__Turicibacter and s__unculture-
d_bacterium_g__Turicibacter played critical roles and may be considered biomarkers. In addition,

p__Actinobacteriota, c__Actinobacteria, f__Bifidobacteriaceae, g__Bifidobacterium, o__Bifidobac-
teriales, s__Bifidobacterium_animalis, g__Dubosiella, s__uncultured_bacterium_g__Dubosiella,

s__uncultured_Allobaculum_sp__g__norank, and g__norank_f__Erysipelotrichaceae had an

important function and may be used as biomarkers in the I/R group, and g__Romboutsia,

s__Romboutsia_ilealis, f__Peptostreptococcaceae, o__Peptostreptococcales-Tissierellales, and

p__Firmicutes played a crucial part and may be considered biomarkers in the irisin group.

3.3 Effects of irisin on the gut microbiota function phenotype

The gut flora performs basic physiological functions in the host and participates in regulating

body’s homeostasis and health. Therefore, BugBase was employed to predict the functional poten-

tial of bacteria. Then, from our research results, it was found that irisin treatment affected Biofilm

Forming, Gram Positive, Gram Negative, Pathogenic Potential, Mobile Element Containing, Oxi-

dative Stress Tolerant and Oxygen Utilizing (S4 Fig). Gram negative and Biofilm forming bacteria

were more abundant in the I/R group. However, these effects were dramatically restored by irisin

(S4 Fig). Concluding, irisin treatment improved gut microbiota function phenotype.

3.4 Irisin maintains intestinal integrity in I/R rats

The gut epithelial integrity is considered the first line of defense of the gastrointestinal tract.

Intestinal dysbiosis in I/R animals may affect gut permeability and subsequently lead to release

of potentially harmful bacterial metabolites into the blood [24]. In the current study, I/R dra-

matically increased intestinal permeability and damaged the intestinal mucosa (Figs 4 and 5)

but were restored with irisin treatment.

The colon tissue of representative rats from each group showed the I/R group exhibited

inflammatory cell infiltration (Fig 4A). Notably, the ileum villi arrangement was loose and

Fig 3. Irisin alters gut microbiota biomarkers in ischemia-reperfusion (I/R) rats. Identification of discriminant taxa among the four groups based on linear

discreate analysis (LDA) effect size (LEfSe) analysis. Cladogram of the microbiota. Significant discriminant taxon nodes of the sham, I/R, and irisin groups are

represented by red, blue, and green, respectively. Nondiscriminant taxon nodes are represented by yellow. The LDA score indicates the level of differentiation

among the three groups. A threshold value of 4.0 was used as the cutoff level. Horizontal bar chart showing discriminant taxa. Significant discriminant taxa of

the sham, I/R, and irisin groups are represented by red, blue, and green, respectively.

https://doi.org/10.1371/journal.pone.0291022.g003
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disordered was observed in the I/R group (Fig 5A). In view of the obvious pathological changes

of colon and ileum in I/R rats, the level of apoptosis was assessed by TUNEL staining. Com-

pared to the Sham group, the levels of apoptosis of colon and ileum tissues were significantly

increased in the I/R group (Figs 4B and 5B). After treatment with the irisin, the colon and the

ileum structure and apoptosis level were alleviated. Inflammatory cell infiltration was

decreased in colon tissue (Fig 4A) and the shape of ileum villi was straight finger-like protru-

sions neatly and densely arranged in the irisin group (Fig 5A).

Because intestinal mucosa damage is closely associated with the expression of epithelial

mucosal proteins and tight junction proteins, the expression of ZO-1 and occludin was exam-

ined. Irisin significantly increased ZO-1 and occludin expression compared with the I/R group

in both colon and ileum tissues (Figs 4C, 4G, 5C and 5G).

These findings indicate that irisin may enhance intestinal barrier integrity in myocardial I/

R injury rats.

3.5 Effects of irisin on gut inflammation

Previous studies revealed that serum LPS and Zonulin level was positively correlated with

intestinal permeability [24, 25]. The data obtained confirm that myocardial I/R significantly

increased intestinal permeability, leading to release of bacterial LPS and Zonulin into the

Fig 4. Irisin maintains intestinal integrity in ischemia-reperfusion (I/R) rats. A. Hematoxylin and eosin (H&E) staining of colon

sections; B. Representative fluorescent pictures of TUNEL staining of colonic sections. The apoptotic cells were detected by TUNEL

(green); C. Immunofluorescence staining of the infiltration of zonula occludens-1 (ZO-1, rad) and occludin (red) in colon tissue

section; D. Histological scores for colon sections (n = 6); E. Apoptosis rate in colonic sections (n = 6); F. Quantification of staining

intensity of ZO-1 and occludin in each group (n = 6); G. ZO-1 and occludin expression in the colon tissue from each group were

evaluated using western blotting. Data are expressed as means ± standard error of the mean (SEM). *p< 0.05; **p< 0.01;

***p< 0.001.

https://doi.org/10.1371/journal.pone.0291022.g004
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blood, which was restored by irisin treatment (Fig 6A). Leaky gut was shown to produce higher

levels of proinflammatory cytokines in colon or ileum tissues, including IL-1β, IL-6, and TNF-

α [26]. In the present study, protein expression of these cytokines was measured using western

blotting; IL-1β, IL-6, and TNF-α protein expression levels were higher in colon and ileum tis-

sues of the I/R rats compared with the sham rats (Fig 6B and 6C). Notably, the protein expres-

sion level of these cytokines was altered by irisin treatment, resulting in the protein expression

level similar to the sham rats (Fig 6B and 6C).

These results show irisin reduces inflammation in I/R rats by reducing proinflammatory

cytokines in colon and ileum tissues.

3.6 Irisin reduces myocardial injury

In previous studies, ischemia for 30 min was shown to lead to significantly elevated ST seg-

ment of ECG, which decreased by at least 50% after 120 min reperfusion indicating successful

model establishment [6]. The myocardial interstitium showed inflammatory cell infiltration

and marked edema accompanied by dissolution, rupture and even necrosis of myocardial

fibers in I/R rats [27]. In the current study, irisin treatment significantly reduced the elevated

ST segment compared with I/R (S2 Fig). TTC staining was performed to analyze the infarct

area. Compared with the I/R group, treatment with irisin notably reduced myocardial I/R-

induced infarction (Fig 7A and 7D). In addition, the infiltration of inflammatory cells and

Fig 5. Irisin maintains intestinal integrity in I/R rats. A. Hematoxylin and eosin (H&E) staining of ileum sections; B.

Representative fluorescent pictures of TUNEL staining of ileum sections. The apoptotic cells were detected by TUNEL (green); C.

Immunofluorescence staining of the infiltration of zonula occludens-1 (ZO-1, red) and occludin (red) in ileum tissue sections; D.

Histological scores for ileum sections (n = 6); E. Apoptosis rate in ileum sections (n = 6); F. Quantification of staining intensity of

ZO-1 and occludin in each group (n = 6); G. ZO-1 and occludin expression in the ileum tissue from each group were evaluated using

western blotting. Data are expressed as means ± standard error of the mean (SEM). *p< 0.05; **p< 0.01; ***p< 0.001.

https://doi.org/10.1371/journal.pone.0291022.g005
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edema were reduced in the myocardial interstitium, and the myocardial fibers were intact and

neatly arranged in the irisin group (Fig 7B). Fig 7C shows the apoptosis of cardiomyocytes was

reduced in the irisin group. Cardiomyocyte necrosis can release a variety of myocardial

enzymes to reflect the degree of myocardial injury. The levels of serum myocardial enzymes

were increased in I/R group as shown in Fig 7E. Notably, the cTnI and CK levels were altered

by irisin treatment, resulting in levels similar to sham rats.

The data obtained confirm that irisin ameliorates myocardial I/R injury.

3.7 Gut microbiota-associated blood parameters, the myocardial infarct

area, colon and ileum barrier function, degree of bacterial translocation,

and inflammatory response

Based on heatmap correlation analysis, in the 10 top genus, three genus were notably associated

with blood parameters, the myocardial infarct area, colon and ileum barrier function, degree of

bacterial translocation, and inflammatory response (Fig 8). In colon and ileum, Turicibacter
was positively correlated with tight junction protein ZO-1 and occludin expression but nega-

tively correlated with serum cTnI and CK levels, the myocardial infarct area, HE score, apopto-

sis rate, inflammatory factors (IL-1β, IL-6, and TNF-α) in colon and ileum and serum LPS and

Zonulin concentration (Fig 8). Thus, these bacterial species may inhibit I/R development. In

addition, Bifidobacterium and norank_f__Erysipelotrichaceae negatively correlated with tight

junction protein ZO-1 and occludin expression in colon and ileum but positively correlated

with serum cTnI and CK levels, the myocardial infarct area, HE score, apoptosis rate, inflamma-

tory factors (IL-1β, IL-6 and TNF-α) in colon and ileum, and serum LPS and Zonulin concen-

tration (Fig 8). Thus, these bacterial species may induce I/R. Collectively, these findings

demonstrated the three bacterial species play vital roles in myocardial I/R injury.

4. Discussion

Evidence from a compilation of animal and human studies indicates the implications of gut

microbiota and their metabolites in cardiovascular diseases are well established [28, 29]. In our

Fig 6. Effects of irisin on gut inflammation. A. Serum LPS and Zonulin concentration in each group detected using

ELISA; B. Interleukin 1β (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α) expression in the colon

and ileum tissue from each group were evaluated using western blotting; C. Quantification of relative protein

expression of IL-1β, IL-6 and TNF-α. Data are expressed as means ± standard error of the mean (SEM). *p< 0.05;

**p< 0.01; ***p< 0.001.

https://doi.org/10.1371/journal.pone.0291022.g006
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Fig 7. Protective effects of irisin on myocardium in ischemia-reperfusion (I/R) rats. A. 2,3,5-triphenyl-2H-

tetrazolium chloride (TTC) staining of myocardium sections; B. Hematoxylin and eosin (H&E) staining of

myocardium sections; C. Tunnel staining of myocardium sections; D. Quantification of the infarct area in TTC

staining; E. Serum cardiac troponin I (cTnI) and creatine phosphokinase (CK) concentration in each group detected

using ELISA. Data are expressed as means ± standard error of the mean (SEM). *p< 0.05; **p< 0.01; ***p< 0.001.

https://doi.org/10.1371/journal.pone.0291022.g007

Fig 8. The relationship among blood parameters, the infarct area, colon and ileum barrier function, degree of

bacterial translocation and inflammatory response, and the 10 top genus estimated using Spearman correlation

analysis. *p< 0.05; **p< 0.01; ***p< 0.001.

https://doi.org/10.1371/journal.pone.0291022.g008
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previous studies, irisin was shown to protect the H2C9 cardiomyocytes from hypoxia and

reoxygenation injury [14]. However, whether crosstalk exists between irisin, gut microbiota

and cardioprotection remains unclear. In the present study, the data indicate that myocardial

I/R injury is accompanied by intestinal microbiota imbalance. Notably, irisin treatment signifi-

cantly decreased the abundance of gut microbiota. Furthermore, irisin treatment decreased

gut inflammation and maintained the integrity of the intestinal barrier. To the best of our

knowledge, this is the first study in which the effects of irisin on intestinal flora under myocar-

dial I/R injury stress were investigated.

We performed 16S rRNA gene sequencing on the gut microbiota. In this study, significant

microbiota changes in cecal contents in both I/R and irisin groups were observed. The results

were compatible with a recent study in which α diversity reportedly significantly increased in

I/R rats [30]. β diversity revealed significant separation of the community compositions

between the sham and I/R groups, further confirming the possible close relationship between

myocardial I/R injury and microbiota. Notably, the distribution of microbiota was not obvious

in I/R rats, which may be due to the difference in the degree of acute stress. Furthermore, irisin

prevented acute intestinal stress, thus, creating a microbiota similar to the sham group. Zhou

et al. [8] suggested that increased richness and distinct structure of microbiome may be caused

by the transportation of intestinal bacteria into the blood of I/R rats. In the present study, the

relative abundance of gut bacteria significantly changed at the phylum, family, genera, and spe-

cies level. LEfSe results were used to analyze the potential pathogenic bacteria such as p__Acti-
nobacteriota, c__Actinobacteria, f__Bifidobacteriaceae, g__Bifidobacterium,

o__Bifidobacteriales, s__Bifidobacterium_animalis, g__Dubosiella, s__uncultured_bacter-
ium_g__Dubosiella, s__uncultured_Allobaculum_sp__g__norank, g__norank_f__Erysipelotri-
chaceae in the I/R rat intestine. Bifidobacteriaceae is a common probiotic that maintains gut

microbiota balance [31]. However, the present study results are contradictory. If the relative

abundance of probiotics is too high, the balance of bacterial flora may be disrupted and poten-

tially become pathogenic bacteria. Data supporting the role of probiotics in other conditions

are often conflicting [32]. A possible explanation for these results is that different gut environ-

ments may affect the abundance and composition of gut microbiota. Furthermore, g__Rom-
boutsia, s__Romboutsia_ilealis, f__Peptostreptococcaceae, o__Peptostreptococcales-
Tissierellales, and p__Firmicutes played a crucial part and could be considered a potential pro-

biotic in the irisin group. Romboutsia species, such as Romboutsia ilealis [33] and Peptostrepto-
coccaceae [34], could utilize glucose and carbohydrates to generate short-chain fatty acids to

promote intestinal barrier integrity. Most Firmicutes are probiotics, except Lactobacillus, and

other beneficial bacteria can produce butyrate [35]. In particular, butyrate is important for

maintaining health by regulating the immune system and preserving the epithelial barrier [13,

36]. In summary, the findings showed the improvement of myocardial I/R injury due to irisin

is closely associated with the changes in intestinal flora.

MI causes ischemic stress such as intestinal hypoperfusion, loss of tight junction protein

occludin, intestinal mucosal damage, and increased intestinal permeability [37]. Tight junc-

tions are important in the intestinal mucosal barrier and located at the top of the intestinal epi-

thelium and consist of a number of proteins including ZO-1 and occludin of adjacent

intestinal cells [38]. Zonulin is currently the only physiological regulator of intestinal perme-

ability [39]. Upon stimulation by potentially harmful bacteria, Zonulin is released in large

quantities into the intestinal lumen, where it binds to the Zonulin receptor. It can down-regu-

late the expression of tight junction protein, destroy the integrity of tight junction complex,

and increase intestinal permeability [40]. In the current study, the structure of the colon and

ileum was destroyed, the apoptosis of intestinal epithelial cells was significantly increased, the

expression of ZO-1 and occludin was decreased and serum Zonulin levels were increased in
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the I/R rats. These results indicate that myocardial I/R can increase intestinal permeability in

rats, however, irisin treatment can reverse this effect. Irisin possibly increases the abundance

of beneficial bacteria in the intestine to maintain intestinal barrier integrity. Gut barrier break-

down leads to bacteria and endotoxin (LPS) translocation into the systemic circulation [41].

Then, low levels of LPS in the blood may activate TLR4 signaling in various cells, causing sys-

temic and targeted inflammation [42–44]. In the present study, serum LPS concentration and

the protein expression of inflammatory factors in colon and ileum tissues were determined.

The results indicate that irisin inhibited the transfer of LPS from the intestine to the systemic

circulation and caused overexpression of inflammatory factors IL-1β, IL-6, and TNF-α in I/R

rats. Therefore, the beneficial effects induced by irisin treatment may be attributed to specific

changes in the gut microbiota and maintenance of intestinal barrier integrity.

Furthermore, our data indicated that Turicibacter was obviously and negatively corre-

lated with serum cTnI and CK levels, the myocardial infarct area, HE score, apoptosis rate,

inflammatory factors (IL-1β, IL-6, and TNF-α) in colon and ileum and serum LPS and

Zonulin concentration. Tang et al. found that the gut microbiota was a crucial element nec-

essary for optimal cardiac repair after myocardial infarction (MI). Gut microbiota-derived

short-chain fatty acids (SCFAs) alleviate the inflammatory microenvironment after myocar-

dial infarction by regulating the immune system [45]. SCFAs could not only maintain intes-

tinal barrier function, but also regulate immune response to inhibit inflammation [46].

Turicibacter is classified as beneficial bacteria that promote the production of SCFAs [47].

Turicibacter was significantly increased in the Irisin group. In this case, our experiments

provided unequivocal evidence for protective role of irisin in myocardial I/R injury and iri-

sin or probiotics supplementation may be an alternative or adjunct therapy for cardiovascu-

lar diseases treatment.

The results of this study indicated that intestinal microbiota is involved in irisin alleviating

myocardial I/R injury. The effects of gut microbiota and intestinal barrier are likely a part of

the mechanism underlying the irisin treatment process. However, the pathway through which

irisin affects intestinal microbiota and its effects on metabolites need to be further

investigated.

Fig 9. Protective mechanisms of irisin against myocardial ischemia-reperfusion (I/R) injury. Irisin supplementation restored

the intestinal flora and intestinal barrier to inhibit bacteria and lipopolysaccharide (LPS) translocation as well as inhibit the

inflammatory response and apoptosis of cardiomyocytes, thus, exerting cardioprotective effects.

https://doi.org/10.1371/journal.pone.0291022.g009
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5. Conclusion

Myocardial I/R promotes alterations in gut microbiota that may enhance intestinal permeabil-

ity and LPS translocation. However, irisin supplementation reversed the changes in gut micro-

biota, restored intestinal barrier structure, reduced LPS translocation, and decreased the

inflammatory response, thus, exerting cardioprotective effects. In conclusion, irisin treatment

can be an important tool for preventing and treating patients with myocardial I/R and intesti-

nal flora is the mechanism affecting myocardial I/R injury (Fig 9). The results can be used to

develop new prevention and diagnostic strategies to promote the health of patients with myo-

cardial I/R.
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