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Abstract 35 

Cognitive control plays a pivotal role in guiding human goal-directed behavior. While 36 

existing studies have documented an inverted U-shaped trajectory of cognitive control 37 

both behaviorally and anatomically, little is known about the corresponding changes in 38 

functional brain activation with age. To bridge this gap, we conducted a comprehensive 39 

meta-analysis of 129 neuroimaging studies using conflict tasks, encompassing 3,388 40 

participants aged from 5 to 85 years old. We have three major findings: 1) The inverted 41 

U-shaped trajectory is the predominant pattern; 2) Cognitive control-related brain re-42 

gions exhibit heterogeneous lifespan trajectories: the frontoparietal control network fol-43 

lows inverted U-shaped trajectories, peaking between 24 and 40 years, while the dorsal 44 

attention network demonstrates no clear trajectories; 3) Both the youth and the elderly 45 

show weaker brain activities and greater left laterality than young to middle-aged adults. 46 

These results reveal the lifespan trajectories of cognitive control, highlighting hetero-47 

geneous fluctuations in brain networks with age.  48 
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Introduction 49 

The cognitive abilities of human beings dynamically change throughout the entire 50 

lifespan, experiencing rapid development in the early stages, and gradual decline in the 51 

later period of life. As one of the most fundamental cognitive functions, cognitive con-52 

trol is deeply engaged in various domains of high-level capabilities that humans greatly 53 

outperform other species, such as decision making, planning and problem solving1. 54 

Cognitive control refers to the cognitive processes that enable individuals to manage 55 

and regulate their attention, thoughts, and actions, which plays a vital role in goal-di-56 

rected behavior, allowing us to focus on the target and ignore distractors2,3. For instance, 57 

cognitive control enables us to concentrate on reading in a library despite the presence 58 

of people chatting nearby.  59 

Cognitive control provides fundamental support for normal human behaviors. 60 

Young adults typically maintain an optimal mature level of cognitive control4. However, 61 

the youth (including children and adolescents, less than 18 years) and elderly (60 years 62 

and older) individuals may struggle with behavioral problems because of their subop-63 

timal cognitive control system5-10. While the state-of-art progress of cognitive/behav-64 

ioral changes has been well-documented and shaped how the diagnosis of developmen-65 

tal/ageing related disorders11, the change of related neural system has been under-in-66 

vestigated. Understanding how the neural underpinning of cognitive control changes 67 
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over the lifespan can yield valuable insights into the developmental and aging mecha-68 

nisms of the human brain. This knowledge may assist in customizing cognitive training 69 

strategies based on related brain regions and their activities12. 70 

Researchers generally believe that cognitive control ability follows an inverted U-71 

shaped trajectory across the lifespan5,13,14,17. This inverted U-shaped trajectory has been 72 

generally supported by behavioral and anatomical evidence. The Eriksen Flanker task 73 

(requiring participants to respond to central stimuli while ignoring flanking distractions) 74 

has been widely utilized to detect cognitive control across the lifespan15, and results 75 

suggest a clear U-shape trajectory of conflict cost (measured by worsened behavioral 76 

performance, e.g., reaction time, in incongruent compared to congruent conditions) 77 

with age16-18. Similar results have been observed in other conflict tasks, such as color-78 

word Stroop (requiring participants to name the ink color of a word that is incongruent 79 

with the word’s semantic meaning)16. Recent large-cohort studies have also found that 80 

gray and white matter volumes across all brain regions exhibit overall inverted U-81 

shaped trajectories with age, with the gray matter volume peaking at early adolescence 82 

and the white matter volume peaking at young adulthood19,20. During late adulthood, 83 

normal ageing yields a protracted decline of brain structure, with the volumes of both 84 

gray matter and white matter reduced14. Consistently, the gray matter volumes of the 85 

frontal and parietal regions, which are essential in cognitive control tasks21, have also 86 

been found to increase during early childhood and atrophy in early elderly age22.  87 
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However, it remains largely unknown how brain activities related to cognitive 88 

control change over the lifespan. Previous research has primarily focused on brain ac-89 

tivities in either youths or elderly adults, rather than examining changes across the en-90 

tire lifespan. With conflict paradigms, children and adolescents are often found to have 91 

lower brain activity than young adults in frontoparietal regions (refs.23-28, but see Bunge 92 

et al. 29). For example, a study utilizing the Flanker task revealed that children aged 93 

8−12 years had reduced activation in dorsolateral prefrontal regions compared to young 94 

adults, suggesting an immature cognitive control system27. However, brain activity dif-95 

ferences in elderly adults as compared to young adults during cognitive control tasks 96 

have been less consistently reported14. Some studies have found that elderly adults have 97 

lower neural activity in frontoparietal regions than young adults30-32, possibly because 98 

elderly adults may be unable to engage in an equal level of control-related activity due 99 

to functional decline. On the other hand, other studies have found that elderly adults 100 

may exhibit greater brain activity in frontoparietal regions than young adults33,34, pos-101 

sibly because they have recruited additional brain regions to compensate for their de-102 

creased efficiency in utilizing control resources. Adding to the debate, it has been pro-103 

posed that the cognitive control function in elderly adults might not decline at all35,36. 104 

These conflicting findings underscore the complexity of understanding age-related dif-105 

ferences in cognitive control. 106 

Few studies have directly tested the change of brain activities related to cognitive 107 

control across the lifespan. One existing study observed a positive association between 108 
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the activation of the bilateral prefrontal cortex and age37. Given the relatively small 109 

sample size (N = 30), the reliability of these findings is somewhat limited. As a result, 110 

it is difficult to draw a clear conclusion about how brain activities related to cognitive 111 

control change across the entire age range. 112 

One direct way to test the lifespan trajectory of brain activation related to cognitive 113 

control is to conduct a large cohort of neuroimaging study with participants covering a 114 

wide age range. To the best of our knowledge, such studies have not yet been conducted. 115 

An alternative approach is to utilize meta-analyses to combine the results of existing 116 

studies targeting different age groups. Compared to the large cohort studies, meta-anal-117 

yses are more accessible and resource-saving. In addition, meta-analyses can increase 118 

the statistical power and generalizability by combining various studies, reducing heter-119 

ogeneity and bias from individual studies’ methods, populations, or confounding vari-120 

ables38. Importantly, meta-analyses can reveal patterns not evident in individual studies, 121 

like nonlinear effects or interactions38. Several neuroimaging meta-analyses have ex-122 

amined age-related changes of cognitive control brain activity31,39,40, but limitations 123 

such as incomplete age coverage and insufficient studies in certain age ranges prevent 124 

them from appropriately answering questions about the lifespan trajectory of cognitive 125 

control functions31,39,40. These studies have primarily focused on spatial convergence 126 

and/or diversity of coordinates across different age ranges, offering limited insights into 127 

lifespan trajectories of activity strength. Although a few studies have attempted para-128 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 17, 2024. ; https://doi.org/10.1101/2023.08.20.554018doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.20.554018
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

metric meta-regression to examine the age-related differences in cognitive control-re-129 

lated brain activity39,41, they have been constrained by utilizing linear models that may 130 

overlook non-linear trajectory patterns, such as the inverted U-shaped trend. 131 

The goal of this study is to provide a comprehensive examination to reveal the 132 

lifespan trajectory of brain activities responsible for cognitive control. Instead of en-133 

compassing various aspects of cognitive control, we focus on conflict processing for 134 

several reasons. First, conflict processing reflects the fundamental cognitive control 135 

ability to maintain a goal while avoiding distractions2. Second, its mechanisms in young 136 

adults are relatively well-known, with the frontoparietal and cingulo-opercular net-137 

works engaged21,42, providing a baseline reference for our study. Third, conflict tasks 138 

with neuroimaging data have been widely applied to both younger and elderly groups, 139 

making a systematic meta-analysis feasible. Lastly, different conflict tasks share key 140 

components of cognitive control, such as conflict monitoring43 and inhibitory control8, 141 

which enables us to conduct effect-size-based meta-analyses using the congruency ef-142 

fect (i.e., the contrast between incongruent and congruent/neutral conditions). Including 143 

other sub-processes of cognitive control may introduce heterogeneity and make effect 144 

sizes incomparable. 145 

Previous research suggests that better cognitive control-related performance is of-146 

ten associated with greater brain activity, especially in the prefrontal cortex44. Therefore, 147 
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we hypothesized that brain activities related to cognitive control might follow an in-148 

verted U-shaped trajectory like that of behavior patterns. Additionally, we hypothesized 149 

that different brain networks may show some heterogeneity in their lifespan trajectories. 150 

Results 151 

Sample Description 152 

A total of 3,611 articles were identified including 3,484 articles searched from the da-153 

tabase, 111 articles adopted from a previous study21, and 16 articles searched from the 154 

references of crucial articles. After excluding duplicates and applying exclusion criteria, 155 

119 articles including 129 studies with 3,388 participants and 1,579 brain activation 156 

foci, were included in this meta-analytic study (Supplementary Fig. S1 and Table S1). 157 

The average age of participants ranged from 8 to 74 years, with the individual age rang-158 

ing from 5 to 85 years. A demonstration of the age distribution for each included study 159 

is presented in Supplementary Fig. S2. 160 

Regions Related to Cognitive Control Identified by both ALE and SDM 161 

To enhance the replicability and robustness of our finding and enable direct comparison 162 

with a previous study21, we conducted the mean analysis across all studies with the 163 

activation likelihood estimation (ALE) and seed-based d mapping (SDM) approaches 164 

separately. First, we performed the single dataset analysis with the GingerALE software 165 
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to explore the brain regions consistently reported in all the included studies (see section 166 

“Activation Likelihood Estimation (ALE)” in Methods). Results showed significant ac-167 

tivation in the frontoparietal regions, including the left dorsolateral prefrontal cortex, 168 

bilateral frontal eye field, right inferior frontal gyrus and bilateral inferior parietal lob-169 

ule; the cingulo-opercular regions, including the supplementary motor area and bilateral 170 

insula; and other regions, including the left inferior temporal gyri (Fig. 1A and Supple-171 

mentary Table S2). Second, we calculated the average brain activation based on the 172 

effect sizes reported in all studies using the SDM with permutation of subject images 173 

(SDM-PSI) software (see section “Mean Analyses Across all Studies” in Methods). 174 

Similar to the ALE results, we found significant activation in the frontoparietal regions 175 

(left inferior parietal lobule, right inferior frontal gyrus, and right middle frontal gyrus), 176 

the cingulo-opercular regions (left anterior cingulate cortex), and other regions includ-177 

ing bilateral inferior temporal gyrus, right caudate nucleus, right cerebellum, and left 178 

anterior thalamic projections (Fig. 1B and Supplementary Table S3). The count of 179 

voxels revealed that the overlapped area (3,496 voxels, Fig. 1C) accounted for 96.3% 180 

of the regions from the ALE analysis (3,635 voxels), and 15.0% of the regions from the 181 

SDM analysis (23,240 voxels). This result suggested that SDM analysis could be a re-182 

liable approach for detecting brain regions, thereby laying a solid foundation for using 183 

this approach in subsequent analyses. In addition, a robustness analysis suggested that 184 

age does not influence the mean results of SDM analysis (Supplementary Fig. S3 and 185 

Table S2).  186 
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[Fig. 1] 187 

Trajectories of Cognitive Control Regions Identified in the Mean Analysis 188 

Having identified nine brain regions in the mean analysis using SDM-PSI, we pro-189 

ceeded to explore how the activation levels of these regions change with age. To this 190 

end, we extracted brain activity data from all studies for each identified region. Before 191 

performing the meta-regression, we verified the effectiveness of using mean age as a 192 

predictor with a simulation approach (Supplementary Note S1 and Fig. S4). We then 193 

subjected the extracted data to separate generalized additive model (GAM) analyses, 194 

factoring in the confounding covariates (see section “Generalized Additive Model 195 

(GAM) Fitting” in Methods). The analyses (Supplementary Table S4) revealed signifi-196 

cant age-related changes in the activation levels of 4 out of the 9 regions (Fig. 2, l-ACC, 197 

r-IFG, l-ITG, and r-CN). Visualization of the trajectories suggests that these regions 198 

showed inverted U-shaped patterns. The significance of their inverted U-shaped trajec-199 

tories was further examined using a two-line test approach45. Results suggest that all 200 

four regions involve an increase in activity from childhood to young adulthood (ap-201 

proximately up to 30 years of age), and three of them (r-IFG, l-ITG and r-CN) showed 202 

consistent decrease in the later stages of age (Supplementary Note S2). The other five 203 

regions (Fig. 2, l-IPL, r-ITG, r-MFG, r-CB and l-ATP) showed no significant age-re-204 

lated changes. Notably, none of the clusters showed significant publication bias based 205 

on Egger’s test (ps > 0.86), and they all showed low between-study heterogeneity (τs < 206 
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0.13, Qs < 12.11, I²s < 25%). This indicates that the observed results are not likely 207 

influenced by biased reporting or substantial variability in the included studies. A ro-208 

bustness analysis further ruled out the potential influence of including unpublished and 209 

non-English studies in this study (Supplementary Note S4 and Fig. S5). 210 

[Fig. 2] 211 

Note that some regions are large, containing up to over 9,000 voxels. This could 212 

obscure the distinct trajectories specific to different subregions, which are crucial in 213 

understanding the hierarchical patterns of lifespan trajectories. We address this by using 214 

a more granular approach below. 215 

Detecting Different Trajectories of Whole Brain Activities 216 

To explore various possibilities of lifespan trajectories, we grouped studies by their 217 

mean age into the youth, young to middle-aged, and elderly groups, and then conducted 218 

several contrast analyses (see section “Contrast Analysis” in Methods). These analyses 219 

did not reveal any regions that exhibited significantly higher or lower brain activity in 220 

the youth compared to others (the combination of young to middle-aged and older 221 

adults) (Table 1). Similarly, we did not observe any regions with higher or lower brain 222 

activity in older adults compared to others (the combination of the youth and young to 223 

middle-aged adults) (Table 1). These results excluded the possibilities of increase/de-224 

crease-then-stable and stable-then-increase/decrease trajectories (Fig. 3, panels D, F, G, 225 
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and I). In addition, we failed to observe any region showing lower activity in young to 226 

middle-aged adults than others (the combination of the youth and older adults), and 227 

thereby ruled out the possibility of the upright U-shaped trajectory (Table 1, Fig. 3E). 228 

[Fig. 3] 229 

However, we identified greater activity in young to middle-aged adults compared 230 

to others in the frontoparietal regions, including bilateral inferior frontal gyrus and bi-231 

lateral inferior parietal lobule; the cingulo-opercular regions, including left supplemen-232 

tary motor area, left insula, and right middle cingulate cortex; and a subcortical re-233 

gion—right caudate nucleus (Fig. 4 and Table 1). This result essentially supports an 234 

inverted U-shaped trajectory. Notably, none of the clusters showed significant publica-235 

tion bias based on Egger’s test (ps > 0.79), and they all showed low between-study 236 

heterogeneity (τs < 0.17, Qs < 12.21, I²s < 25%). This indicates that the observed results 237 

are not likely influenced by biased reporting or substantial variability in the included 238 

studies. Consistently, further contrast analyses revealed that the young to middle-aged 239 

adults showed greater activity than both the youth (Supplementary Fig. S6) and the 240 

elderly (Supplementary Fig. S7). 241 

Fitting the Lifespan Trajectories with the GAM 242 

For each region identified from the contrast between young to middle-aged adults and 243 

others, the GAM could fit the data significantly with a smooth curve (Fig. 4), with 244 
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degrees of freedom varying from 2.9 to 6.7. Peak ages of the inverted U-shaped trajec-245 

tories were between 24.5 and 39.4 years. Detailed statistics are shown in Supplementary 246 

Table S4. 247 

Model Simplification of the Lifespan Trajectories 248 

Considering the GAM may overfit the data, we fitted the results with simpler models 249 

commonly adopted in lifespan developmental literature46-48, including the quadratic, 250 

cubic, square root and quadratic logarithmic models, and estimated the goodness of fit 251 

by comparing their Akaike information criterion (AIC) (see section “Model Simplifica-252 

tion and Model Comparison” in Methods). Results showed that the quadratic model 253 

provided the best fit for capturing the age-related changes in left inferior parietal lobule, 254 

while the square root model demonstrated the best goodness of fit for all the other re-255 

gions (Supplementary Table S5). We also calculated the peak age for each region based 256 

on the optimal model, and results showed that the peak ages ranged from 33.3 to 40.0 257 

years. In addition, we found the peak ages obtained from the above optimal model (i.e., 258 

square root or quadratic models) and the GAM are consistent, r = 0.71, p = 0.032, 95% 259 

CI = [0.09 0.93]. See Fig. 4 and Supplementary Table S6 for details. 260 

[Fig. 4] 261 

Fitting the Whole Brain with Square Root and Linear Models 262 

Based on model comparisons, we found that the square root model provided the best 263 
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goodness of fit for the age-related change of the brain activities. To supplement the 264 

inverted U-shaped results from the contrast analysis, the square root function was then 265 

submitted to whole-brain meta-regression analyses in SDM-PSI (see section “Meta-266 

regression Analyses” in Methods). 267 

By fitting the activation over the whole brain, we found seven significant brain 268 

regions, including the bilateral inferior frontal gyrus, right angular, left inferior parietal 269 

lobule, right insula, right caudate nucleus, and left anterior thalamic projections (Fig. 270 

5A and Supplementary Table S7). These results further supported the existence of the 271 

inverted U-shaped regions we initially identified (Fig. 4). 272 

In addition, we explored the whole-brain trajectories with a linear meta-regression 273 

(see section “Meta-regression Analyses” in Methods). However, no significant regions 274 

were observed (Fig. 5B), even under a more tolerant threshold of uncorrected p < 0.01. 275 

[Fig. 5] 276 

Dissociated Brain Networks with Distinct Lifespan Trajectories 277 

We note that the inverted U-shaped regions constitute only part of the cognitive control-278 

related regions (Fig. 2), and the remaining regions show a less clear trajectory. To fur-279 

ther elucidate the spatial distribution of brain regions following these different trajec-280 

tory patterns, we used the results from the mean SDM analysis (Fig. 1B) as the mask 281 

and replotted the results of the contrast analysis between young to middle-aged adults 282 

and others with two different thresholds, and then compared them with the Yeo’s 7-283 
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network atlas49 (Fig. 6). Visualization of the spatial distribution patterns revealed a dis-284 

sociation between the middle frontal gyrus and its adjacent rostral and caudal areas (Fig. 285 

6A). Moreover, the distribution of inverted U-shaped regions was more consistent with 286 

the frontoparietal control network (FPCN), and the distribution of non-U-shaped re-287 

gions was more closely related to the dorsal attention network (DAN, Fig. 6B). The 288 

count of voxels revealed that a numerically larger portion of the inverted U-shaped re-289 

gions overlapped with the FPCN (2,538 voxels) than with the DAN (932 voxels), while 290 

the overlap with the cingulo-opercular network (CON) was in between (1,867 voxels). 291 

Conversely, a numerically larger portion of the non-U-shaped regions overlapped with 292 

the DAN (3,009 voxels) than with the FPN (2,447 voxels), while the overlap with the 293 

CON was lower (1,594 voxels).  294 

[Fig. 6] 295 

To further investigate the potential functional difference between the two sets of 296 

brain regions, we decoded the related terms with the Neurosynth decoder41 (see section 297 

“Neurosynth Decoding Analysis” in Methods). Results showed that the inverted U-298 

shaped regions were related to the term “cognitive control”(r = 0.187), but were less so 299 

to “attentional” (r = 0.100) and “monitoring” (r = 0.072). Note the keyword “monitor-300 

ing” refers to the major function of the cingulo-opercular network21. On the other hand, 301 

the non-U-shaped regions were related to the term “attentional” (r = 0.240) but were 302 

less so to “monitoring” (r = 0.090) and “control” (r = 0.062) (Supplementary Table S8). 303 
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This result suggests that the inverted U-shaped and non-U-shaped regions may be as-304 

sociated with cognitive control and attention, respectively, which is consistent with the 305 

frontoparietal control network and dorsal attention network as identified in the atlas 306 

overlapping analysis. 307 

Lifespan Trajectory of the Laterality 308 

We also tested how the laterality of the brain activity changes with age (see section 309 

“Laterality Analysis” in Methods). We first modeled the laterality trajectory using the 310 

GAM. Results showed a significant model fitting, F(3.0, 3.7) = 3.49, p = 0.012, R2 = 311 

0.24. Moreover, we fitted the data with the four simplified models (i.e., the quadratic, 312 

cubic, square root, and quadratic logarithmic models). The results showed that a square 313 

root function provided the best goodness of fit, with the sqrt(age) = −0.68 (95% CI = 314 

[−1.02, −0.33]), p < 0.001. The two-line test suggests the hypothetical peaks from both 315 

models did not reach significance (Supplementary Note S2). A visually upright U-316 

shaped trajectory indicated the youth and elderly adults tended to be more left-lateral-317 

ized across the whole brain. A further comparison of the relative levels of laterality 318 

across different age groups revealed that both the youth and the elderly groups exhibited 319 

greater left lateralization than the young to middle-aged adult group (Supplementary 320 

Note S3). This left-lateralized pattern could be illustrated by the brain map estimated 321 

with voxel-wise laterality calculation (Fig. 7). 322 

[Fig. 7] 323 
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Discussion 324 

The present study yielded three primary findings: 1) Among different possible trajec-325 

tories, only the inverted U-shaped trajectories were reliably observed across the whole 326 

brain; 2) The cognitive control-related brain regions exhibit heterogeneous lifespan tra-327 

jectories: the frontoparietal control network (such as the inferior frontal gyrus and in-328 

ferior parietal lobule) follows inverted U-shaped trajectories, peaking between 24 and 329 

40 years, while the dorsal attention network (such as the frontal eye field and superior 330 

parietal lobule) demonstrates less clear trajectories with age; 3) The youth and the el-331 

derly demonstrate weaker brain activities and a relatively greater extent of left laterality 332 

compared to the young to middle-aged adults. These results provide strong evidence 333 

for the existence of cognitive control regions exhibiting inverted U-shaped trajectory, 334 

and also show the heterogenous lifespan trajectories in different brain regions. 335 

The Inverted U-shaped Trajectory of Brain Activity Related to Cognitive Control  336 

The main finding is that a wide range of cognitive control regions follow inverted U-337 

shaped lifespan trajectories, but no regions showed decrease-then-stable (Fig. 3D), up-338 

right U-shaped (Fig. 3E), stable-then-increase (Fig. 3F), increase-then-stable (Fig. 3G), 339 

stable-then-decrease (Fig. 3I), or linear trajectories (Fig. 3A and 3C).  340 

The greater activation in the frontoparietal control network among young to mid-341 

dle-aged adults compared to the youth and the elderly supports the notion that cognitive 342 
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control abilities may not be fully developed in children and may decline in the elderly. 343 

This finding is consistent with the idea that the cognitive control system is most effec-344 

tive in young adulthood, suggesting a possible correlation between the higher functional 345 

activations in the brain and the superior performance of young adults on cognitive con-346 

trol tasks50. Consistently, a previous study29 showed that behavioral performance (suc-347 

cess of interference suppression) is positively correlated with the activity in frontal re-348 

gions. Similar patterns have been repeatedly reported51,52, although the opposite results 349 

have also been observed53. 350 

The inverted U-shaped trajectory of brain activation might be associated with the 351 

development of brain structure and functional changes. First, it may reflect the well-352 

documented structural changes that occur in these regions across the lifespan, which 353 

include synaptic pruning, myelination, cortical thinning, and white matter matura-354 

tion19,54. For example, the density of dopamine receptors increases during adolescence 355 

and young adulthood and subsequently declines with age55. These changes can affect 356 

the efficiency and connectivity of neural circuits within the frontoparietal control net-357 

work13,56. Second, the inverted U-shaped trajectory may also arise from functional 358 

changes resulting from the modulation of neurotransmitters, hormones, and environ-359 

mental factors57. Understanding change patterns of brain structure and function is crit-360 

ical for developing interventions and treatments aimed at improving cognitive control 361 

abilities across the lifespan. 362 
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The present results further revealed that the inverted U-shaped lifespan trajectories 363 

of cognitive control regions are not uniform. The GAM fitting results (Fig. 4, Supple-364 

mentary Table S4) showed that the subregions exhibited varying degrees of association 365 

with age. Moreover, the model simplification demonstrated different underlying trajec-366 

tory curves, with most regions showing a skewed shape that could best be fitted with a 367 

square root model, except that one region showed a symmetric quadratic shape. The 368 

quadratic lifespan trajectory has been well-documented in previous studies19,46,48,58, 369 

while the application of the square root model has been relatively rare59. The square 370 

root model can better capture the early peak in the trajectory. We also identified differ-371 

ent peak ages for those regions, ranging from 24 to 40 years, suggesting that cognitive 372 

control regions may not develop at the same rate.  373 

Hierarchical development trajectories in different brain networks 374 

Previous research has indicated that the attentional orientation function is preserved 375 

during ageing35,60. Consistently, we found that the dorsal attention network regions un-376 

derlying the attentional orientation showed no significant age-related change, in con-377 

trast to the inverted U-shaped trajectory in frontoparietal control network regions. In 378 

addition, we observed that the supporting regions mediating top-down control with mo-379 

tor61 (right cerebellum, Fig. 2) and sensory62 (left anterior thalamic projections, Fig. 2) 380 

functions also lack the sensitivity to age. The dissociation across regions may reflect 381 

hierarchical associations with age on brain function.  382 
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The brain regions are organized in a functional hierarchy, with the frontoparietal 383 

control network at the highest level. It acts as a hub that interacts with other systems, 384 

including the dorsal attention network63. The cingulo-opercular network did not present 385 

a clear dissociation of trajectory patterns, possibly suggesting its intermediate position 386 

between the frontoparietal control and dorsal attention networks64. During conflict tasks, 387 

these networks function in a hierarchical manner. The frontoparietal control network 388 

maintains task goals and resolves conflicts, the cingulo-opercular network monitors 389 

conflict, and the dorsal attention network directs attention towards task-relevant stim-390 

uli65. Even within the prefrontal cortex itself, a hierarchical organization exists, with 391 

middle frontal areas occupying the peak position66. This is in line with our finding that 392 

the middle frontal cortex is dissociated from rostral and caudal frontal regions (Fig. 6A). 393 

In addition, previous research suggests that the frontoparietal control network can be 394 

further divided67, with the rostral and caudal frontal regions observed in our study align-395 

ing closely with the sub-network that connects more strongly with the dorsolateral at-396 

tention network. This may explain why some areas within the frontal region do not 397 

show age-related changes. 398 

Furthermore, different brain regions exhibit different age-related changes. Higher-399 

order regions typically have more complex lifespan trajectories58 and reach peaks dur-400 

ing later periods56,68. Specifically, prefrontal control regions are among the last to ma-401 

ture and one of the earliest to decline5,13,69. Therefore, the different lifespan trajectory 402 
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patterns among different networks likely reflect their hierarchical positions of age-re-403 

lated changes. 404 

Implications for the Compensatory and Asymmetry Reduction Theories 405 

Critically, there was no region showing higher activity in the elderly compared to the 406 

young to middle-aged adults, but we observed several regions showing the opposite 407 

(Supplementary Note S3 and Table S9). The results persisted after we controlled the 408 

behavioral congruency effect (Supplementary Note S4 and Fig. S8), thereby ruling out 409 

the possibility of weaker brain activity associated with poor behavioral performance in 410 

the elderly. The observed decrease in brain activation among the elderly might be at-411 

tributed to several interrelated factors. First, cognitive control regions, especially the 412 

frontal area, tend to shrink with age, leading to a reduction in overall brain volume and 413 

potential loss of synaptic integrity70. This shrinkage can impair the brain’s ability to 414 

effectively process and manage complex tasks. Another significant factor is the impair-415 

ment of neurovascular coupling, the relationship between neuronal activity, synaptic 416 

function, and subsequent blood flow, which disrupts the brain’s ability to maintain op-417 

timal function during cognitive tasks71,72. Furthermore, the decrease in cerebral blood 418 

flow with age can diminish the delivery of essential nutrients and oxygen to the brain, 419 

impairing its overall functionality73. These changes could lead to regional abnormali-420 

ties, such as blood flow, blood volume, metabolic rate, or BOLD-derived physiologic 421 
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proxies like the fractional amplitude of low-frequency fluctuation and regional homo-422 

geneity74. Future studies may validate and extend our study by adopting the age-sensi-423 

tive regions we observed and testing other measurements, such as resting-state data, 424 

which are more easily collected in large-scale studies involving children and the elderly 425 

compared to task-based activations. 426 

The compensatory theory10 proposes that the elderly recruit additional brain re-427 

gions to compensate for age-related cognitive decline, but our results did not show this 428 

pattern. We suggest that the absence of compensatory upregulation in frontoparietal 429 

regions among the elderly observed in our study might be attributed to limited available 430 

resources when cognitive control related brain regions are already fully engaged75,76. 431 

Previous research has shown that younger adults recruit lower activity in frontoparietal 432 

regions during the congruent condition but significantly greater activities during the 433 

incongruent condition. In contrast, older adults already show a relatively higher activa-434 

tion during the congruent condition, leaving limited capacity for further increases in 435 

activation during the incongruent condition32. This is consistent with our findings, 436 

which are based on the contrast between incongruent and congruent conditions.  437 

Moreover, the nature of the task investigated might influence whether there is an up-438 

regulation in cognitive control regions with age. Upregulation in the frontal regions 439 

usually compensates for memory and sensory declination due to deficits in the hippo-440 

campus and sensory cortices77. Semantic cognition78 might also be a target of compen-441 
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sation. However, conflict tasks seem to rely minimally on memory, and involve rela-442 

tively simple sensory stimuli (e.g., colors and locations) and simple semantic pro-443 

cessing (e.g., reading a word). As such, conflict tasks may not necessitate compensation 444 

in these functions. 445 

In addition, compensation in older adults may manifest as increased recruitment 446 

of bilateral regions and homologues with age79. For example, the hemispheric asym-447 

metry reduction in older adults (HAROLD) theory80 suggests that older adults typically 448 

exhibit less lateralization, either as a compensatory response to functional deficits or as 449 

a reflection of neural dedifferentiation. However, we observed that the elderly showed 450 

greater left lateralization compared to young to middle-aged adults. This finding is in-451 

consistent with the assumption of HAROLD but aligns with the right hemi-ageing 452 

model81, which posits that the right hemisphere is more vulnerable to age-related de-453 

cline. Prior research has shown that functional connectivity within the frontoparietal 454 

control network is more disrupted in the right hemisphere than in the left during age-455 

ing82. This suggests that neural resources in the right hemisphere might be more limited 456 

for the elderly, reducing its capacity to compensate for cognitive demands. Stronger 457 

patterns of left laterality were also identified in childhood in the current study, primarily 458 

noticeable within the prefrontal region (Fig. 7), which may reflect the earlier develop-459 

ment of the left hemisphere compared to the right83. In contrast, we found lower lateral-460 

ization in young adults. It is possible that previous studies showing stronger laterality 461 

in young adults may have been biased by too small sample sizes and the use of non-462 
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quantitative methods for calculation of laterality84,85. Moreover, because both left and 463 

right lateralized results were reported in the literature on laterality81, it is reasonable to 464 

observe low laterality for young to middle-aged adults in the current meta-analysis. 465 

Methodology Implications 466 

By incorporating all the studies, our results demonstrate that the SDM can reliably iden-467 

tify brain regions as the ALE. However, the SDM has the added advantage of fully 468 

utilizing existing effect size data and coordinates86, allowing us to compare the relative 469 

activity strength among various age groups, such as the contrast between young to mid-470 

dle-aged adults and elderly groups. More importantly, this approach allows for meta-471 

regressions to examine parametric relationships between brain region activity and age, 472 

providing insights into the lifespan trajectories of cognitive control regions.  473 

Limitation of Results 474 

One caveat to consider in this study is the non-uniform distribution of age among the 475 

included studies. Specifically, there is a noticeable gap in the age range of 45 to 60 476 

years. Consequently, the observed age distribution could potentially influence the re-477 

sults of the regression analysis. We hope that future research could allocate more atten-478 

tion to the middle-aged period, considering the significant cognitive and neural changes 479 

during this stage, such as the onset of cognitive decline15,17,87. In addition, it is crucial 480 

to avoid the occurrence of ecological fallacy88 (associations observed at the group level 481 
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are erroneously assumed to apply to individuals) when interpreting the results of meta-482 

regression analyses. Therefore, associations between brain activities and age across var-483 

ious studies do not provide direct insights into the specific age-related changes at the 484 

individual level. Future research incorporating individual-level investigations (e.g., lon-485 

gitudinal follow-up studies) is crucial to obtaining a more comprehensive understand-486 

ing of these relationships.  487 

Conclusions 488 

Our meta-analysis adopted advanced meta-regression approaches to chart the lifespan 489 

trajectories of cognitive control brain activities. We observed inverted U-shaped chang-490 

ing patterns in regions aligned with the frontoparietal control network, with the peaks 491 

occurring between 24 and 40 years. In contrast, the dorsal attention network does not 492 

present a clear age-related trajectory. This dissociation may reflect the hierarchy of 493 

brain development in different regions. No other trajectory patterns were observed, 494 

highlighting the predominance of the inverted U-shaped pattern in the lifespan trajec-495 

tory of cognitive control. Furthermore, we found the youth and elderly showed a more 496 

asymmetric brain distribution than young to middle-aged adults. In sum, these results 497 

demonstrate the multifaceted nature of age-related changes in cognitive control brain 498 

function.  499 
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Methods 500 

Literature Preparation 501 

Literature Search 502 

We report how we determined all data exclusions (if any), all manipulations, and all 503 

measures in the study. We first searched both English and Chinese articles on the youth 504 

and the elderly from PUBMED, Web of Science and CNKI (China National Knowledge 505 

Infrastructure) till 2022. The following search terms were applied in titles, abstracts, 506 

table of contents, indexing, and key concepts: (“Stroop” OR “Flanker” OR “Simon” 507 

OR “SNARC” OR “Navon” OR “interference” OR “cognitive conflict”) AND (“fMRI” 508 

OR “functional resonance imaging” OR “functional imaging” OR “neuroimaging” 509 

OR “PET”) AND (“children” OR “kids” OR “adolescents” OR “teenagers” OR “un-510 

derage” OR “aged” OR “old” OR “older” OR “elder” OR “elderly” OR “senior” 511 

OR “development” OR “developmental” OR “aging” OR “life span”). The above pro-512 

cess yielded 3,484 articles. In addition, 111 studies on young to middle-aged adults 513 

from a previous meta-analysis study21 were included in the literature pool, 40 of which 514 

were excluded according to the current literature exclusion criteria (see below). More-515 

over, we screened 16 articles citing or being cited by the crucial literature. After remov-516 

ing duplicates, the literature search identified 2,930 articles. 517 
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Exclusion Criteria 518 

We excluded any articles that met one or more of the following predefined exclusion 519 

criteria89: 1) not in English or Chinese; 2) not including healthy human participants; 3) 520 

case study; 4) not empirical study; 5) not functional resonance imaging (fMRI) or pos-521 

itron emission tomography (PET) study; 6) not whole-brain results (i.e., not have cov-522 

ered the whole gray matter); 7) not in Talairach or Montreal Neurological Institute 523 

(MNI) space; 8) not reflecting the congruency effect (i.e., contrasts between incongru-524 

ent and congruent or between incongruent and neutral conditions); 9) not reporting ex-525 

act mean age of participants. 526 

A total of 119 articles were identified as eligible for inclusion in our meta-analyses. 527 

No statistical methods were used to pre-determine sample sizes, but our sample sizes 528 

are similar to or larger than those reported in previous publications31,90. Supplementary 529 

Fig. S1 shows the preferred reporting items for systematic reviews and meta-analyses 530 

(PRISMA)91 flow chart for the literature screening process. The 119 articles included 531 

129 studies (individual contrasts reported in the articles) with 3,388 participants and 532 

1,579 activation foci reported. All studies were published or completed between 1994 533 

and 2022. None of the experiments share the same group of participants. The included 534 

studies are written in English (124 studies) and Chinese (5 studies). Of the studies in-535 

cluded, 125 were published in peer-reviewed journals, and 4 were master’s theses. All 536 

included studies reported the task type used, including 74 studies utilizing Stroop-like 537 
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task (57%), 25 studies utilizing Simon task (19%), 25 studies utilizing Flanker task 538 

(19%), 2 studies utilizing a combination of Simon and Flanker tasks (2%), 1 study uti-539 

lizing a combination of Simon and Stroop tasks (1%), and 3 studies utilizing multi-540 

source interference task (2%). In addition, the contrasts conducted to reveal brain acti-541 

vations were also reported, with 98 studies (76%) resulting from the contrast of Incon-542 

gruent trials > Congruent trials, 25 studies (19%) resulting from the contrast of Incon-543 

gruent trials > Neutral trials, and 6 studies (5%) resulting from the union contrast of 544 

Incongruent trials > Congruent trials and Incongruent trials > Neutral trials. Regarding 545 

the handedness of participants in the included studies, 89 studies (69%) included right-546 

handed participants only, 6 studies (5%) included both left and right-handed partici-547 

pants, while 34 studies (26%) did not report this information. Furthermore, 78 studies 548 

(60%) included only correct response trials, 2 studies (2%) included both correct and 549 

incorrect response trials, while 49 studies (38%) did not report this information. A de-550 

tailed description of these features for each study is available in the Supplementary 551 

Table S1. To eliminate the influence of these confounding factors, we included them as 552 

covariates in the modeling analyses. 553 

Coding Procedure 554 

A coding manual was formulated to record pertinent study information, including au-555 

thors, publication dates, experimental tasks, contrasts, and sample demographics (such 556 
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as the average age and sample size). To ensure coding accuracy, two authors inde-557 

pendently coded all studies, with discrepancies resolved through discussion or refer-558 

ence to the original studies. In instances where studies lacked essential information, 559 

such as peak coordinates for relevant contrasts, participant age averages, or data for 560 

specific age groups, efforts were made to contact the authors via e-mail to obtain the 561 

relevant data. In addition, both coordinates and effect sizes (i.e., Hedge’s g) were ex-562 

tracted from each study. Further, Talairach space coordinates were transformed to MNI 563 

coordinates using the Lancaster transform92. 564 

Meta-Analytic Procedure 565 

Activation Likelihood Estimation (ALE) 566 

In order to obtain a comprehensive understanding of cognitive control-related brain ac-567 

tivity across all age groups and to replicate a prior study21, we initially conducted a 568 

single dataset meta-analysis using BrainMap GingerALE software93 (version 3.0.2, 569 

http://www.brainmap.org). This meta-analytical approach, known as activation likeli-570 

hood estimation, utilizes the spatial convergence of brain activity across multiple stud-571 

ies to determine the probability of activation in specific regions. Foci from individual 572 

studies were transformed into a standardized coordinate space and modeled as Gaussian 573 

probability values that accounted for variability in the number of participants in each 574 
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study. In situations where foci overlapped across studies, multiple Gaussians were as-575 

sociated with a single focus, and ALE selected the Gaussian with maximum probability 576 

for each focus93. Subsequently, ALE score maps were generated by comparing these 577 

modeled Gaussian distributions with a null distribution that simulated random brain 578 

effects. The null distribution was generated using the same sample size and number of 579 

foci groups as the experimental dataset for 1,000 times94. ALE scores were then used 580 

to calculate p-values, which were based on the proportion of values higher than a certain 581 

threshold in the null distribution. This resulted in a statistical ALE map that differenti-582 

ated true brain effects from random effects. A cluster-defining threshold of p < 0.001 583 

and a minimum cluster size of 10 voxels (80 mm3) were utilized to compute ALE maps, 584 

consistent with the threshold applied in the seed-based d mapping (SDM) approach (see 585 

below). 586 

Seed-based d (Effect Size) Mapping 587 

SDM is an alternative approach to statistically synthesize results from multiple neu-588 

roimaging experiments86. Similar to ALE, SDM employs a coordinate-based random-589 

effect approach to amalgamate peak coordinate information into a standard space across 590 

several experiments. However, while ALE solely considers the binary feature (i.e., ac-591 

tive versus inactive) of peak coordinates, SDM takes into account the quantitative effect 592 

size (can be positive or negative) connected to each peak and reconstructs the initial 593 
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parametric maps of individual experiments before amalgamating them into a meta-an-594 

alytic map95. Therefore, the use of a distinct algorithm in SDM from ALE allows us to 595 

scrutinize the robustness and replicability of the outcomes obtained via ALE. More im-596 

portantly, SDM enables the inclusion of covariates in the meta-regression analyses to 597 

reflect the changes in brain function across the lifespan. 598 

We conducted three types of analyses using the SDM approach. Firstly, we esti-599 

mated the mean activation across all age groups and compared the results with ALE’s 600 

single dataset meta-analysis results. Secondly, we conducted contrasts between two 601 

groups of studies (e.g., between young to middle-aged adults and a combination of the 602 

youth and elderly groups) to identify brain regions that showed different levels of ac-603 

tivity across age. This analysis method served to investigate the hypothesized lifespan 604 

trajectories, such as the inverted U-shaped pattern by elucidating neural activity varia-605 

tions linked to age. Thirdly, we defined specific models (e.g., linear and square root 606 

models) to fit the whole brain to validate brain regions adhering to the hypothetical 607 

lifespan changing patterns. This type of analysis aimed to explore various lifespan tra-608 

jectories, recognizing that different brain regions might follow distinct model functions. 609 

See below for the details. 610 

These analyses were conducted using the software of SDM with permutation of 611 

subject images (SDM-PSI) (version 6.22, https://www.sdmproject.com). Effect size 612 

maps were built for the 129 individual experiments. This was accomplished by (a) con-613 

verting the statistical value of each peak coordinate into an estimate of effect size 614 
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(Hedge’s g) using standard formulas96 and (b) convolving these peaks with a fully ani-615 

sotropic unnormalized Gaussian kernel ( = 1, FWHM = 20 mm) within the boundaries 616 

of a gray matter template (voxel size = 2×2×2 mm3). Imputation (50 times) was con-617 

ducted for each study separately to obtain a reliable estimate of brain activation maps95. 618 

In addition, the individual effect size maps were combined using a random-effect gen-619 

eral linear model. To assess the statistical significance of activations in the resulting 620 

meta-analytic effect size map, 1,000 random permutations of activation peaks within 621 

the gray matter template were compared. Finally, the meta-analytic maps were 622 

thresholded using a voxel-wise family-wise error (FWE) corrected threshold of p < 623 

0.001 and a cluster-wise extent threshold of 10 voxels97. 624 

Mean Analyses Across all Studies 625 

This analysis aimed to characterize the activation distributions of cognitive control-626 

related brain regions across all studies, which was conducted utilizing the “Mean” func-627 

tion in SDM-PSI software. In order to verify the reliability of the SDM analysis results, 628 

we compared the results with the single dataset meta-analysis using ALE. Results from 629 

this analysis were further used as regions of interest (ROIs) in the subsequent model 630 

fitting analyses (see section “Generalized Additive Model (GAM) Fitting” below). The 631 

possibility of publication bias for resultant clusters was examined using Egger’s test98, 632 

in which any result showing p < 0.05 was regarded as having significant publication 633 

bias. Heterogeneity was evaluated using the I2 index, which quantifies the proportion 634 
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of total variability attributable to heterogeneity between studies. A value less than 25% 635 

indicates low heterogeneity among the included studies99. 636 

Contrast Analyses 637 

To test our hypothesis that cognitive control related brain activities follow an inverted 638 

U-shaped trajectory with age, we categorized each study based on the mean age of par-639 

ticipants into youth (< 18 years), young to middle-aged adults (18−59 years), and el-640 

derly (>= 60 years) groups. The age boundaries were determined to minimize age dis-641 

tribution overlap. We utilized SDM-PSI to perform a contrast analysis between the 642 

group of young to middle-aged adults and the combination of other groups in order to 643 

examine whether there are brain regions that exhibit an inverted U-shaped lifespan tra-644 

jectory. This was achieved by assigning studies from the young to middle-aged adult 645 

group as 1 and all other studies as −1. This analysis yielded two results, one showing 646 

higher activity in young to middle-aged adults than the youth and elderly groups, and 647 

the other showing the opposite. Like the mean analysis, results from this analysis were 648 

used as ROIs in the subsequent model fitting analyses (see sections “Generalized Ad-649 

ditive Model (GAM) Fitting” and “Model Simplification and Model Comparison”).  650 

In addition, to explore other possible trajectories, such as the increase-and-stable 651 

pattern5, we conducted contrast analyses between the youth and the combined group of 652 

young to middle-aged and the elderly, as well as between the elderly and the combined 653 
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group of youth and young to middle-aged adults. Furthermore, to address the contro-654 

versies in previous studies, we conducted contrast analyses between older and young to 655 

middle-aged adult groups, and between the youth and young to middle-aged adult 656 

groups, respectively. 657 

Meta-regression Analyses 658 

To better describe the possible lifespan trajectories of the whole brain, we carried out 659 

meta-regression analyses with the age and/or its derivatives as regressors. Two regres-660 

sions were conducted across the whole-brain, including a linear regression (with only 661 

age as the regressor) and a square root regression (with age and its square root as sepa-662 

rate regressors). The linear regression aimed to test regions with increasing/decreasing 663 

activity with age, and the square root regression aimed to test regions with the inverted 664 

U-shaped trajectories based on the model fitting analyses (see below). 665 

Data Extraction 666 

Masks were generated for each ROI derived from the mean and contrast analyses in 667 

SDM-PSI as described above. Subsequently, we extracted the effect sizes for each mask. 668 

Fifty values were obtained from the SDM iterations and subsequently averaged for each 669 

study in each region. The iterated variances were also averaged in a similar way. Addi-670 

tionally, we removed the outliers (beyond 3 standard deviations from the mean) in the 671 

following model fitting analyses. 672 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 17, 2024. ; https://doi.org/10.1101/2023.08.20.554018doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.20.554018
http://creativecommons.org/licenses/by-nc-nd/4.0/


35 

 

Generalized Additive Model (GAM) Fitting 673 

To precisely estimate the inverted U-shaped trajectories, we adopted the GAM to fit the 674 

curves. The GAM allows for flexible, nonparametric smoothing of predictor varia-675 

bles100, and has been widely used to depict the lifespan trajectories101,102. We imple-676 

mented GAMs using the “mgcv” package100 in R. For each ROI, we fitted a GAM with 677 

the following formula: 678 

g ~ s(age) + covariates, 679 

where g is the effect size (dependent variable), s(age) represents a smoothing spline of 680 

age (predictor variable), and covariates represent the dummy-coded categorical covari-681 

ate regressors. These regressors correspond to six aspects of the included studies: (1) 682 

the presence of various conflict types (e.g., Stroop or Simon), (2) the mixed subject 683 

samples based on handedness (e.g., right handed only or both handed), (3) the different 684 

contrasts in reporting congruency effects (e.g., incongruent – congruent or incongruent 685 

– neutral), (4) different trial types regarding whether they excluded error trials, (5) the 686 

use of different types of experimental design (i.e., event-related or block designs), and 687 

(6) the behavioral congruency effects measured by reaction time. Notably, we adopted 688 

median imputation103 for 9 studies (accounting for 6.98% of the total included studies) 689 

not reporting the behavioral congruency effects, and included an indicator regressor to 690 

account for the potential impact of imputation104. The validity of this imputation ap-691 
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proach was confirmed through a robustness analysis (Supplementary Note S4). We in-692 

corporated these covariates to control for their potential confounding effects related to 693 

age, which could otherwise influence our results. We also adjusted the estimate with a 694 

weight parameter, which was the reciprocal of variance. We used penalized regression 695 

splines, with the amount of smoothing determined automatically based on generalized 696 

cross validation. 697 

For each ROI, we quantified the peak age by choosing the highest prediction of a 698 

fine-grained age scale (1,000 points from 8 to 74 years old). We also calculated the 699 

estimated degree of freedom (EDF) for the smooth curve by summing up the degree of 700 

freedom for each penalized term (i.e., s(age).1 to s(age).9). 701 

Model Simplification and Model Comparison 702 

While the GAM analysis may yield good fitting results on the data, it is important to 703 

acknowledge its potential limitations. One concern is that it can fit the data with high 704 

degree of freedoms (up to 7.0, Supplementary Table S4), which makes it susceptible to 705 

over-fitting and harder to generalize. Another issue is its poor interpretability. Therefore, 706 

we next sought to fit the data with simpler models. 707 

To this end, we used the “metafor” package in R to fit these effect sizes with the 708 

age and its derivatives as predictors. Specifically, we tested four non-linear models (see 709 

below formulas and Fig. 3). Quadratic and cubic models were included based on previ-710 

ous studies46,47; quadratic logarithmic and square-root models were included to capture 711 
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the possible skewed trajectory, which would reflect the asymmetric trajectory of devel-712 

opment and decline of cognitive control5. Each model was fitted to each ROI separately. 713 

In addition, we included the same covariates as the GAM analysis in each regression 714 

model. We calculated the Akaike information criterion (AIC) to evaluate the goodness 715 

of fit for each model. 716 

1) Quadratic model 717 

g ~ age + age2 + covariates 718 

2) Cubic model 719 

g ~ age + age2 + age3 + covariates 720 

3) Quadratic logarithmic model 721 

g ~ log(age) + (log(age))2 + covariates 722 

4) Square root model 723 

g ~ age + sqrt(age) + covariates 724 

Neurosynth Decoding Analysis 725 

To investigate the potential functional difference between the two sets of brain regions 726 

reported in section “Dissociated Brain Networks with Distinct Lifespan Trajectories” 727 

of Results, we generated two binary maps from the contrast analysis between young to 728 

middle-aged adults and the combination of other groups, and then submitted them to 729 

the Neurosynth decoding system41. As the non-U-shaped map is defined as the converse 730 

of the inverted U-shaped map, they were obtained by applying thresholds of 0.1 < p < 731 
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0.9 and p < 0.05, respectively. These lenient threshold boundaries were used to mini-732 

mize the influence of sparsity on the decoding results. The two-boundary threshold was 733 

used in generating the non-U-shaped map, as the original statistical map from the SDM-734 

PSI analysis was one-tailed, which means the threshold of p > 0.9 indicates the upright 735 

U-shaped trend instead of a non-U-shaped trajectory. Additionally, to focus on the brain 736 

regions specifically related to cognitive control, the two maps were masked by using 737 

results from the mean SDM analysis (Fig. 1B). In the decoding results, we deleted terms 738 

that were related to brain regions (e.g., “frontal”), not functional specific (e.g., “task”), 739 

and duplicated (e.g., “attention” was removed if there was already “attentional”). 740 

Laterality Analysis 741 

We calculated the laterality based on the effect size of reported brain coordinates from 742 

each study. We computed the sum of effect sizes across coordinates for the left and right 743 

hemisphere, respectively, yielding one global effect size each (i.e., gL and gR). Then, 744 

we calculated the index of brain laterality with the following equation105: 745 

laterality = 
g

L
− g

R

g
L
+ g

R

 , 746 

which was then submitted to the GAM and simplified models (i.e., the quadratic, cubic, 747 

square root, and quadratic logarithmic models).  748 

To illustrate the contribution of different brain regions to the age-related change 749 

of laterality, we calculated the laterality for each voxel78. We first used the SDM-PSI 750 
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to conduct a mean analysis for each age group (i.e., the youth, young to middle-aged 751 

adult and elderly), yielding three z-maps. Then the laterality was computed with the 752 

above equation for each voxel from the left hemisphere. The opposite values were cal-753 

culated for the right hemisphere. To avoid the bias due to asymmetric brain hemispheres, 754 

we removed voxels without corresponding mirror coordinates. The results were visual-755 

ized confining to the brain regions estimated from the grand mean analyses (Fig. 1B).  756 
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Data Availability 757 

The meta-data that support the findings of this study are available in Zenodo with the 758 

identifier doi: 10.5281/zenodo.12727621106. 759 

Code Availability 760 

All codes conducting the ROI analyses are available in Zenodo with the identifier doi: 761 

10.5281/zenodo.12727621106. 762 
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Tables 794 

Table 1. Brain areas activated in the contrast of one age group versus others (voxel-795 

wise FWE-corrected, p < 0.001, with minimum cluster size ≥ 10 voxels) with the SDM-796 

PSI. 797 

Order # Voxels Z p L/R 

MNI coordinate 
Anatomical  

location 
BA 

x y z 

Young to middle-aged adults > Others 

1 1165 4.713 < 0.001 R 52 16 4 inferior frontal gyrus 48 

2 607 4.895 < 0.001 L −46 16 26 inferior frontal gyrus 48 

3 569 4.289 < 0.001 R 54 −48 42 inferior parietal lobule 40 

4 215 3.405 < 0.001 L −8 0 58 supplementary motor area 6 

5 202 3.830 < 0.001 L −36 −54 42 inferior parietal lobule  40 

6 106 3.245 < 0.001 R 10 4 6 caudate nucleus / 

7 76 3.231 < 0.001 L −38 24 0 insula 47 

8 33 3.119 < 0.001 L −36 12 −6 insula 48 

9 10 2.794 < 0.001 R 4 −16 44 middle cingulate cortex 23 

Young to middle-aged adults < Others  

None      

The youth > Others 

None      

The youth < Others 

None      

The elderly > Others 

None      

The elderly < Others 

None      

Note. The brain regions in the table correspond to the regions in Fig. 4. MNI = Montreal Neurological 798 

Institute, BA = Brodmann area, L = left, R = right.  799 
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Figure Legends/Captions 800 

801 

Fig. 1. Overview of significant clusters across all studies regardless of age in the ALE 802 

meta-analysis (A), the SDM meta-analysis (B), and their overlap (C). ALE = activa-803 

tion likelihood estimation; SDM = seed-based d mapping. 804 

  805 
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 806 

Fig. 2. Lifespan trajectories within regions identified in the mean analysis. l-ACC: left 807 

anterior cingulate cortex, l-IPL: left inferior parietal lobule, r-IFG: right inferior 808 

frontal gyrus, r-ITG: right inferior temporal gyrus, l-ITG: left inferior temporal gyrus, 809 

r-MFG: right middle frontal gyrus, r-CN: right caudate nucleus, r-CB: right cerebel-810 

lum, l-ATP: left anterior thalamic projections. Scattered plots are the effect sizes as a 811 

function of age, with curves fitted by GAM. The sizes of the scattered dots show the 812 

square root of model weights (1/variance) for each study. Shaded areas around the 813 

curves represent standard errors. Dashed lines indicate peak ages. Panels l-ACC and l-814 

IPL do not show the peak age due to an insignificant decrease at the later stage (Sup-815 

plementary Note S2). 816 
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817 

Fig. 3. The lifespan trajectories explored in our study. Panels A-C show linear de-818 

crease, flat, and linear increase patterns, respectively, and were modelled with the lin-819 

ear function. Panels E and H show the upright and inverted U-shapes, respectively, 820 

and were tested with the contrast between young to middle-aged adults and others, as 821 

well as with the quadratic function. Panels D, F, G, and I show combinations of a sta-822 

ble period and an increase/decrease period across the lifespan, and were tested with 823 

the contrast between the youth and others, or between the elderly and others. Panels J, 824 

K and L show the variants of inverted U-shaped trajectories, which capture the possi-825 

bly early peak feature. They were tested with square root, quadratic logarithmic, and 826 

cubic functions, respectively. See Methods for detailed models. 827 

828 
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829 

Fig. 4. Brain regions showing inverted U-shaped trajectory patterns. Scattered plots 830 

are the effect size as a function of age, with curves fitted by GAM (blue color) and the 831 

best simplified model (red color). Shaded areas around the curves represent standard 832 

errors. Dashed vertical lines show peak ages estimated from GAM (blue) and simpli-833 

fied model (red). The sizes of the scattered dots show the square root of model 834 

weights (1/variance) for each study. r-IFG: right inferior frontal gyrus, l-IFG: left in-835 

ferior frontal gyrus, r-IPL: right inferior parietal lobule, l-SMA: left supplementary 836 

motor area, l-IPL: left inferior parietal lobule, r-CN: right caudate nucleus, l-Insula: 837 

left insula, r-MCC: right middle cingulate cortex. 838 

 839 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 17, 2024. ; https://doi.org/10.1101/2023.08.20.554018doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.20.554018
http://creativecommons.org/licenses/by-nc-nd/4.0/


47 

 

840 

Fig. 5. Significant clusters (voxel-wise FWE-corrected, p < 0.001, voxels ≥ 10) show-841 

ing square root pattern (A) and linear pattern (B) with age in the model fitting. 842 

  843 
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844 

Fig. 6. Dissociated brain regions based on their trajectory patterns. A) The regions 845 

following inverted U-shaped trajectories (red color) and non-U-shaped trajectories 846 

(blue color). B) The axial view of the same results. The border lines display the fron-847 

toparietal control network (black), dorsal attention network (white), and their bound-848 

ary (gray) from Yeo’s 7-network atlas49. Cingulo-opercular network was not plotted 849 

due to its less clear dissociation among the two maps. The two scatter plots show two 850 

example regions showing the non-U-shaped trajectory, one ([34, 4, 52]) representing a 851 

peak region from the average brain activity analysis (Supplementary Table S3), and 852 

the other ([22, −63, 42]) representing a region displaying a weak age-related change 853 

from the contrast analysis with p between 0.49 and 0.51. The GAM analysis showed 854 

that neither coordinate could be adequately fitted by a smoothed curve, with ps > 855 

0.22. 856 

 857 
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858 

Fig. 7. The laterality as a function of age. A) The trajectory fitted with a square root 859 

model (red) and the GAM (blue). Higher values mean more left-lateralized and lower 860 

values mean more right-lateralized. B) Visualization of the laterality for each group. 861 

Regions in the left hemisphere show the left laterality, and vice versa. 862 
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