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Spatial locations can be encoded and maintained in working1

memory using different representations and strategies. Fine-2

grained representations provide detailed stimulus information,3

but are cognitively demanding and prone to inexactness. The4

uncertainty in fine-grained representations can be compensated5

by the use of coarse, but robust categorical representations.6

In this study, we employed an individual differences approach7

to identify brain activity correlates of the use of fine-grained8

and categorical representations in spatial working memory. We9

combined data from six fMRI studies, resulting in a sample of10

155 (77 women, 25±5 years) healthy participants performing a11

spatial working memory task. Our results showed that individ-12

ual differences in the use of spatial representations in working13

memory were associated with distinct patterns of brain activ-14

ity. Higher precision of fine-grained representations was related15

to greater engagement of attentional and control brain systems16

throughout the task trial, and the stronger deactivation of the17

default network at the time of stimulus encoding. In contrast,18

the use of categorical representations was associated with lower19

default network activity during encoding and higher frontopari-20

etal network activation during maintenance. These results may21

indicate a greater need for attentional resources and protection22

against interference for fine-grained compared to categorical23

representations.24

spatial cognition, working memory, fMRI, fine-grained representation,25

categorical representation26
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Introduction28

Research on working memory has shown that individuals use29

a variety of different representations and strategies to encode30

and maintain information over short periods of time in sup-31

port of an ongoing task (e.g., Curtis, 2004; Oblak et al., 2024,32

2022; Purg et al., 2022; Slana Ozimič et al., 2023; Starc et al.,33

2017). While mental representations describe the content of34

information encoded in working memory, cognitive strate-35

gies refer to the selection of mental representations and pro-36

cesses that are either explicitly or implicitly used by an in-37

dividual to perform a working memory task (Miller et al.,38

2012; Oblak et al., 2024, 2022; Slana Ozimič et al., 2023).39

The specific representations and strategies used in working40

memory depend on several factors, such as the type of in-41

formation to be retained (Oblak et al., 2022; Slana Ozimič42

et al., 2023), the type and predictability of a response to be43

generated (Curtis, 2004; Purg et al., 2022), the availability of44

attentional resources (Adam et al., 2015; Starc et al., 2017),45

and behavioral relevance (Klyszejko et al., 2014; Yoo et al.,46

2022). Increasingly, research also shows that even when47

faced with the same task requirements, individuals may use48

different representations and strategies to perform the task49

(Oblak et al., 2024, 2022; Slana Ozimič et al., 2023; Starc50

et al., 2017). Here, we investigate the neural correlates of in-51

dividual differences in the use of working memory strategies52

in a multi-study, multi-site dataset of spatial working memory53

performance during functional magnetic resonance imaging54

(fMRI).55

Spatial working memory enables the short-term storage56

of spatial information, such as the location of a stimulus. Ex-57

tensive research has shown that memory for a stimulus lo-58

cation is affected by systematic distortions (e.g., Crawford59

et al., 2016; Huttenlocher et al., 2004, 1991). In particular, it60

has been observed that when individuals are asked to repro-61

duce a stimulus location stored in working memory within62

an empty circle, they exhibit systematic shifts in their re-63

sponses towards the diagonals of the four quadrants, formed64

by dividing the circle using the horizontal and vertical axes65

of symmetry (Huttenlocher et al., 2004, 1991). These sys-66

tematic biases in spatial working memory performance have67

been suggested to reveal a hierarchical organization of spatial68

representations (Huttenlocher et al., 1991).69

According to the category adjustment model (Hutten-70

locher et al., 1991, 2000), a stimulus location is encoded and71

maintained at two levels of representation – first, as a pre-72

cise, fine-grained representation that stores the information73

of the actual location in memory, and second, as a categori-74

cal representation that assigns the stimulus location to one of75

a limited number of spatial categories (e.g., quadrants). The76

model predicts that the estimation of a stimulus location re-77

sults from the combination of information at both levels, with78
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the use of a categorical representation helping to compensate79

for the loss of precision in a fine-grained representation. Even80

though this process introduces a systematic bias in individual81

responses away from the correct position toward the proto-82

typical location of the spatial category, it is assumed to in-83

crease the overall response accuracy by decreasing the vari-84

ability of responses. At the neural level, the dynamic field85

theory (Schutte et al., 2003; Simmering et al., 2006) suggests86

that spatial boundaries, such as perceivable edges or sponta-87

neously imposed axes of symmetry in task space, have a de-88

flecting effect on memory-guided behavioral responses due89

to their lateral inhibitory effects, causing the activation pro-90

duced by the target stimulus stored in working memory to91

drift in the opposite direction.92

The degree of reliance on fine-grained and categorical93

coding of spatial locations has been related to variability94

in cognitive resources. In our previous work (Starc et al.,95

2017), we separately estimated the use of fine-grained and96

categorical representations during the performance of a spa-97

tial working memory task, while measuring pupil responses.98

We assumed that increased pupil dilation would reflect in-99

creased cognitive effort exerted toward the formation and100

maintenance of either fine-grained or categorical representa-101

tions. Our results were consistent with a compensatory use of102

fine-grained and categorical representations within individu-103

als, where a drop in attentional resources directed towards104

the formation of fine-grained representations during stimulus105

encoding resulted in increased reliance on categorical repre-106

sentations during late maintenance and response phases of107

the task. Additionally, we observed that individuals who108

showed on average worse fine-grained precision also exhib-109

ited greater overall use of categorical representations, sug-110

gesting stable individual differences in the use of specific rep-111

resentations and strategies.112

Similarly, Crawford et al. (2016) found individual dif-113

ferences in fine-grained and categorical spatial coding that114

were correlated with individual spatial working memory ca-115

pacity. Specifically, individuals with better spatial working116

memory capacity showed higher fine-grained memory preci-117

sion and lower reliance on categorical representations. Since118

working memory capacity describes the limited cognitive re-119

sources that can be directed towards storage of information120

in working memory, either at the level of attentional alloca-121

tion or representational capacities (Slana Ozimič and Repovš,122

2020), these results suggest that individual differences in the123

use of fine-grained and categorical representations might be124

explained by the availability of cognitive resources with fine-125

grained representations requiring more resources than cate-126

gorical representations.127

Despite the extensive behavioral and computational char-128

acterization of fine-grained and categorical spatial coding,129

not much is known about the underlying neurobiological130

mechanisms. Spatial working memory is consistently charac-131

terized by sustained activation in frontal and parietal brain ar-132

eas as measured with electrophysiological recordings in non-133

human primates (e.g., Chafee and Goldman-Rakic, 1998; Fu-134

nahashi et al., 1989; Fuster, 1973; Fuster and Alexander,135

1971; Kubota and Niki, 1971) and fMRI in humans (e.g.,136

Brown et al., 2004; Courtney et al., 1998; Curtis, 2004; Sri-137

mal and Curtis, 2008; Zarahn et al., 1999). This activity is138

thought to reflect active engagement of these areas in work-139

ing memory processes, however, the specific function of this140

activity has been more difficult to identify. Relating brain ac-141

tivity with behavioral performance of working memory tasks142

during fMRI has shown that brain activity varies with the143

level of response precision (Curtis, 2004; Hallenbeck et al.,144

2021), specific strategy use (Curtis, 2004; Purg et al., 2022),145

general memory load (Adam et al., 2018; Glahn et al., 2002;146

Leung et al., 2004; Linden et al., 2003; Proskovec et al.,147

2019) and behavioral prioritization (Klyszejko et al., 2014;148

Yoo et al., 2022).149

In a previous fMRI study (Anticevic et al., 2010), we in-150

vestigated the relationship between response accuracy in a151

visual working memory task and brain activity during the152

task. Our results showed that stronger deactivation in the153

temporo-parietal junction (TPJ) and the default network dur-154

ing stimulus encoding predicted higher accuracy of work-155

ing memory performance. Since TPJ and the default net-156

work have been associated with stronger deactivation dur-157

ing increased cognitive effort and inhibition of distractors158

(Raichle, 2015a; Shulman et al., 2003; Todd et al., 2005),159

these results suggest that their suppression may be related160

to increased cognitive effort that is required to ensure good161

memory accuracy and protection from interference. How-162

ever, the study used non-spatial visual stimuli and match-to-163

sample responses that do not allow the estimation of separate164

contribution of fine-grained and categorical representations165

to behavioral responses. Therefore, the brain systems and166

related mechanisms underlying fine-grained and categorical167

spatial coding have yet to be determined.168

In the present study, we were interested in brain activity169

correlates of individual differences in the use of fine-grained170

and categorical representations in spatial working memory.171

Due to the hypothesized relationship between the use of172

these working memory representations and the level of cog-173

nitive resources required, we focused on brain systems that174

have been previously associated with general engagement175

of attention and cognitive control, specifically the cingulo-176

opercular, dorsal-attention, and frontoparietal networks (e.g.,177

Barch et al., 2013; Cole et al., 2014; Ji et al., 2019; Raichle,178

2015a; Smith et al., 2009). In addition, we investigated the179

role of the default network in the use of fine-grained and180

categorical representations, which has been associated with181

stronger inhibition during high attentional demands and the182

function of providing protection from distractors in working183

memory tasks (e.g., Barch et al., 2013; Cole et al., 2014; Ji184

et al., 2019; Raichle, 2015a; Smith et al., 2009). We hypothe-185

sized that a greater reliance on precise, fine-grained represen-186

tations would be supported by increased activation of atten-187

tional and control brain systems, and a stronger inhibition of188

the default network. On the other hand, we assumed that un-189

certainty in fine-grained representations, such as due to a loss190

of precision or task interference, would be accompanied by191

a greater reliance on categorical representations that require192
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fewer attentional and control resources.193

To test these hypotheses, we investigated brain activ-194

ity measured with fMRI during the performance of a spa-195

tial working memory task. A methodological challenge in196

the investigation of individual differences in brain-behavior197

relationships are low effect sizes that require large sample198

sizes to be detected (Elliott et al., 2020; Grady et al., 2021;199

Marek et al., 2022). To overcome this challenge, we com-200

bined six fMRI studies conducted at two different recording201

sites. Together, we used data from 155 (77 women, 25 ± 5202

years) healthy individuals, which largely exceeded the aver-203

age sample sizes of similar studies (e.g., around 25 partici-204

pants, Marek et al., 2022). Based on behavioral performance205

on the task, we estimated the overall reliance on fine-grained206

and categorical representations of each participant by decom-207

posing their contributions to task response errors. Individ-208

ual use of fine-grained and categorical representations was209

then related to differences in levels of brain activity. Our210

results revealed individual differences in the use of spatial211

representations in working memory that were related to dis-212

tinct patterns of brain activity. Ongoing engagement of atten-213

tional and control brain networks throughout the entire task214

trial, and stronger deactivation of the default network at the215

time of encoding a stimulus location were found to predict216

higher fine-grained precision in spatial working memory per-217

formance. In contrast, the use of a categorical representa-218

tion was associated with lower default network activity in the219

encoding period and higher frontoparietal network activation220

in the delay period. These results suggest that the forma-221

tion, maintenance and recall of fine-grained representations is222

supported by an increased allocation of attentional resources223

provided by attentional and control brain networks, whereas224

the categorical representations do not seem to impose such225

attentional demands and may be associated with an inability226

to protect the fine-grained representation from interference,227

resulting in higher reliance on the categorical representation228

when providing the response.229

Materials and Methods230

Participants231

We combined data from six studies (Figure 1A). Three stud-232

ies (Studies I-III; Table S1) were conducted at the University233

of Ljubljana, Slovenia, and three studies (Studies IV-VI; Ta-234

ble S1) at Yale University, USA. Between 11 and 37 partici-235

pants took part in each study, for a total of 166 participants.236

All participants were healthy adults with no current or previ-237

ous neurological, psychiatric, or substance-use disorders. Ex-238

clusion criteria also included contraindications to MR, such239

as the presence of metal implants or any other metal parti-240

cles in the body, history of epileptic seizures, tremor or other241

motor disorders, and pregnancy. All participants had nor-242

mal or corrected-to-normal vision. Several participants were243

excluded from further data analysis due to incomplete data244

collection (N = 5), failure to follow instructions (N = 1),245

poor data quality, or excessive movement during data collec-246

tion (N = 2). We also excluded participants who deviated247

greatly from the group mean age (i.e., greater than 3 ×SD)248

to ensure a more homogeneous sample (N = 2). Further-249

more, we excluded an outlier in neuroimaging data (N = 1),250

as explained in detail in the section fMRI acquisition, pre-251

processing and analysis. Data from the remaining 155 (77252

women, 25±5 years) participants were used for further anal-253

ysis. Most participants were right-handed (90.9%), while254

the rest of the participants were left-handed (11 participants,255

7.14%) or ambidextrous (3 participants, 1.95%). All par-256

ticipants performed the behavioral task with their dominant257

hand. Detailed demographic information of the participants258

included in the data analysis are presented in Table S1. The259

studies carried out at the University of Ljubljana were ap-260

proved by the Ethics Committee of the Faculty of Arts, Uni-261

versity of Ljubljana, and the National Medical Ethics Com-262

mittee, Ministry of Health of the Republic of Slovenia. The263

studies conducted at Yale University were approved by the264

Yale Institutional Review Board. Participants gave written in-265

formed consent before participating in the study. In all stud-266

ies, participants had to perform a spatial working memory267

task while their brain activity was measured with fMRI.268

Spatial working memory task269

Individual studies were primarily conducted to address dif-270

ferent research questions related to spatial working memory.271

Some of the studies are described elsewhere (Moujaes et al.,272

2024; Purg et al., 2022), while others are yet unpublished.273

The studies also differed slightly in the exact details of the274

spatial working memory task, which included different task275

conditions in each study. For the purposes of this paper, we276

only analyzed the task conditions that were most comparable277

across the studies. In particular, we focused our investiga-278

tion on the task condition in which participants were asked279

to remember the position of a briefly presented target stim-280

ulus and, after a short delay period, to move a probe using281

a joystick to the position of the remembered target (Figure282

1B). Despite minor differences in task design across studies,283

the goal of the task was always the same – a single stimulus284

location had to be remembered, maintained, and then recre-285

ated with a joystick on each trial. The task was displayed286

on an MR-compatible screen that was visible to participants287

from the MR scanner via a head mirror. The specific screen288

sizes and resolutions varied depending on the recording site289

and study as described in detail in Table S2. The tasks were290

prepared using custom scripts and run in PsychoPy (Studies291

I–III; Table S2; Peirce et al., 2019) or E-Prime 2.0 (Stud-292

ies IV-VI; Table S2; Schneider et al., 2012). Participants re-293

sponded with an MR-compatible joystick (Hybridmojo LLC,294

Washington, USA).295

The spatial working memory task differed in the time296

course of task events and the exact range of target locations297

across studies (for details see Table S2). In three studies298

(Studies I-III; Table S2), the trial started with the presenta-299

tion of a fixation point (2.5 s) in the center of the screen,300

followed by a brief presentation of a target disk stimulus.301

In the remaining three studies (Studies IV-VI; Table S2), the302

trial started immediately with the presentation of a target disk303

stimulus. Target stimulus presentation lasted between 0.1 s304
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and 2 s, depending on the study. The target stimuli were305

presented at variable locations that were pseudorandomly se-306

lected from 20 to 36 different possible locations, depending307

on the study. Target locations were chosen such that the target308

amplitude (i.e., radial distance) from the center of the screen309

was constant for each participant, whereas target angles from310

the center of the screen varied between trials for the same311

participant (see Table S2 for details on the exact target am-312

plitudes and angles for each study). The target stimuli were313

never presented on the cardinal axes to prevent verbalization314

of precise locations (Srimal and Curtis, 2008). Participants315

were instructed to memorize the exact position of the target316

stimulus. In one study (Study I; Table S2), the presentation of317

the target stimulus was followed by a masking pattern (0.05318

s) with the aim of disrupting iconic visual memory (Curtis,319

2004). In all studies, the target presentation was followed by320

a delay period (8 s to 10.4 s, depending on the study) dur-321

ing which a fixation point was presented in the center of the322

screen to which participants were asked to direct their gaze.323

In three studies (Studies IV-VI; Table S2), gaze fixation was324

additionally enforced by instructing participants to press a325

button upon a change of color of the fixation cross, which326

occurred randomly in 50% of trials. After the delay, a probe327

(i.e., a disk stimulus of the same size as the target stimulus,328

but a different color) appeared in the center of the screen, and329

participants were instructed to move the probe using a joy-330

stick to the location of the previously presented target stimu-331

lus, as precisely as possible. The time of their response was332

limited due to the concurrent fMRI recording between 2.3 s333

and 3 s, depending on the study. Individual trials were sep-334

arated by an inter-trial interval (ITI) that was either fixed in335

duration (Studies IV-VI; Table S2) or randomly varied to al-336

low for better task-related fMRI signal decomposition (Stud-337

ies I-III; Table S2). Participants performed between 20 and338

80 trials of the task, divided into 1 to 4 blocks, depending on339

the study.340

Behavioral data analysis341

In behavioral data analysis, we first converted all behavioral342

data from pixel-based measurements into degrees of visual343

angle (°va) to provide standardization across different screen344

resolutions and viewing distances. At the level of individ-345

ual participants, we calculated trial-to-trial response errors as346

the difference between the final location of the response in347

relation to the target location, which are thought to reflect348

the precision of spatial working memory. Since the find-349

ings of single-neuron recordings suggest that spatial repre-350

sentations are encoded at the neural level in terms of angle351

and amplitude in the polar coordinate system (e.g., Chafee352

and Goldman-Rakic, 1998; Funahashi et al., 1989; Rainer353

et al., 1998), we decomposed the response error on each trial354

into angular and amplitude differences between target and355

response locations measured from the center of the screen.356

Next, we excluded all invalid or outlier responses to ensure357

that the results reflected the engagement of spatial working358

memory and not any technical errors or inattention to the359

task. We defined outliers as any response that was located360

more than 45° away from the target location in either direc-361

tion or whose amplitude was not between 0.5 and 1.75× the362

target amplitude. We also excluded responses that fell outside363

the quadrant of the target location, defined by the horizontal364

and vertical axes crossing the center of the screen, to prevent365

the effect of misclassifying the stimulus location to the in-366

correct quadrant. In total, we excluded on average 2.45% of367

trials per participant.368

During the performance of the task, only the stimulus an-369

gle was varied, while the stimulus amplitude remained con-370

stant for each participant. Thus, we assumed that memory371

processes would be more strongly reflected in angular re-372

sponse errors than in amplitude response errors, and focused373

our further analyses on angular response errors only. To374

delineate the individual effects of fine-grained and categor-375

ical representations on response errors we relied on the as-376

sumptions of the category adjustment model (Crawford et al.,377

2016; Duffy et al., 2010; Huttenlocher et al., 2004, 1991,378

2000). The model proposes that the estimation of stimu-379

lus location retained in working memory results from the380

combined use of fine-grained and categorical representations,381

each prone to decay and associated inexactness. Addition-382

ally, studies (Haun et al., 2005; Huttenlocher et al., 2004,383

1991; Purg et al., 2022; Starc et al., 2017) have shown that384

when participants are asked to recall the position of a stim-385

ulus in a blank space, such as in the case of our study, they386

use four quadrants, delineated by the horizontal and vertical387

axes, as spatial categories, with the central value located at388

their corresponding diagonals, acting as the category proto-389

type. Hence, behavioral responses collected during the spa-390

tial working memory task are assumed to be composed of a391

systematic shift toward the categorical center (i.e., the proto-392

type) with the associated inexactness of this information, in393

addition to variability around the shifted representation due394

to a loss of fine-grained precision.395

Computationally, we used a Bayesian model (Figure 1C),396

previously explained in detail in several publications (Craw-397

ford et al., 2016; Duffy et al., 2010; Huttenlocher et al.,398

2004, 1991, 2000), where the response (R) was modeled as a399

weighted sum of the fine-grained memory location (M ) and400

the location of the categorical prototype (P ), while the con-401

tribution of each component was defined by λ:402

R= λM + (1−λ)P

The memory location (M ) was defined as the true target403

location (i.e., the target angle from the center of the screen; µ)404

with the associated standard deviation (σM ) reflecting mem-405

ory inexactness. Similarly, the prototype location (P ) was406

centered on the diagonal of the quadrant in which the target407

stimulus was presented (i.e., the angle of the corresponding408

diagonal; ρ), its inexactness reflected by the standard devi-409

ation around the prototype location (σP ). λ reflected con-410

fidence in the memory representation, while 1 − λ defined411

the degree of bias toward the use of prototype information.412

Mathematically, λ was defined as the ratio between the inex-413

actness of the prototype compared to the combined inexact-414

ness of the prototype and memory representations (Crawford415
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fine-grained location (M)

prototype location (P)

average response (R)

individual response (R)

C. Estimation of behavioral measures

B. Spatial working memory task

Encoding Delay Response ITI

A. Multi-site and multi-study fMRI dataset

University of Ljubljana Yale UniversitySite:

Study: Study I 
n = 27

Study II 
n = 26

Study III 
n = 30

Study IV 
n = 37

Study V 
n = 25

Study VI 
n = 10Participants:

n = 155Total:

prototype 
inexactness 

(σP)

memory 
inexactness  

(σM)

λ
PR

0° 90°
M

R = λM + (1 – λ)P

45°

λ
λ = σP2

σP2 + σM2

Fig. 1. Overview of the dataset structure and behavioral methods. A. The dataset included six fMRI studies of spatial working memory, conducted at two different sites.
In total, 155 participants were included in the data analysis. B. Common elements of a spatial working memory task across all studies. Each task trial consisted of a brief
presentation of a target stimulus at different angles and a constant amplitude from the center of the screen, followed by a hand response to the target location using a joystick
after a short delay. ITI refers to the inter-trial interval. C. An illustration of how the memory inexactness (σM ) and the prototype bias (1−λ) were calculated based on angular
response errors as measures of the use of fine-grained and categorical representations, respectively.

et al., 2016; Duffy et al., 2010; Huttenlocher et al., 1991):416

λ=
σ2
P

σ2
P +σ2

M

In this way, we modeled the assumption that the more417

inexact the memory representation is compared to the proto-418

type, the lower the reliance on the fine-grained memory of the419

target and the higher the contribution of the prototype when420

estimating stimulus location.421

The parameters of the Bayesian model were estimated422

using the probabilistic programming language Stan (Team,423

2022b) in R (Team, 2022a). We estimated the posterior prob-424

abilities of λ, σM and σP for each participant using a two-425

level linear model by fitting the Student’s t-distribution to426

the data. Estimates were obtained based on multiple task427

trials per each participant, thus participants were used as a428

grouping variable at the first level to model varying intercepts429

across participants. The model was run separately for each430

study to prevent the potential influence of different study de-431

signs and protocols on behavioral performance. Weakly in-432

formative prior distributions were used for all model param-433

eters, ensuring that the standard deviation of the prior dis-434

tribution was at least 10 times larger than that of the pos-435

terior distribution. Specifically, we used normal prior dis-436

tribution for regression parameters and half-normal distribu-437

tions for standard deviations. The prior distributions were438

centered at mean values of the posterior parameter estimates439

computed with a preliminary one-level regression model to440

ensure stable sampling convergence. The prior distribution441

for the degrees of freedom parameter was set to Γ(2,0.1)442

as recommended by Juárez and Steel (2010). The stability443

of the Hamiltonian Monte Carlo (HMC) sampling algorithm444

was analyzed by verifying that all estimated parameters had445

estimated effective sample sizes in the bulk of the distribu-446

tions and in the tails of the distributions larger than 400 sam-447

ples (Vehtari et al., 2021), and that the potential scale reduc-448
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tion statistics (R̂) did not deviate from 1.0. To ensure stable449

convergence of our models, we visually inspected the trace450

plots of the posterior parameters and performed prior and451

posterior predictive checks. We verified that the maximum452

tree depth was not saturated. Strong degeneracies inherent453

to multilevel models were addressed by reparametrizing the454

models to a non-centered parameterization (Betancourt and455

Girolami, 2013).456

The resulting mean estimate of σM for each participant457

was used as a measure of memory inexactness, since it re-458

flected the variability around the true target location thought459

to result from the loss of precision in a fine-grained repre-460

sentation. To estimate the degree of reliance on a categorical461

representation, we used the measure of prototype bias defined462

as 1 −λ, which reflected the relative contribution of the pro-463

totypical location to behavioral responses, while mean λ was464

computed from posterior probabilities for individual partici-465

pants.466

fMRI acquisition, preprocessing and analysis467

fMRI data were collected with Philips Achieva 3TX (Studies468

I-III; Table S3), Siemens Tim Trio (Study IV; Table S3), and469

Prisma (Studies IV-VI; Table S3) scanners. We acquired T1-470

and T2-weighted structural images and several BOLD images471

using T2*-weighted echo-planar imaging sequences. We also472

collected pairs of spin-echo images with opposite phase en-473

coding to estimate field maps for the purpose of distortion474

correction during data preprocessing. Acquisition parame-475

ters for specific images varied between different studies, as476

described in Table S3.477

The preprocessing and analysis of the MRI data was478

performed with the Quantitative Neuroimaging Environment479

and Toolbox (QuNex; Ji et al., 2023). Several steps of analy-480

sis and visualizations were prepared using R (Team, 2022a),481

Matlab (R2021a, Natick, Massachusetts, USA), and Connec-482

tome Workbench (Human Connectome Project, Washington483

University, St. Louis, Missouri, USA).484

MR images were preprocessed using Human Connec-485

tome Project (HCP) minimal preprocessing pipeline (Glasser486

et al., 2013). Specifically, structural images were corrected487

for magnetic field distortions and registered to the MNI at-488

las, brain tissue was segmented into white and gray mat-489

ter, and the cortical surface was reconstructed. Functional490

BOLD images were sliced-time aligned, corrected for spa-491

tial distortions, motion-corrected, registered to the MNI atlas,492

and the BOLD signal was mapped to the joint surface vol-493

ume representation (CIFTI) and spatially smoothed (σ = 4494

mm). Further analyses were performed on "dense" whole-495

brain data (i.e., each grayordinate independently). To ob-496

serve general patterns across functional brain systems and to497

increase statistical power, we also performed analyses on par-498

cellated whole-brain data. Parcellated data were obtained by499

extracting the mean signal of 360 cortical brain regions iden-500

tified based on the HCP-MMP1.0 parcellation (Glasser et al.,501

2016) and, additionally, for 358 subcortical regions and 12502

brain networks based on the Cole-Anticevic Network Parti-503

tion (Ji et al., 2019). Although the exploratory analyses were504

performed for all brain areas and networks, we were pri-505

marily interested in the cingulo-opercular, dorsal-attention,506

frontoparietal, and default networks as defined in the Cole-507

Anticevic Network Partition (Ji et al., 2019).508

We performed the activation analysis using a general lin-509

ear modeling (GLM) approach in which event regressors510

were convolved with the assumed double-gamma haemody-511

namic response function (HRF; Friston et al., 1998). For each512

participant, we modeled each phase of a task trial separately.513

Specifically, we estimated the β coefficients for the encod-514

ing, delay, and response phases (Figure S1). For three stud-515

ies (Studies IV-VI; Table S2), we also separately modeled the516

attention cue in the middle of the delay period when present517

(Figure S1). Trials with outlier responses based on the be-518

havioral data analysis were modeled as separate events us-519

ing unassumed modeling and excluded from the group-level520

statistical analyses of the fMRI data. We additionally mod-521

eled motion parameters, their first derivatives, and squared522

motion parameters to account for any signal artifacts due to523

movement. To identify outlier participants based on brain ac-524

tivity, we computed Pearson correlation coefficients between525

the β maps for encoding, delay and response activity of each526

participant with a corresponding group average β map. We527

identified one participant who deviated more than 3 × SD528

from the group average β map and excluded this participant529

from further analysis.530

To identify significant activation and deactivation during531

the task, we next analyzed the β estimates at the group level532

using permutation analysis (500 permutations, tail acceler-533

ation) in PALM (Winkler et al., 2014). To test the signifi-534

cance of the β estimates based on the "dense" grayordinate535

data, we conducted two-tailed one-sample t-tests with TFCE536

(H = 2, E = 0.5, C = 26) FWE correction. To test the sig-537

nificance of the β estimates based on the parcellated data,538

we conducted two-tailed one-sample t-tests with FDR correc-539

tion. The resulting corrected p-value maps were thresholded540

at the whole-brain corrected significance level of α < 0.05.541

The estimation of brain-behavior relationship542

To estimate the relationship between brain activity in specific543

networks and behavioral measures, we performed Bayesian544

two-level linear modeling with factors memory inexactness545

and prototype bias. The models were numerically estimated546

using the probabilistic programming language Stan (Team,547

2022b) in R (Team, 2022a). To obtain standardized β coef-548

ficients and provide easier comparison of results across both549

behavioral factors, brain activity estimates, memory inexact-550

ness, and prototype bias were standardized to µ = 0, σ = 1,551

across all participants. We used study as the grouping vari-552

able at the first level to model varying intercepts across stud-553

ies and Student’s t-distribution to describe the data. Weakly554

informative prior distributions were used for all model pa-555

rameters, ensuring that the standard deviation of the prior dis-556

tribution was at least 10 times larger than that of the posterior557

distribution. Specifically, we used normal prior distributions558

(µ = 0, σ = 10) for regression parameters and half-Cauchy559

prior distributions (µ = 0, λ = 2.5) for standard deviations,560
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as recommended by Gelman (2006). The prior distribution561

for the degree of freedom parameter was set to Γ(2,0.1) as562

recommended by Juárez and Steel (2010). The stability of563

the HMC sampling algorithm was analyzed by verifying that564

all estimated parameters had estimated effective sample sizes565

in the bulk of the distributions and in the tails of the distri-566

butions larger than 400 samples (Vehtari et al., 2021), and567

that the potential scale reduction statistics (R̂) did not deviate568

from 1.0. To ensure a stable convergence of our models, we569

visually inspected the trace plots of the posterior parameters570

and performed prior and posterior predictive checks. We ver-571

ified that the maximum tree depth was not saturated. Strong572

degeneracies inherent to multilevel models were addressed573

by reparametrizing the models to a non-centered parameteri-574

zation (Betancourt and Girolami, 2013).575

To examine the effect of sample size on the detection of576

brain-behavior relationships, we conducted Bayesian linear577

modeling for sample sizes ranging from 15 to 155 partici-578

pants. At each sample size, 1000 samples were created by579

sampling with replacement from the set of all participants.580

We then performed Bayesian two-level normal linear model581

with factors memory inexactness and prototype bias with582

study as a random effect for each separate sample. The mod-583

els were computed in the same manner as described in the584

previous paragraph.585

Results586

Individual differences in the use of spatial coding587

strategies588

We first examined the pattern of response errors at different589

target angles in order to identify any behavioral indicators of590

the use of categorical representations during spatial working591

memory performance. We observed that participants system-592

atically shifted their responses toward the nearest diagonals,593

with a greater bias occurring at target angles further away594

from the diagonals (Figures 2A-B and S2A). This finding595

indicates the use of categorical representations, where par-596

ticipants formed spatial categories defined by the four quad-597

rants of the screen, delineated by the vertical and horizon-598

tal axes, each best represented by its diagonal (Huttenlocher599

et al., 2004, 1991; Starc et al., 2017).600

To separately measure the contribution of fine-grained601

and categorical representations in spatial working memory,602

we next derived two behavioral measures based on the mod-603

eling of the responses – memory inexactness and prototype604

bias. We used memory inexactness as a measure of the preci-605

sion of fine-grained representations, and prototype bias as a606

measure of the extent to which participants relied on categor-607

ical representations. For each behavioral measure, we calcu-608

lated a mean estimate for each participant, reflecting their use609

of fine-grained and categorical representations (for distribu-610

tions across participants see Figure 2C and for study differ-611

ences in both measures see Figures S2B-C). We then com-612

puted the Pearson correlation coefficient to examine the re-613

lationship between both measures across studies. Our results614

revealed a positive correlation, r= 0.660, p< 0.001, between615

memory inexactness and prototype bias (Figure 2D), suggest-616

ing that participants who relied more heavily on categorical617

representations showed poorer precision of fine-grained rep-618

resentations and vice versa.619

Task-related brain activity across different levels of620

parcellation621

In the analysis of the fMRI data, we first examined the ar-622

eas of the brain that were activated or deactivated during623

different phases of a task trial, namely the encoding, delay,624

and response phases (Figure S3A). During all phases of the625

trial, significant activation (i.e., p < 0.05 corrected for multi-626

ple comparisons) was observed in a number of brain regions,627

spanning the frontal, parietal, and occipital cortices. Subcor-628

tical activation was consistently observed in the cerebellum,629

thalamus, putamen, caudate, and brainstem. Phase-specific630

activations differed mainly in the early and ventral stream631

visual areas, where extensive activation was observed only632

during the encoding and response phases. Significant deacti-633

vation was observed in all phases of the trial in the posterior634

cingulate cortex, and in areas of the medial prefrontal cor-635

tex, and inferior frontal cortex. Additional deactivation was636

observed in the lateral temporal cortex for the delay and re-637

sponse, and in the inferior parietal cortex, early and ventral638

stream visual areas for the delay phase only. Subcortical de-639

activation was mainly observed during the delay and response640

phases in the cerebellum, hippocampus, and amygdala.641

To investigate the integration of activity within functional642

brain regions and networks, and their average responses to643

the task, we also performed the activation analysis of the644

fMRI data averaged within cortical regions of the HCP-645

MMP1.0 parcellation (Glasser et al., 2016), and within sub-646

cortical regions and networks based on the Cole-Anticevic647

Network Partition (Ji et al., 2019). The results based on par-648

cellated data showed additional significant task-related acti-649

vations and deactivations (Figures 3A, S3B, and S3C). When650

looking at more general networks, increased activity was ob-651

served during encoding in the primary and secondary visual652

networks, somatomotor, cingulo-opercular, dorsal attention,653

frontoparietal, and language networks, in addition to the pos-654

terior and ventral multimodal networks. Deactivation was ob-655

served only in the default network. The delay phase showed656

significant activation in the secondary visual, somatomotor,657

cingulo-opercular, dorsal-attention, and posterior multimodal658

networks. In contrast, decreased activity was observed in659

the default, ventral multimodal, and orbito-affective networks660

during the delay. Finally, the response phase was charac-661

terized by activation in the primary and secondary visual662

networks, somatomotor, cingulo-opercular, dorsal attention,663

frontoparietal, auditory, posterior multimodal, and ventral664

multimodal networks. Significant deactivation was again ob-665

served only in the default network.666

Lastly, we examined whether the analysis on parcellated667

fMRI data improved effect sizes or, alternatively, diluted ef-668

fects due to inhomogeneous activity within individual brain669

regions and networks. Similar to the analysis described in670

Glasser et al. (2016) and Ji et al. (2019), we compared the671
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A. Example pattern of angular errors B. Average angular error at different target angles

D. Correlation between measuresC. Distributions of behavioral measures across individuals

0

2

4

6

0.0 0.1 0.2 0.3
Prototype bias (1 - λ)

D
en

si
ty

0.00

0.05

0.10

0.15

4 8 12
Memory inexactness (σ, °)

D
en

si
ty

r = .660, p < .001

−2

0

2

4

−2 0 2 4
Memory inexactness (Z−score)

Pr
ot

ot
yp

e 
bi

as
 (Z
−s

co
re

)

−40

−20

0

20

0 90 180 270 360
Target angle (°)

An
gu

la
r e

rro
r (

°)

0°

90°

180°

270°
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
x−coordinate (a.u.)

y−
co

or
di

na
te

 (a
.u

.)

Fig. 2. Systematic biases and individual differences in spatial working memory performance. A. An example pattern of the systematic bias in spatial working memory
performance computed as average angular response errors at different target angles across participants in Studies IV, V and VI, which used the same stimulus angles in
relation to the center of the screen. The start of the arrow denotes the target position, while the head of the arrow points to the average response position. B. Angular
response errors at different target angles across all participants. Red lines represent diagonals of each quadrant, delineated by the horizontal and vertical axes shown as
gray lines. C. The distribution of memory inexactness and prototype bias across participants. The points present the mean of each measure, with the range indicating the
standard deviation of the measure. D. Relationship between memory inexactness and prototype bias across all participants estimated using Pearson correlation coefficient.

unthresholded Z-values for delay-related activity between the672

"dense" grayordinate data and brain regions, and additionally673

between the brain regions and network data (Figure S3D).674

Our results showed that although the Z-values of individual675

grayordinates exceeded the Z-values obtained for the brain676

regions and networks to which they belonged, the analysis of677

the parcellated data resulted in higher overall effect size es-678

timates than the analysis of the grayordinate data. Similarly,679

analysis of network average data resulted in higher effect size680

estimates than analysis of the brain regions. Although work-681

ing with grayordinate data provides better spatial precision of682

results and is preferable when precise localization is of inter-683

est, these results suggest that working with parcellated data684

is preferable when testing hypotheses related to functional685

regions or networks, as was the case in our study.686

Individual differences in spatial coding strategies re-687

flected in brain activity688

Next, we were interested in whether individual differences in689

the use of fine-grained and categorical representations are re-690

flected in brain activity. To this end, we used Bayesian linear691

modeling to predict the activity of brain networks of interest692

based on measures of memory inexactness and prototype bias693

(Figure 3B). Specifically, we used hierarchical linear model-694

ing with behavioral measures as fixed factors and study as695

a random effect. We focused on the average activity within696

networks (i) to identify the engagement of broad brain sys-697

tems during the use of different spatial coding strategies and698

(ii) to increase the effect sizes and statistical power of the699

analysis. Specifically, we examined brain-behavior relation-700

ships for the cingulo-opercular, dorsal-attention, frontopari-701

etal, and default networks, separately for different task phases702

(Figure 3C).703

During the encoding phase of the task, our results re-704

vealed 98.2% and 100% posterior probabilities for a nega-705

tive relationship between memory inexactness and activity706

in the cingulo-opercular and dorsal-attention networks, re-707

spectively. These results suggest that increased encoding-708

related activity in the cingulo-opercular and dorsal-attention709

networks was related to decreased memory inexactness, or710
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in other words, increased memory precision. We also ob-711

served a 96.2% posterior probability of a positive relation-712

ship between memory inexactness and activity in the default713

network, indicating that decreased activity in the default net-714

work was associated with increased memory precision. Re-715

lating encoding-related activity with prototype bias revealed716

a negative relationship between prototype bias and the de-717

fault network activity with a posterior probability of 98.5%,718

showing that decreased activity in the default network was719

associated with increased prototype bias.720

For the delay phase, the results indicated 98.8%, 99.9%,721

and 95.1% posterior probabilities for a negative relationship722

between memory inexactness and activity in the cingulo-723

opercular, dorsal-attention, and frontoparietal networks, re-724

spectively. This result again suggests that increased memory725

precision was related to increased activity in these networks726

during spatial working memory performance. On the other727

hand, the results showed 96.4% and 90.9% posterior proba-728

bilities of a positive relationship between prototype bias and729

activity in the frontoparietal and default networks, respec-730

tively. These relationships suggest that both increased fron-731

toparietal activation and weaker deactivation of the default732

network are associated with increased prototype bias during733

the spatial working memory task.734

Relating response-related activity with memory inexact-735

ness revealed a negative relationship between memory inex-736

actness and activity in the cingulo-opercular and dorsal at-737

tention networks with posterior probabilities of 98.5% and738

98.8%, respectively. The results also showed a 92.6% poste-739

rior probability of a positive relationship between prototype740

bias and activity in the cingulo-opercular network. These re-741

sults suggest that increased response-related activity in these742

networks was related with increased memory precision, as743

well as increased prototype bias. We also observed a negative744

relationship between prototype bias and the default network745

activity with a posterior probability of 92.7%, suggesting that746

decreased activity in this network was associated with in-747

creased prototype bias.748

The general whole-brain patterns of the relationship be-749

tween brain activity and behavioral measures of memory in-750

exactness and prototype bias for brain regions and networks751

can be observed in Figures S4-5. These analyses revealed752

several additional relationships with both behavioral mea-753

sures and activity in other brain networks. For memory in-754

exactness, a negative relationship with activity in the primary755

visual, secondary visual, and posterior-multimodal networks756

during the encoding was found with posterior probabilities of757

98.9%, 100%, and 99.0%, respectively (Figure S5). We also758

observed a negative relationship between memory inexact-759

ness and response-related activity in the primary visual, sec-760

ondary visual, somatomotor, and posterior-multimodal net-761

works with posterior probabilities of 96.1%, 99.2%, 97.5%,762

and 98.7%, respectively (Figure S5). For the prototype bias, a763

positive relationship with activity in the language and orbito-764

affective networks during the delay was observed with poste-765

rior probabilities of 97.7%, and 98.8%, respectively (Figure766

S5).767

The effect of sample size on the detection of brain-768

behavior relationships769

A comparatively large multi-study sample provided us with770

an increased power to detect brain-behavior relationships771

with relatively small effect sizes. To further validate the sta-772

bility of the results and assess statistical power in evaluating773

brain-behavior relationships, we conducted a comprehensive774

resampling analysis. Specifically, for each sample size from775

15 to 155, we randomly selected a set of participants from our776

original sample with replacement 1000 times and repeated777

the Bayesian hierarchical linear regression for the four net-778

works of interest, i.e. the cingulo-opercular, dorsal-attention,779

frontoparietal, and default networks, for the delay period for780

each sample. This allowed us to evaluate the effects of sam-781

ple size on model estimates, their confidence intervals, and782

statistical power.783

While mean β coefficients estimated in the linear model784

were generally stable across different sample sizes (Figure785

S6), our results indicated that the variability of β estimates786

within each sample size changed significantly with sam-787

ple size. Zero was robustly excluded from the 95% confi-788

dence interval computed across 1000 resamplings for the re-789

lationships between memory inexactness and activity in the790

cingulo-opercular, dorsal-attention, and frontoparietal net-791

works only after sample sizes of 93, 73, and 151, respec-792

tively. Zero was also consistently excluded from the 95%793

confidence interval across 1000 resamplings for the relation-794

ship between prototype bias and the frontoparietal network795

activity after a sample size of 149. Statistical power, com-796

puted as the proportion of samples in which 95% of posterior797

distribution was above or below 0, linearly increased with in-798

creasing sample size and reached 61.3%, 87.8%, and 26.0%799

for the relationships between memory inexactness and activ-800

ity in the cingulo-opercular, dorsal-attention, and frontopari-801

etal networks, respectively, and 31.2% for the relationship802

between prototype bias and the frontoparietal network activ-803

ity (Figure S6).804

Discussion805

A spatial location can be encoded and maintained in working806

memory using different representations and strategies. Fine-807

grained representations provide detailed stimulus informa-808

tion, but are cognitively demanding and prone to inexactness.809

On the other hand, categorical representations may provide a810

more robust and less demanding strategy, but at the cost of811

loss of fine-grained precision. In our study, we were inter-812

ested in the extent to which individuals rely on fine-grained813

and categorical representations to encode and maintain spa-814

tial information in working memory, and how these individ-815

ual differences in spatial working memory strategies are re-816

flected in brain activity.817

Individual differences in spatial coding strategies818

The investigation of behavioral performance in the spatial819

working memory task revealed the presence of a systematic820

bias in behavioral responses. Specifically, we observed that821
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Fig. 3. Average network activity in relation to individual spatial working memory performance. A. The average activity in the cingulo-opercular, frontoparietal, dorsal-
attention, and default networks during different task phases. B. Steps in the analysis of the relationship between brain activity in specific networks and behavioral measures
of memory inexactness and prototype bias. For each participant, we computed average brain activity within networks of interest defined by Cole-Anticevic Network Partition
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specific networks and behavioral measures of memory inexactness (red) and prototype bias (blue). Points indicate mean β-estimates, and lines 95% confidence intervals.
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participants tended to shift their responses closer to the near-822

est diagonals of the four quadrants, formed by dividing the823

screen at the vertical and horizontal axes of symmetry. Sev-824

eral previous studies (Haun et al., 2005; Huttenlocher et al.,825

2004, 1991; Purg et al., 2022; Starc et al., 2017) have sug-826

gested that such a bias reflects the use of categorical repre-827

sentations, where participants spontaneously impose spatial828

categories in coding stimulus position. Huttenlocher et al.829

(2004) have shown that this bias is replicated even when dif-830

ferent spatial categories are imposed by the task by clustering831

stimuli around the horizontal and vertical axes, as well as en-832

couraging participants to use categories centered on the car-833

dinal axes and bounded by the diagonals. This suggests that834

the horizontal and vertical axes represent the most robust cat-835

egory boundaries, resulting in the lowest misclassification of836

spatial information (Huttenlocher et al., 2004). Nevertheless,837

the use of different reference points (Holyoak and Mah, 1982;838

Sadalla et al., 1980) or spatial borders (Nelson and Chaiklin,839

1980; Newcombe and Liben, 1982), and specific instructions840

on the context of the space (Tversky and Schiano, 1989) have841

been shown to affect the type of categories constructed in spa-842

tial estimation tasks, suggesting that the categories formed843

are, at least to some extent, context-dependent (Huttenlocher844

et al., 1991).845

Our results are in line with the category adjustment model846

Huttenlocher et al. (1991, 2000), which proposes that a spa-847

tial location in working memory is simultaneously repre-848

sented as a fine-grained and categorical representation. The849

model predicts that the uncertainty in remembered fine-850

grained information is compensated for by using information851

of a broader stimulus category, which introduces a system-852

atic bias in responses towards a prototypical value, but in-853

creases an overall response accuracy by decreasing response854

variability. We used the assumptions of the category adjust-855

ment model to mathematically describe behavioral responses856

during spatial working memory performance and to identify857

individual contributions of fine-grained and categorical rep-858

resentations to response errors. Specifically, we estimated the859

inexactness in fine-grained memory as a spread of responses860

around the true target value, while the effect of a categorical861

representation on the estimation of stimulus location was de-862

scribed in terms of a degree of systematic bias towards the863

prototype. We were particularly interested in the relation-864

ship between the use of both representations across individ-865

uals. Our results replicated previous observation of a posi-866

tive correlation between a loss of fine-grained memory preci-867

sion and the use of a categorical representation (Starc et al.,868

2017). Specifically, our results suggest that there are individ-869

ual differences in the balance between the use of fine-grained870

and categorical spatial coding – individuals with higher fine-871

grained precision of spatial representations relied less on cat-872

egorical information, whereas individuals who showed lower873

precision in fine-grained representations seemed to rely more874

strongly on categorical representations.875

At the interindividual level, the degree of reliance on cate-876

gorical versus fine-grained representations has been related to877

individual working memory capacity (Crawford et al., 2016;878

Stukken et al., 2016). Studies on working memory capac-879

ity have traditionally focused on estimating the number of880

items a participant can maintain over short periods of time by881

comparing task performance under different working mem-882

ory loads (for a review see Luck and Vogel, 2013). However,883

recent studies (Bays and Husain, 2008; Spencer and Hund,884

2002; Zhang and Luck, 2008) suggest that increasing the de-885

tail or precision of these objects requires additional work-886

ing memory resources at the cost of reducing the number887

of objects that can be remembered simultaneously. There-888

fore, the formation of high-precision representations might889

be easier for individuals with a high working memory ca-890

pacity, whereas a low working memory capacity would re-891

quire a reduction in stimulus complexity, such as by using892

coarse categorical coding. Crawford et al. (2016) estimated893

the relationship between spatial working memory capacity894

and the use of fine-grained or categorical representations dur-895

ing spatial working memory performance based on a sample896

of 778 adults. Their results showed a correlation between897

spatial working memory capacity and different spatial cod-898

ing strategies, with higher capacity predicting higher spatial899

precision and lower categorical bias. Moreover, consistent900

with these results is also the observation that introducing dis-901

tractor stimuli that need to be retained during spatial work-902

ing memory performance or an interference task which put903

additional strain on working memory resources results in an904

increased use of categorical representations Crawford et al.905

(2016); Huttenlocher et al. (1991). To sum, the use of differ-906

ent spatial coding strategies might be related to the availabil-907

ity of cognitive resources, which could explain interindivid-908

ual differences in the preference for a specific strategy.909

It is important to note that due to the complex hierarchical910

structure of our model of the effect of fine-grained and cate-911

gorical representations on behavioral responses, the assump-912

tions of the model were to some extent simplified, which913

could potentially affect our estimates. For example, in our914

model we assumed the same prototype location for all partic-915

ipants, which we centered on the diagonal of each quadrant.916

Some studies have shown that the prototype might not be lo-917

cated exactly on the diagonal, and might even differ between918

different quadrants of the task display or between participants919

(Huttenlocher et al., 2004, 1991). This variability in the pro-920

totype location was captured to an extent by the measure of921

prototype inexactness in our model, although larger incosis-922

tencies in the assumed and actual prototype location could923

increase the estimation of prototype inexactness and, in turn,924

underestimate the degree of reliance on categorical represen-925

tations in spatial working memory performance.926

Furthermore, our model did not account for the poten-927

tial influence of inexact boundaries in the estimation of stim-928

ulus locations near boundaries. In the case of our study,929

participants gave their responses on a blank screen, which930

meant that no spatial boundary was explicitly presented, but931

participants spontaneously imposed boundaries in the form932

of horizontal and vertical symmetry axes. Their estima-933

tion of boundaries could therefore be uncertain or inexact,934

which could lead to misclassification of stimuli near bound-935
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aries. For instance, responses within the boundary inexact-936

ness could fall into any of the two categories delineated by937

the boundary and adjusted towards its center. When aver-938

aged, these responses with opposing directions of prototype939

bias would cancel each other out, resulting in an overall de-940

creased effect of prototype bias around the inexact boundary941

(Huttenlocher et al., 2004, 1991). Our results showed that av-942

erage response errors increased with target angle further from943

the diagonal, with a slight decrease near the boundaries, es-944

pecially in the study in which the stimuli were presented the945

closest to the cardinal axes. For this reason, we excluded all946

misclassified stimuli from our data analysis to prevent dilu-947

tion of the effects of categorical representations. We identi-948

fied only 1.86% of misclassified stimuli per participant, with949

all misclassification occuring up to the target angle 15° from950

any boundary. The dynamic field theory (Schutte et al., 2003;951

Simmering et al., 2006) assumes that boundaries, perceived952

or spontaneously imposed, have a deflecting effect on behav-953

ioral responses during the estimation of a stimulus location in954

working memory due to their lateral inhibitory effects at the955

neural level, which results in a drift of the activation produced956

by the remembered target stimulus away from the boundary.957

Despite the overall decreased response errors near boundaries958

in our study, our results might still be in line with the assump-959

tions of the dynamic field theory when looking at individual960

responses – i.e. the boundary might still have a deflecting961

effect, but in different directions for the correctly and incor-962

rectly classified stimuli.963

Different coding strategies related to the engagement964

of separable brain systems965

The assumed advantage of categorical spatial coding is that966

it is less demanding on cognitive resources without compro-967

mising the overall accuracy of responses. In contrast, encod-968

ing fine-grained information yields precise responses, but re-969

quires greater engagement of attention and cognitive control.970

Therefore, we hypothesized that the use of specific spatial971

representations would be related to the level of engagement972

of the attentional and control brain systems. Specifically, we973

expected that a stronger reliance on precise, fine-grained rep-974

resentations would be supported by increased activation of at-975

tentional and control brain systems, and stronger inhibition of976

the default network. On the other hand, we assumed that un-977

certainty in fine-grained representations, such as due to a loss978

of precision or task interference, would be related to an in-979

creased use of categorical representations that would require980

fewer attentional and control resources.981

In the investigation of the relationship between brain982

activity with behavioral measures of the precision of fine-983

grained representations and the use of categorical represen-984

tations, we observed a strong positive relationship between985

fine-grained memory precision and activity in the cingulo-986

opercular and dorsal-attention networks during all phases of987

the task, the encoding, delay, and response. We also ob-988

served a slightly weaker positive relationship between mem-989

ory precision and the frontoparietal network activity during990

the delay. These results suggest that increased memory pre-991

cision is indeed accompanied by an increased enagagement992

of these networks. The cingulo-opercular, dorsal-attention,993

and frontoparietal networks are consistently activated during994

different working memory tasks and have been widely rec-995

ognized to play an important role in active maintenance of996

information in working memory (Brown et al., 2004; Cur-997

tis, 2006, 2004; D’Esposito and Postle, 2015; Eriksson et al.,998

2015; Liu et al., 2017; Purg et al., 2022; Zarahn et al., 1999).999

In addition, increases in the level of activity and functional1000

connectivity within these networks have been found to scale1001

with increased attentional demands, working memory load,1002

and memory accuracy (e.g., Assem et al., 2020; Barch et al.,1003

2013; Bray et al., 2015; Cole et al., 2014; Fox et al., 2005;1004

Liu et al., 2017, 2018; Magnuson et al., 2015; Smith et al.,1005

2009). Therefore, our findings support the notion that the1006

formation and active maintenance of fine-grained represen-1007

tations presents a cognitive load and engages attentional and1008

cognitive control systems.1009

Our results also revealed a negative relationship between1010

fine-grained memory precision and the default network ac-1011

tivity during encoding only, showing that decreased activity1012

in this network was related to increased memory precision.1013

Traditionally, fMRI studies investigating functional connec-1014

tivity at rest have identified the role of the default network1015

in spontaneous intrinsic activity in the absence of cognitive1016

load (e.g., Cole et al., 2014; Damoiseaux et al., 2006; Fox1017

et al., 2005; Greicius et al., 2003; Moussa et al., 2012; Smith1018

et al., 2009). Moreover, the default network shows robust de-1019

activation during the performance of various cognitive tasks,1020

including during working memory performance, which be-1021

comes stronger with increasing cognitive load (e.g., Antice-1022

vic et al., 2010; Cole et al., 2014; Fox et al., 2005; Liu et al.,1023

2018; Raichle, 2015a,b; Smith et al., 2009). Such decreases1024

in the activity of the default network are thought to reflect the1025

allocation of cognitive resources to task-relevant information1026

and protection from distraction (Liu et al., 2017). For exam-1027

ple, Anticevic et al. (2010) showed that stronger suppression1028

of the default network during the encoding of target stim-1029

uli, prior to the presentation of distractors, predicted higher1030

response accuracy in a working memory task. These re-1031

sults are consistent with our observations, although the study1032

included non-spatial visual stimuli and match-to-sample re-1033

sponses that do not allow the uncoupling of separate con-1034

tributions of fine-grained and categorical representations to1035

response accuracy, which makes it difficult to directly relate1036

the two studies. In summary, our results suggest that stronger1037

inhibition of the default network is required to ensure good1038

fine-grained memory precision, likely as a result of allocating1039

attentional and control resources toward task-relevant stimuli1040

and protection from interference.1041

Conversely, the relationship between the use of categor-1042

ical representations and brain activity was somewhat less1043

clear. Our results revealed opposing relationships with the1044

default network activity and the prototype bias during the1045

encoding and response phases of the task compared to the1046

delay period. Specifically, we observed that increased use1047

of prototype bias was related to stronger deactivation during1048
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the encoding and response, and weaker deactivation during1049

the delay phase of the task. These results suggest temporal1050

differences in the engagement of the default network in re-1051

lation to the use of categorical representations. Stronger de-1052

activation during the encoding and response might reflect in-1053

creased attentional engagement and inhibition of distractors1054

directed toward the formation and recall of categorical repre-1055

sentations, respectively. On the other hand, weaker deactiva-1056

tion during the delay might suggest decreased attentional and1057

control demands when individuals rely on categorical repre-1058

sentations, supporting the hypothesis that categorical coding1059

of spatial positions provides a less demanding spatial work-1060

ing memory strategy.1061

The investigation of the relationship between the use of1062

categorical representations and the activity in attentional and1063

control brain networks revealed a positive relationship be-1064

tween the prototype bias and activity in the frontoparietal1065

network during the delay, as well as a slightly weaker pos-1066

itive relationship between the prototype bias and the activ-1067

ity in the cingulo-opercular network during the response. In1068

other words, increased engagement in these networks pre-1069

dicted a higher use of categorical representations. While the1070

formation, maintenance and recall of fine-grained representa-1071

tions required constant engagement of attentional and control1072

systems, the results on the use of categorical representations1073

suggest that these brain systems were engaged only later in1074

a task trial during stimulus maintenance and recall. Simi-1075

larly, Starc et al. (2017) reported a compensatory use of fine-1076

grained and categorical representations during an individual1077

task trial, where the failure to encode fine-grained informa-1078

tion with high precision at the time of encoding of spatial in-1079

formation could then be compensated for by the reconstruc-1080

tion of target location based on categorical information in the1081

late delay and response periods of the trial. These results are1082

somewhat inconsistent with the hypothesis of reduced cog-1083

nitive load and reliance on cognitive resources when using1084

categorical representations, but may indicate a need for at-1085

tentional and cognitive control during the recall of categorical1086

representations just before the response has to be given.1087

However, our assumption that the observed relationship1088

with the delay-related frontoparietal activity reflects the use1089

of a categorical representation may be wrong. The category1090

adjustment model (Huttenlocher et al., 1991, 2000) proposes1091

that participants resort to the use of a categorical represen-1092

tation when their confidence in a memory representation is1093

low, which would arguably be assessed just before or at the1094

time of the response. Taking this into account, we can hy-1095

pothesize that the increased frontoparietal activity does not1096

reflect the cognitive processes engaged in the maintenance1097

of a categorical representation, but rather the processes that1098

predict a loss of confidence in the fine-grained memory rep-1099

resentation and subsequent increased reliance on the cate-1100

gorical representation. Even though the frontoparietal net-1101

work has been strongly implicated in allocation of attention1102

and active maintenance of task-relevant information in work-1103

ing memory, studies have also shown its role in protection1104

from task-irrelevant information (e.g., Jerde and Curtis, 2013;1105

Ptak, 2012; Zhang et al., 2017). The increase in frontopari-1106

etal activity may reflect an increased effort in protecting the1107

memory from task interference and suppression of distractors1108

due to lower ability or confidence in the precision of the fine-1109

grained memory representation, leading to larger reliance on1110

categorical representation when providing the response. This1111

is consistent with the finding that introducing an interference1112

during the delay of spatial estimation tasks increased the re-1113

liance on categorical information (Huttenlocher et al., 2004,1114

1991). When assessing the role of the frontoparietal network,1115

it is also prudent to consider the functional heterogeneity of1116

the network. Specifically, our results of task-related activity1117

based on voxel-wise fMRI data showed activation in some,1118

and deactivation in other areas within the frontoparietal net-1119

work, suggesting that the role of the frontoparietal network1120

in spatial working memory processes might be more com-1121

plex than initially thought, and the averaging of the activity1122

within the network might mask diverging functions within1123

the network.1124

Together, the observed patterns of associations between1125

brain and behavior reflect important relationships between1126

the two strategies of encoding, maintenance and recall of1127

spatial information. While the negative relationship between1128

fine-grained memory precision and the use of categorical1129

representations suggests a complementary use of categorical1130

and fine-grained representations with the goal to increase the1131

overall response accuracy, the two strategies relate to the en-1132

gagement of separable brain systems. In particular, the pre-1133

cision of fine-grained representations is related to the level of1134

attentional engagement, which is reflected in the activation1135

of the attentional and control brain networks. Additionally,1136

greater deactivation of the default network during the forma-1137

tion of fine-grained representations appears to predict higher1138

memory precision, perhaps by providing suppression of dis-1139

tractors and the allocation of resources toward task-relevant1140

information. In contrast, the extent of reliance on categori-1141

cal representations does not seem to impose such attentional1142

demands. Compared with the ongoing engagement of atten-1143

tional and control systems necessary to ensure high precision1144

of fine-grained representations, some evidence was found for1145

the activation of these systems in relation to the use of cat-1146

egorical representations later in the task trial during mainte-1147

nance and response. Interestingly, the relationship between1148

categorical representations and the activity in the default net-1149

work appears to change over the course of the trial, where1150

stronger inhibition of the default network is required during1151

stimulus encoding and recall, whereas decreased inhibition1152

is observed during the maintenance of spatial information.1153

Since the use of a categorical representation is predicted by1154

the uncertainty or loss of confidence in a fine-grained rep-1155

resentation the increased deactivation of the default network1156

during the stimulus presentation and response may reflect an1157

increased effort in protecting the memory from task interfer-1158

ence and suppression of distractors. On the other hand, the1159

relaxation of the default network during the delay possibly1160

reflects a decrease in cognitive demands in the maintenance1161

of categorical representations.1162
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By exploring the relationship between the use of fine-1163

grained or categorical representations with the activity of1164

other brain networks, we identified several relationships that1165

suggest that the use of two strategies is related to different1166

modalities. The precision of fine-grained memory was asso-1167

ciated with the activity in primary visual, secondary visual,1168

and posterior multimodal networks during the encoding and1169

response, with increased activity in these networks predicting1170

higher memory precision. Additionally, higher memory pre-1171

cision was also associated with increased somatomotor net-1172

work activity during the response. These results suggest that1173

fine-grained representations might be encoded as a visual in-1174

formation which is reactivated during the response, when it is1175

converted into a motor plan used to execute the task response1176

(Purg et al., 2022). In contrast, we observed that the use of1177

categorical representations was predicted by the delay-related1178

activity in the language network, with an increased categor-1179

ical bias related to increased activity in this network. The1180

engagement of the language network in the maintenance of1181

categorical representations might indicate the transformation1182

of spatial information into verbal codes during spatial work-1183

ing memory. For example, spatial categories defined as the1184

four quadrants of the screen, delineated by the horizontal and1185

vertical axes, could be remembered in terms of verbal codes1186

"up-right", "up-left", "down-left", and "down-right". Simi-1187

larly, studies that collected subjective reports on the strate-1188

gies used during the performance of visuospatial working1189

memory tasks have found that both, visualization and verbal-1190

ization, are common strategies used to encode and maintain1191

information in working memory (Brown and Wesley, 2013;1192

Oblak et al., 2024, 2022; Sanfratello et al., 2014; Slana Oz-1193

imič et al., 2023). In addition, several studies have related1194

individual differences in the use of these strategies to dis-1195

tinct patterns of brain activity (Kirchhoff and Buckner, 2006;1196

Miller et al., 2012; Sanfratello et al., 2014).1197

In this study, we focused on general behavioral and neu-1198

ral strategies used in spatial working memory rather than spe-1199

cific mechanisms. Our results provide insight into the level of1200

general cognitive demand involved in the use of fine-grained1201

versus categorical representations. However, they do not in-1202

dicate the specific brain regions in which the different types1203

of information are represented. fMRI studies that used multi-1204

variate pattern analysis (MVPA) have shown that fine-grained1205

stimulus-specific information can be decoded from early sen-1206

sory areas that initially processed the stimulus (Harrison and1207

Tong, 2009; Serences et al., 2009). In contrast, other stud-1208

ies have shown that the prefrontal and parietal areas can store1209

more abstract representations, such as goals, task rules, and1210

categories (Christophel et al., 2017; D’Esposito and Postle,1211

2015; Meyers et al., 2008; Riggall and Postle, 2012). Addi-1212

tionally, single-neuron recordings in the prefrontal cortex of1213

monkeys during the performance of a spatial working mem-1214

ory task have shown that neurons, exhibiting directional se-1215

lectivity for presented target angles, differed in the width of1216

their tuning curves, suggesting that certain neurons respond1217

to more specific directions and others to a broader range of1218

directions (Funahashi et al., 1989). Based on these findings,1219

it has been proposed that brain areas in the posterior-anterior1220

axis respond to different levels of abstraction, with low-level1221

posterior areas responding to fine-grained information and1222

high-level anterior areas to more abstract information and1223

regulatory signals (Christophel et al., 2017; D’Esposito and1224

Postle, 2015; Rahmati et al., 2018). However, further stud-1225

ies are needed to identify areas of the brain that are involved1226

in the storage of fine-grained and categorical representations1227

used in spatial working memory.1228

The ability to detect significant brain-behavior rela-1229

tionships1230

Several recent studies (Elliott et al., 2020; Grady et al., 2021;1231

Marek et al., 2022; Poldrack et al., 2017) have discussed the1232

problem of highly variable brain-behavior relationships that1233

require large sample sizes to obtain stable and reliable re-1234

sults. For example, Marek et al. (2022) have shown that1235

brain-wide association studies with typical sample sizes (i.e.,1236

around 25 participants) resulted in low statistical power, in-1237

flated effect sizes, and a failure to replicate results. We ad-1238

dressed this challenge by using a multi-site and multi-study1239

fMRI dataset, which afforded us with a relatively large sam-1240

ple size (n= 155) compared to other task-related fMRI stud-1241

ies (Elliott et al., 2020; Marek et al., 2022). To the best of our1242

knowledge, this is the largest fMRI dataset on spatial working1243

memory to date. An additional advantage of a larger sample1244

size was that it allowed us to explore the effect of the sample1245

size on the findings of interest.1246

The investigation of the effect of sample size on β esti-1247

mates as a measure of brain-behavior relationships revealed1248

that β estimates can vary substantially from sample to sam-1249

ple when employing relatively small sample sizes. As indi-1250

cated by the confidence intervals, the variability of the esti-1251

mates decreased steeply at first and then slowly approached1252

the population mean. These results are consistent with the1253

observation that the sampling variability is large for small1254

sample sizes and stabilizes at larger sample sizes (Marek1255

et al., 2022). In the case of our study, brain-behavior asso-1256

ciations appeared to stabilize roughly between 73 and 1511257

observations, consistent with the result obtained by Grady1258

et al. (2021) and Schönbrodt and Perugini (2013). Moreover,1259

similar to other fMRI studies on brain-behavior associations1260

(Marek et al., 2022; Poldrack et al., 2017), statistical power,1261

i.e. the ability to detect a significant effect, increased mono-1262

tonically with increasing sample size, and remained fairly1263

low even at larger sample sizes. The maximum statistical1264

power we observed was 88.4% at n = 153 for the relation-1265

ship between memory inexactness and activity in the dorsal-1266

attention network.1267

In order to maximize sample size and statistical power,1268

we combined data from multiple sites and studies, which pre-1269

sented additional challenges and limitations. Notably, there1270

were minor differences in task designs and data collection1271

protocols between studies, potentially contributing to the ob-1272

served variability across participants. We addressed this issue1273

using a multilevel approach. First, we analyzed the task con-1274

dition that was directly comparable across studies and always1275
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had the same goal, i.e. to remember a single random target1276

location for a few seconds on any individual trial. However,1277

even though the task was essentially the same across stud-1278

ies, there could potentially be some differences in task dif-1279

ficulty, as a result of a different number of possible target1280

locations, different duration of target stimulus presentation,1281

or different length of the delay period. While we observed1282

some differences in behavioral performance across studies,1283

any differences in task difficulty were hard to delineate from1284

the effects of different strategies on responses. Second, we1285

used a hierarchical model with study as a random effect to1286

account for any variability due to systematic differences be-1287

tween studies. Nevertheless, the final sample size was still1288

relatively small compared to the recommendation of recent1289

studies (Elliott et al., 2020; Marek et al., 2022) indicating that1290

thousands of participants are required to prevent the inflation1291

of effect sizes and replication failure in brain-behavior asso-1292

ciation analyses. In addition, the hierarchical structure of our1293

data increased the complexity of the linear model used and1294

might require even larger sample sizes to obtain reliable esti-1295

mates (Kerkhoff and Nussbeck, 2019; Maas and Hox, 2004,1296

2005). To further increase statistical power we performed1297

analyses on brain networks rather than grayordinates with1298

should provide a better signal-to-noise ratio due to averag-1299

ing data and ensure fewer statistical comparisons. We also1300

used Bayesian statistical methods which have been found to1301

give more robust results even at low sample sizes (e.g., Van1302

De Schoot et al., 2021). Additionally, we have provided de-1303

tailed power analysis to allow better insight into the stability1304

of brain-behavior relationships in our study. However, more1305

data or replication on an independent dataset would be wel-1306

come to further ensure the validity and generalizability of the1307

relationships observed in our analyses.1308

Conclusion1309

In this multi-site, multi-study analysis, we found that indi-1310

viduals differ in the extent to which they rely on fine-grained1311

versus categorical representations to encode and maintain a1312

spatial location in working memory, and that these differ-1313

ences correlate with the engagement of brain networks dur-1314

ing the encoding, delay, and response phases of the task trial.1315

Behaviorally, individuals with lower fine-grained precision1316

relied more on categorical representations, which led to a1317

higher categorical bias. Increased activation of attentional1318

and control brain networks throughout the entire task trial,1319

and stronger deactivation of the default network in the en-1320

coding period were found to predict higher precision in spa-1321

tial working memory performance, possibly reflecting the1322

importance of attentional resources for successful encoding1323

and maintenance of the fine-grained representation. In con-1324

trast, the use of a categorical representation was associated1325

with lower default network activity in the encoding period1326

and higher frontoparietal network engagement in the delay1327

period, the latter possibly reflecting an inability to protect the1328

fine-grained representation from interference, which led to1329

higher reliance on the categorical representation when pro-1330

viding the response. The results stress the need to consider1331

individual differences in the use of specific representations1332

and strategies when studying complex cognitive functions,1333

such as working memory. They also illustrate the insights1334

that the individual differences approach can provide in the1335

study of brain-behavior relationships when a sufficient num-1336

ber of participants is ensured.1337

Author Contributions1338

Conceptualization: N.P.S., J.D.M., A.A., and G.R.; Project1339

administration: N.P.S.; Data curation: N.P.S., Y.T.C., and1340

A.S.O.; Methodology: N.P.S., A.K., M.R., J.D.M., A.A., and1341

G.R.; Formal analysis: N.P.S., A.K., and G.R.; Visualization:1342

N.P.S.; Writing – original draft: N.P.S.; Writing – review &1343

editing: N.P.S., A.K., M.R., Y.T.C., A.S.O., J.D.M., A.A.,1344

and G.R.; Supervision: J.D.M., A.A., and G.R.; Funding ac-1345

quisition: A.A. and G.R.; Resources: A.A. and G.R.1346

Conflict of Interest1347

J.D.M., A.A., and G.R. consult for and hold equity in1348

Neumora Therapeutics and Manifest Technologies. Other au-1349

thors declare that they have no conflict of interest.1350

Funding1351

This work was supported by the Slovenian Research and1352

Innovation Agency (Z5-50177 to N.P.S., J7-5553 and J3-1353

9264 to G.R., P3-0338 to A.S.O., and G.R., P5-0110 to1354

A.K.), the National Institutes of Health (DP5OD012109-01,1355

1U01MH121766, 5R01MH112189, and 5R01MH108590 to1356

A.A.), the National Institute on Alcohol Abuse and Al-1357

coholism (2P50AA012870-11 to A.A.), the Brain and Be-1358

havior Research Foundation Young Investigator Award (to1359

A.A.), and Simons Foundation Autism Research Initiative Pi-1360

lot Award (to A.A.).1361

Acknowledgments1362

The authors would like to thank colleagues and students who1363

helped with data collection, as well as all participants in the1364

studies for their time and cooperation. We also thank the re-1365

viewers and editors for their constructive comments and sug-1366

gestions.1367

Supplementary Material1368

Supplementary tables and figures are available at [the link to1369

the supplementary material].1370

Data Availability1371

Data and analysis scripts for this paper can be found in1372

the Open Science Framework (OSF) repository available at1373

https://osf.io/k8mvb/.1374

References1375

Adam KCS, Mance I, Fukuda K, Vogel EK. The Contribution of Attentional Lapses to Individual1376

Differences in Visual Working Memory Capacity. Journal of Cognitive Neuroscience. 2015.1377

27:1601–1616. https://doi.org/10.1162/jocn_a_00811.1378
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16 Purg Suljič et al. | Individual spatial working memory strategies

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2024. ; https://doi.org/10.1101/2023.07.07.548112doi: bioRxiv preprint 

https://doi.org/10.1162/jocn_a_01233
https://doi.org/10.1162/jocn_a_01233
https://doi.org/10.1162/jocn_a_01233
https://doi.org/10.1016/j.neuroimage.2009.11.008
https://doi.org/10.1016/j.cortex.2020.06.013
https://doi.org/10.1016/j.cortex.2020.06.013
https://doi.org/10.1016/j.cortex.2020.06.013
https://doi.org/10.1016/j.neuroimage.2013.05.033
https://doi.org/10.1016/j.neuroimage.2013.05.033
https://doi.org/10.1016/j.neuroimage.2013.05.033
https://doi.org/10.1126/science.1158023
https://doi.org/10.1093/cercor/bht320
https://doi.org/10.1080/20445911.2013.773004
https://doi.org/10.1080/20445911.2013.773004
https://doi.org/10.1080/20445911.2013.773004
https://doi.org/10/d4rkwq
https://doi.org/10.1152/jn.1998.79.6.2919
https://doi.org/10.1016/j.tics.2016.12.007
https://doi.org/10.1016/j.tics.2016.12.007
https://doi.org/10.1016/j.tics.2016.12.007
https://doi.org/10.1016/j.neuron.2014.05.014
https://doi.org/10.1016/j.neuron.2014.05.014
https://doi.org/10.1016/j.neuron.2014.05.014
https://doi.org/10.1126/science.279.5355.1347
https://doi.org/10.1126/science.279.5355.1347
https://doi.org/10.1126/science.279.5355.1347
https://doi.org/10.1037/xlm0000228
https://doi.org/10.1016/j.neuroscience.2005.04.070
https://doi.org/10/fs74wg
https://doi.org/10.1073/pnas.0601417103
https://doi.org/10.1073/pnas.0601417103
https://doi.org/10.1073/pnas.0601417103
https://doi.org/10.1146/annurev-psych-010814-015031
https://doi.org/10.1146/annurev-psych-010814-015031
https://doi.org/10.1146/annurev-psych-010814-015031
https://doi.org/10.3758/PBR.17.2.224
https://doi.org/10.1177/0956797620916786
https://doi.org/10.1016/j.neuron.2015.09.020
https://doi.org/10.1016/j.neuron.2015.09.020
https://doi.org/10.1016/j.neuron.2015.09.020
https://doi.org/10.1073/pnas.0504136102
https://doi.org/10.1073/pnas.0504136102
https://doi.org/10.1073/pnas.0504136102
https://doi.org/10.1006/nimg.1997.0306
https://doi.org/10.1006/nimg.1997.0306
https://doi.org/10.1006/nimg.1997.0306
https://doi.org/10/ggcg98
https://doi.org/10/ggcg98
https://doi.org/10/ggcg98
https://doi.org/10.1152/jn.1973.36.1.61
https://doi.org/10.1152/jn.1973.36.1.61
https://doi.org/10.1152/jn.1973.36.1.61
https://doi.org/10.1126/science.173.3997.652
https://doi.org/10.1214/06-BA117A
https://doi.org/10.1214/06-BA117A
https://doi.org/10.1214/06-BA117A
https://doi.org/10.1006/nimg.2002.1161
https://doi.org/10.1006/nimg.2002.1161
https://doi.org/10.1006/nimg.2002.1161
https://doi.org/10.1038/nature18933
https://doi.org/10.1038/nature18933
https://doi.org/10.1038/nature18933
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1002/hbm.25217
https://doi.org/10.1002/hbm.25217
https://doi.org/10.1002/hbm.25217
https://doi.org/10.1073/pnas.0135058100
https://doi.org/10.1038/s41467-021-24973-1
https://doi.org/10.1038/nature07832
https://doi.org/10.1016/j.actpsy.2004.10.011
https://doi.org/10.1016/0010-0285(82)90013-5
https://doi.org/10.1016/0010-0285(82)90013-5
https://doi.org/10.1016/0010-0285(82)90013-5
https://doi.org/10.1016/j.cognition.2003.10.006
https://doi.org/10.1016/j.cognition.2003.10.006
https://doi.org/10.1016/j.cognition.2003.10.006
https://doi.org/10.1037/0033-295X.98.3.352
https://doi.org/10.1037/0033-295X.98.3.352
https://doi.org/10.1037/0033-295X.98.3.352
https://doi.org/10.1Q37//0096-3445.129.2320
https://doi.org/10.1Q37//0096-3445.129.2320
https://doi.org/10.1Q37//0096-3445.129.2320
https://doi.org/10/ggrf96
https://doi.org/10.3389/fninf.2023.1104508
https://doi.org/10.3389/fninf.2023.1104508
https://doi.org/10.3389/fninf.2023.1104508
https://doi.org/10.1016/j.neuroimage.2018.10.006
https://doi.org/10.1016/j.neuroimage.2018.10.006
https://doi.org/10.1016/j.neuroimage.2018.10.006
https://doi.org/10.1198/jbes.2009.07145
https://doi.org/10.1198/jbes.2009.07145
https://doi.org/10.1198/jbes.2009.07145
https://doi.org/10.3389/fpsyg.2019.01067
https://doi.org/10.3389/fpsyg.2019.01067
https://doi.org/10.3389/fpsyg.2019.01067
https://doi.org/10.1016/j.neuron.2006.06.006
https://doi.org/10.1016/j.visres.2014.09.002
https://doi.org/10.1016/j.visres.2014.09.002
https://doi.org/10.1016/j.visres.2014.09.002
https://doi.org/10.1152/jn.1971.34.3.337
https://doi.org/10.1152/jn.1971.34.3.337
https://doi.org/10.1152/jn.1971.34.3.337
https://doi.org/10.3758/CABN.4.4.553
https://doi.org/10.3758/CABN.4.4.553
https://doi.org/10.3758/CABN.4.4.553
https://doi.org/10.1016/j.neuroimage.2003.07.021
https://doi.org/10.1016/j.neuroimage.2003.07.021
https://doi.org/10.1016/j.neuroimage.2003.07.021
https://doi.org/10.1093/cercor/bhw317
https://doi.org/10.1016/j.neuroimage.2018.04.014
https://doi.org/10.1016/j.neuroimage.2018.04.014
https://doi.org/10.1016/j.neuroimage.2018.04.014
https://doi.org/10.1016/j.tics.2013.06.006
https://doi.org/10.1016/j.tics.2013.06.006
https://doi.org/10.1016/j.tics.2013.06.006
https://doi.org/10.1046/j.0039-0402.2003.00252.x
https://doi.org/10.1027/1614-2241.1.3.86
https://doi.org/10.1007/s11682-014-9347-3
https://doi.org/10.1007/s11682-014-9347-3
https://doi.org/10.1007/s11682-014-9347-3
https://doi.org/10.1101/2023.07.07.548112
http://creativecommons.org/licenses/by-nc-nd/4.0/


ham AM, Earl EA, Perrone AJ, Cordova M, Doyle O, Moore LA, Conan GM, Uriarte J, Snider1551

K, Lynch BJ, Wilgenbusch JC, Pengo T, Tam A, Chen J, Newbold DJ, Zheng A, Seider NA,1552

Van AN, Metoki A, Chauvin RJ, Laumann TO, Greene DJ, Petersen SE, Garavan H, Thomp-1553

son WK, Nichols TE, Yeo BTT, Barch DM, Luna B, Fair DA, Dosenbach NUF. Reproducible1554

brain-wide association studies require thousands of individuals. Nature. 2022. 603:654–660.1555

https://doi.org/10.1038/s41586-022-04492-9.1556

Meyers EM, Freedman DJ, Kreiman G, Miller EK, Poggio T. Dynamic Population Coding of Cat-1557

egory Information in Inferior Temporal and Prefrontal Cortex. Journal of Neurophysiology.1558

2008. 100:1407–1419. https://doi.org/10.1152/jn.90248.2008.1559

Miller MB, Donovan CL, Bennett CM, Aminoff EM, Mayer RE. Individual differences in cognitive1560

style and strategy predict similarities in the patterns of brain activity between individuals.1561

NeuroImage. 2012. 59:83–93. https://doi.org/10.1016/j.neuroimage.2011.1562

05.060.1563

Moujaes F, Ji JL, Rahmati M, Burt JB, Schleifer C, Adkinson BD, Savic A, Santamauro N, Tamayo1564

Z, Diehl C, Kolobaric A, Flynn M, Rieser N, Fonteneau C, Camarro T, Xu J, Cho Y, Repovs1565

G, Fineberg SK, Morgan PT, Seifritz E, Vollenweider FX, Krystal JH, Murray JD, Preller KH,1566

Anticevic A. Ketamine induces multiple individually distinct whole-brain functional connectivity1567

signatures. eLife. 2024. 13:e84173. https://doi.org/10.7554/eLife.84173.1568

Moussa MN, Steen MR, Laurienti PJ, Hayasaka S. Consistency of Network Modules in Resting-1569

State fMRI Connectome Data. PLoS ONE. 2012. 7:e44428. https://doi.org/10.1570

1371/journal.pone.0044428.1571

Nelson TO, Chaiklin S. Immediate memory for spatial location. Journal of Experimental Psychol-1572

ogy: Human Learning and Memory. 1980. 6:529–545. https://doi.org/10.1037/1573

0278-7393.6.5.529.1574

Newcombe N, Liben LS. Barrier effects in the cognitive maps of children and adults. Jour-1575

nal of Experimental Child Psychology. 1982. 34:46–58. https://doi.org/10.1016/1576

0022-0965(82)90030-3.1577
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