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Abstract 10 

Blood lipid traits are treatable and heritable risk factors for heart disease, a leading cause of 11 

mortality worldwide. Although genome-wide association studies (GWAS) have discovered 12 

hundreds of variants associated with lipids in humans, most of the causal mechanisms of lipids 13 

remain unknown. To better understand the biological processes underlying lipid metabolism, we 14 

investigated the associations of plasma protein levels with total cholesterol (TC), triglycerides 15 

(TG), high-density lipoprotein cholesterol (HDL), and low-density lipoprotein cholesterol (LDL) 16 
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in blood. We trained protein prediction models based on samples in the Multi-Ethnic Study of 17 

Atherosclerosis (MESA) and applied them to conduct proteome-wide association studies 18 

(PWAS) for lipids using the Global Lipids Genetics Consortium (GLGC) data. Of the 749 19 

proteins tested, 42 were significantly associated with at least one lipid trait. Furthermore, we 20 

performed transcriptome-wide association studies (TWAS) for lipids using 9,714 gene 21 

expression prediction models trained on samples from peripheral blood mononuclear cells 22 

(PBMCs) in MESA and 49 tissues in the Genotype-Tissue Expression (GTEx) project. We found 23 

that although PWAS and TWAS can show different directions of associations in an individual 24 

gene, 40 out of 49 tissues showed a positive correlation between PWAS and TWAS signed p-25 

values across all the genes, which suggests a high-level consistency between proteome-lipid 26 

associations and transcriptome-lipid associations. 27 

 28 

Introduction  29 

Blood lipid levels, including levels of total cholesterol (TC), triglycerides (TG), high-density 30 

lipoprotein cholesterol (HDL), and low-density lipoprotein cholesterol (LDL), are heritable risk 31 

factors (Pilia et al., 2006) for coronary heart disease and stroke (Kannel et al., 1961; Willer & 32 

Mohlke, 2012), which are leading causes of death in the U. S. and other nations (Ahmad & 33 

Anderson, 2021; Roger et al., 2011).  Genome-wide association studies (GWAS) have identified 34 

hundreds of loci that are significantly associated with at least one lipid trait in humans (Chen et 35 

al., 2013; de Vries et al., 2019; Graham et al., 2021; Hoffmann et al., 2018). Variant alleles 36 

associated with higher concentration of LDL are more abundant among subjects with coronary 37 

artery disease than those without (Willer et al., 2008). In addition, GWAS on lipids have 38 
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facilitated the discovery of biological processes involved in lipoprotein metabolism (Burkhardt et 39 

al., 2010; Kozlitina et al., 2014; Musunuru et al., 2010). 40 

Although GWAS have been successful in identifying loci associated with lipids, they 41 

only explain a small proportion of the heritability (Manolio et al., 2009), estimated to be 35% to 42 

60% for TG, HDL, and LDL (Kathiresan et al., 2007). Moreover, most of these variants are 43 

located in non-coding regions with unclear functional roles (Willer et al., 2013). Because of 44 

population stratification and linkage disequilibrium, it is difficult to pinpoint the exact causal 45 

variants (Visscher et al., 2012). In addition, the large number of candidate variants severely 46 

limits the statistical power of GWAS (Brandes et al., 2020; Wang et al., 2016). 47 

To boost the statistical power of GWAS and provide biologically meaningful 48 

interpretations, it is important to analyze downstream “omic” molecules, which include 49 

epigenetic, transcriptomic, and proteomic measurements, and then test their associations with 50 

phenotypes of interest. Recent multi-omic studies have elucidated the molecular mechanism of 51 

complex diseases (Arneson et al., 2017; Hasin et al., 2017; Leon-Mimila et al., 2019; Ramazzotti 52 

et al., 2018; Xiao et al., 2018). When downstream omic measurements are not available, which is 53 

true for many of the trait- and disease-based GWAS, the genetically expected omic values can be 54 

imputed using prediction models built upon omic and genetic data from a separate study 55 

(Gamazon et al., 2015; Gusev et al., 2016; Hu et al., 2019). An association test is then conducted 56 

on each gene between the GWAS trait and the imputed omic level. For example, based on 57 

imputed gene expression measurements, transcriptome-wide association studies (TWAS) (Cao et 58 

al., 2021; Wainberg et al., 2019; Zhu & Zhou, 2020) have been performed for various diseases 59 

and clinical characteristics, such as schizophrenia (Gusev et al., 2018), breast cancer 60 

(Bhattacharya et al., 2020), and structural neuroimaging traits (Zhao et al., 2021).  61 
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In addition to transcriptomics, proteomics provide further information for understanding 62 

complex diseases, since protein levels are downstream products of gene expression and can be 63 

more directly related to biological processes (A. P. Wingo et al., 2021). Compared to TWAS, 64 

fewer proteome-wide association studies (PWAS), imputation-based or not, have been 65 

performed. Existing PWAS have investigated the associations between proteins and colorectal 66 

cancer (Brandes et al., 2020), stroke (B.-S. Wu et al., 2022), Alzheimer’s disease (A. P. Wingo et 67 

al., 2021), depression (T. S. Wingo et al., 2021), post-traumatic stress disorder (T. S. Wingo et 68 

al., 2022), and other psychiatric disorders (J. Liu et al., 2021). Regarding blood lipids, although 69 

TWAS have identified hundreds of genes associated with them (Feng et al., 2021; Veturi et al., 70 

2021; Yang et al., 2020), to the best of our knowledge, only one PWAS has been conducted for 71 

blood lipid traits (Schubert et al., 2022). 72 

In this work, we investigated the association of blood protein abundance with blood lipid 73 

levels to identify proteins significantly associated with lipid variability. To conduct imputation-74 

based PWAS, we trained genotype-based protein prediction models for protein levels measured 75 

from whole blood samples from the Multi-Ethnic Study of Atherosclerosis (MESA) (Bild et al., 76 

2002; Burke et al., 2016). The prediction models were then applied to the GWAS data of the 77 

Global Lipids Genetics Consortium (GLGC) (Willer et al., 2013) to identify proteins that are 78 

significantly associated with at least one of TC, TG, HDL, and LDL. Moreover, to study the 79 

relationship between PWAS and TWAS for lipids, we conducted imputation-based TWAS for 80 

blood lipid traits using gene expression prediction models trained on samples from MESA 81 

peripheral blood mononuclear cells (PBMCs) and samples from 49 Genotype-Tissue Expression 82 

(GTEx) project tissues (Lonsdale et al., 2013). When comparing the TWAS and PWAS 83 

directions of association with lipid across all the genes on each of the 49 tissues, for most tissues, 84 
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we found a positive correlation between the predicted PWAS and TWAS effects. However, for 85 

individual genes, we often observed opposite predicted PWAS and TWAS directions of effects. 86 

 87 

Methods  88 

Ethics statement 89 

This work was approved by the Health Sciences and Behavioral Sciences Institutional Review 90 

Board of the University of Michigan (IRB ID: HUM00152975). All data in this work were 91 

collected previously and analyzed anonymously. 92 

 93 

Subjects 94 

The Multi-Ethnic Study of Atherosclerosis (MESA), a part of the Trans-Omics for Precision 95 

Medicine program (TOPMed) (Kowalski et al., 2019; Taliun et al., 2021), investigates 96 

characteristics of subclinical cardiovascular diseases, i.e. those that are detected non-invasively 97 

before the onset of clinical signs and symptoms. The study aims to identify risk factors that can 98 

predict the progression of subclinical cardiovascular disease into clinically overt cardiovascular 99 

disease. The diverse, population-based sample includes 6,814 male and female subjects who are 100 

asymptomatic and aged between 45 and 84. The recruited participants consist of 38 percent 101 

White, 28 percent Black, 22 percent Hispanic, and 12 percent Asian (predominantly Chinese) 102 

individuals. In addition to genomic, transcriptomic, proteomic, and lipid data, the study also 103 

collected physiological, disease, demographic, lifestyle, and psychological factors (Bild et al., 104 

2002; Burke et al., 2016).  105 

 106 

Preprocessing of MESA genotypes, proteomics, and transcriptomics 107 
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For the genotypes, we used the sequencing data from TOPMed (Kowalski et al., 2019; Taliun et 108 

al., 2021). We removed variants with minor allele frequency (MAF) of 0.05 or less among the 109 

TOPMed subjects, leaving 12,744,944 variants. Among the subjects who had genotypes, lipid 110 

levels, and demographic information, 1,438 of them were included in MESA. Samples with 111 

degrees of relatedness up to 2, as determined by KING (Manichaikul et al., 2010), were 112 

removed, which resulted in 1,403 subjects. 113 

A total of 1,281 proteins were measured from 984 subjects. Protein levels were measured 114 

using a SOMAscan HTS Assay 1.3K for plasma proteins. The SOMAscan Assay is an aptamer-115 

based multiplex protein assay. It measures protein levels by the number of protein-specific 116 

aptamers that successfully bind to their target protein, though some proteins may be targeted by 117 

multiple aptamers (Gold et al., 2010; Raffield et al., 2020; Schubert et al., 2022). In our analysis, 118 

targets that corresponded to multiple proteins were removed, which resulted in 1,212 proteins. 119 

As part of the TOPMed MESA Multi-Omics project, the 984 participants were selected for 120 

proteomic measurement based on the following criteria. First, participant samples were restricted 121 

to those already included in the TOPMed Whole Genome Sequencing effort (Taliun et al., 2021). 122 

Second, the race and ethnicity reflected that of participants in the parent MESA cohort. Third, 123 

participants were chosen to maximize the amount of overlapping omic data. Fourth, a substantial 124 

proportion of participants had biospecimens from MESA Exams 1 and 5. 125 

Among these participants, 935 individuals with protein levels had blood lipid 126 

measurements, genotypes, and covariate information. After inversely normalizing the protein 127 

levels, we computed the top 10 protein principal component (PC) scores and top 10 surrogate 128 

values (Lee et al., 2017) to detect outliers and adjust for unobserved factors that might adversely 129 

affect the analysis. Samples with p-values less than 0.001 for the chi-squared statistics of either 130 
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the PC scores or the surrogate values were removed, leaving 918 samples (See Table S1 for 131 

sample characteristics). The inversely normalized protein levels were then adjusted for age, sex, 132 

self-reported race and ethnicity, usage of lipid-lowering medications, top 4 genetic PCs, and top 133 

10 surrogate values. The residuals of the protein levels were used for the subsequent analyses. 134 

 RNA-seq was previously performed on MESA peripheral blood mononuclear cells 135 

(PBMCs) (Brown et al., 2019; Y. Liu et al., 2013). We used the reads per kilobase of transcript 136 

per million reads mapped (RPKM) of each gene in our analysis. After applying the same 137 

preprocessing pipeline as for the proteomics (i.e. sample matching, inverse normalization, outlier 138 

removal, and adjustment for the same set of covariates), we had 1,021 samples for 22,791 genes, 139 

which covered 1,167 out of the 1,212 genes in the proteomic data. 140 

 141 

Protein and gene expression prediction models based on MESA 142 

We performed imputation-based PWAS for lipids by using SPrediXcan (Barbeira et al., 2018) to 143 

achieve higher statistical power. SPrediXcan builds an elastic net (Zou & Hastie, 2005) 144 

prediction model of the omic measurements of each gene using its cis-SNPs as predictors. These 145 

prediction models are then combined with external GWAS summary statistics to predict the 146 

associations between the omic levels and the phenotypes of interest. Intuitively, this approach 147 

can be understood as an association study between observed phenotypes and predicted omic 148 

levels. Figure 1(a) illustrates the workflow of SPrediXcan. In our analysis, we trained the elastic 149 

nets on the MESA data to predict the preprocessed protein levels from the cis-SNPs within a 150 

window extending one mega-base (MB) upstream and 1 MB downstream of the protein’s gene 151 

body (from the transcription starting site (TSS) to the transcription ending site (TES)). During 152 

model training, we restricted candidate predictive SNPs to those that are included in the GWAS. 153 
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The optimal elastic net penalty weights were selected by cross-validation as recommended for 154 

SPrediXcan (Barbeira et al., 2018). We used the same procedure to build the predictive models 155 

for the transcriptomic data. After model training on the MESA data, we obtained non-trivial (i.e. 156 

at least one cis-SNP has a non-zero weight) prediction models for 749 out of 1212 proteins and 157 

886 out of 1167 gene expressions, with an intersection of 562 genes that have both a non-trivial 158 

protein prediction model and a non-trivial gene expression prediction model. 159 

 160 

Gene expression prediction models based on the Genotype-Tissue Expression project 161 

The Genotype-Tissue Expression (GTEx) project (Lonsdale et al., 2013) investigated the 162 

influence of regions in the human genome on gene expression and regulation in different tissues. 163 

Genotypes and gene expression levels were collected in 49 tissues from 900 post-mortem donors, 164 

and the sample size for each tissue ranged from 73 to 706. In our analysis, we downloaded gene 165 

expression prediction models pre-trained using the GTEx data by the authors of SPrediXcan, all 166 

of which had a predictive p-value less than 0.05. We applied the models to the GWAS summary 167 

statistics via the SPrediXcan framework to obtain tissue-specific TWAS results. 168 

 169 

Imputation-based PWAS and TWAS using the Global Lipids Genetics Consortium 170 

After training the elastic nets on the MESA data, we applied the prediction models to the GWAS 171 

summary statistics from the Global Lipids Genetics Consortium (GLGC) (Willer et al., 2013). 172 

GLGC examined the associations between the genotypes and the lipid levels of 188,577 173 

individuals of European ancestry. GWAS effect sizes and their standard errors were obtained for 174 

more than 2 million SNPs. For each blood lipid trait, we applied the protein prediction models 175 

trained on the MESA data and the tissue-specific gene expression prediction models trained on 176 
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both MESA and GTEx data to the GLGC summary statistics and computed the association 177 

between the lipid and the gene’s protein and gene expression levels. 178 

 179 

Results 180 

Overview of PWAS results 181 

Since our PWAS is imputation-based, we first assessed the prediction power of the cis-SNPs for 182 

the protein levels. Figure 1(b) shows the prediction p-values for the 749 proteins that have at 183 

least one predictive cis-SNP with a non-zero weight. The cumulative distribution function (CDF) 184 

of the predictive 𝑟! is shown in Figure S1. With the false discovery rate (FDR) controlled at 0.05 185 

(Ferreira & Zwinderman, 2006), 469 (63%) of the 749 proteins were significantly predictable 186 

(Figure 1 (b), Figure S1), and the predictive  𝑟! of these proteins ranged from 0.01 to 0.80 187 

(Figure S1). This result indicates the significance of the protein prediction models and the 188 

reliability of the imputation-based PWAS results. 189 

We next used the protein prediction models to perform PWAS for TC, TG, HDL, LDL. 190 

The quantile-quantile plot of the PWAS p-values for each lipid is shown in Figure 1(c). Overall, 191 

we observed that 23, 17, 17, and 16 proteins were significantly associated (FDR ≤ 0.05) with TC, 192 

TG, HDL, and LDL, respectively, and 42 proteins were significantly associated with at least one 193 

lipid (Table 1, Figure 1(d)). Among these proteins, apolipoprotein E (APOE), haptoglobin (HP), 194 

and interleukin 1 receptor antagonist (IL1RN) have been identified for their associations with 195 

lipids in previous studies (Schubert et al., 2022). 196 

 197 

Comparison of MESA-trained PWAS and MESA-trained TWAS 198 
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To compare lipid PWAS with lipid TWAS from the same study samples, we also conducted 199 

TWAS using GLGC summary data with the predictive models trained on the MESA PBMC gene 200 

expression data. For each lipid trait, we compared the signed log p-value of the genes in PWAS 201 

and TWAS and computed the Spearman correlation coefficient (Myers & Sirois, 2006) (Figure 202 

2), where the sign reflects the direction of association.  The PWAS and TWAS signed log p-203 

values were modestly positively correlated, where the correlation coefficient ranged from 0.083 204 

to 0.144 and the correlation p-value were all below 0.05. For TC/TG/HDL/LDL, among the 205 

23/17/17/16 genes whose proteins are associated with the lipid (Figure 1(d), Table 1), 10/2/4/5 206 

genes have both protein and gene expression associated with the lipid. Out of these 10/2/4/5 207 

genes, 6/2/2/3 genes' protein-lipid association direction and gene expression-lipid association 208 

direction are concordant. In particular, APOE was significantly and positively associated with 209 

LDL in PWAS but significantly and negatively associated with LDL in TWAS; leukocyte 210 

immunoglobulin-like receptor B2 (LILRB2) and Fc gamma receptor IIb (FCGR2B) were 211 

significantly negatively associated with two lipids in PWAS and positively associated with the 212 

same lipids in TWAS.  213 

To better understand the opposing PWAS and TWAS effects in some of the genes, we 214 

used APOE and LDL as an example and compared the LDL GWAS summary statistics with the 215 

cis-SNPs’ weights in the protein and gene expression prediction models. Figure 3 (top panel) 216 

shows the signed log p-values of the association between LDL and the cis-SNPs of APOE in 217 

GLGC. Effect alleles were chosen so that all the GWAS effect sizes for LDL were positive. 218 

Among SNPs with very significant GWAS p-values, effect allele C in SNP rs7412 corresponds 219 

to the Apoε2 allele of APOE (H. Wu et al., 2020; Zhen et al., 2017). This SNP is related to the 220 

stability of the APOE isoforms (Clément-Collin et al., 2006) and is a risk factor for coronary 221 
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heart disease (Tejedor et al., 2014). Another SNP with a very strong GWAS effect is rs4420638, 222 

whose effect allele G may elevate TC, TG, and HDL (Huang et al., 2015). As indicated by the 223 

colors, the sets of predictive cis-SNPs for protein and gene expression have little overlap with 224 

each other, with only one SNP (rs1114832) having a nonzero weight in both predictive models. 225 

Figure 3 (middle panel) shows the weights of the cis-SNPs in the prediction model of 226 

APOE protein. The effects of most cis-SNPs on APOE protein had the same direction as their 227 

effects on LDL, with only four exceptions below the 𝑦 = 0 line. In particular, the effects of 228 

rs7412 for LDL and APOE protein were both strong and of the same sign, dominating all the 229 

other cis-SNPs. Thus, the resulting association between APOE protein and LDL was positive, as 230 

indicated by the positive weighted average of the predictive weights (dashed line). On the other 231 

hand, compared to the PWAS results, the directions of the effects of the predictive cis-SNPs on 232 

APOE gene expression were approximately equally split between positive and negative, as 233 

shown in Figure 3 (bottom panel). Nevertheless, the negative weights outweighed the positive 234 

weights, with the greatest contribution from rs4420638 and rs112776896, which has a strong 235 

positive association with LDL, but strong negative association with APOE gene expression. Thus 236 

the resulting association between LDL and APOE gene expression was negative, as indicated by 237 

the negative weighted average of the gene expression predictive weights (dashed line). Overall, 238 

due to the small proportion of overlapping nonzero predictive weights and their different 239 

directions of effects (Figure S2), APOE protein and gene expression have opposite directions of 240 

association with LDL. In addition, similar patterns were observed for LDL with other genes, 241 

such as FCGR2B,  LILRB2, major histocompatibility complex class I polypeptide-related 242 

sequence B (MICB) (Figures S3-S8), as well as for the other lipids (Figures S9-S16, S18-S25, 243 

S27-S34). 244 
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 245 

Comparison of MESA-trained PWAS and GTEx-trained TWAS 246 

The TWAS results obtained from MESA only used gene expression measurements in PBMCs. 247 

Since the gene expression levels in some tissues, such as liver, may be more relevant to lipid 248 

levels compared to those in other tissues, we extended our TWAS analysis using gene expression 249 

data from 49 GTEx tissues. Results of MESA-trained PWAS, MESA-trained TWAS, and GTEx-250 

trained TWAS are compared in Figures 4(a), S17 (a), S26 (a), S35 (a). Overall, for all lipids, the 251 

significance and direction of association for PWAS and TWAS are heterogeneous across 252 

individual genes. For some genes, the predicted protein and gene expression levels had very 253 

consistent directions of association with LDL. For example, for major histocompatibility 254 

complex class I polypeptide-related sequence A (MICA), LDL was positively associated with 255 

both protein and gene expression in MESA and with gene expression in 43 out of 49 tissues in 256 

GTEx. Other examples with similar patterns were observed for MICA with TC and HDL, copine 257 

1 (CPNE1) with TC, and cathepsin B (CTSB) with TG. On the other hand, for some other genes, 258 

the protein and gene expression had mixed directions of association. For instance, LDL was 259 

positively associated with HP protein levels, but had approximately equal numbers of positive 260 

and negative associations with gene expression levels across tissues. Similar inconsistent patterns 261 

were observed for HP with TC, APOE with TC and LDL, and apolipoprotein B (APOB) with 262 

TC, TG, and HDL. 263 

We next evaluated the correlation patterns of PWAS and TWAS effects when aggregated 264 

across all the genes and how this correlation varied across tissues. Figure 4(b) shows the 265 

Spearman correlations for each tissue between the signed log p-values for MESA-trained PWAS 266 

and GTEx-trained TWAS for LDL. Out of the 49 tissues in GTEx, the PWAS-TWAS correlation 267 
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was positive in 47 of them (binomial test p-value: 2.2 × 10-12). For TC, TG, and HDL, the 268 

PWAS-TWAS correlations were positive in 41, 43, 40 tissues, respectively (Figures S17(b), 269 

S26(b), and 35(b)). These findings indicate that although the relation between the proteins’ and 270 

the tissue-specific gene expressions’ effects on lipids can be mixed on a single gene, the 271 

aggregated correlations between TWAS and PWAS results for lipids across all genes were 272 

mostly positive, even if the gene expression predictive models and the protein predictive models 273 

were trained using different datasets (i.e. MESA and GTEx). 274 

 275 

Discussion 276 

In this work, we conducted PWAS for blood lipids and identified 42 proteins significantly 277 

associated with at least one of TC, TG, HDL, and LDL. Several of these proteins, such as 278 

tyrosine kinase 2 (TYK2) (Grunert et al., 2011; Qi et al., 2019), MICA and MICB (Bilotta et al. 279 

2019; Yamamoto et al. 2001), IL1RN (Schubert et al., 2022), HP (Braeckman et al., 1999; 280 

Schubert et al., 2022), APOE and APOB (Abd El-Aziz & Mohamed, 2016; Schubert et al., 2022; 281 

The Emerging Risk Factors Collaboration*, 2009; Weisgraber, 1994), have been previously 282 

identified for their association with blood lipids and related diseases. In particular, we found 283 

APOE and APOB to be significantly associated with all four lipid traits. Other proteins, such as 284 

lymphotoxin alpha (LTA), C-C motif chemokine ligand 17 (CCCL17), and LILRB2, are novel 285 

proteins that have not been previously identified for their associations with blood lipids. 286 

Moreover, we conducted TWAS for blood lipids in different tissues and compared the 287 

results with the PWAS results. We found that PWAS and TWAS effects for lipids were 288 

heterogeneous across tissues and genes, and demonstrated that one cause of this discrepancy is 289 

the limited proportion of overlapping SNPs with nonzero predictive weights and their different 290 
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directions of effect. Nevertheless, when we computed the correlation between the PWAS and 291 

TWAS signed log p-values for all the genes in every tissue, the correlation coefficients across 292 

various tissues were almost all positive. These results demonstrate that for a single gene, its gene 293 

expression's association with lipids may differ from its protein's association with lipids, but when 294 

the results for all the genes are aggregated, the lipid TWAS and lipid PWAS results are more 295 

consistent.  296 

One limitation of our analyses is that not all confounders of omic or lipid levels might 297 

have been accounted for. Blood lipids in GWAS can come from a variety of sources, and there 298 

could be factors that are correlated with omic levels but not included in the study. Similarly, for 299 

training the omic prediction models, although we computed the surrogate values to adjust for 300 

unobserved factors that are relevant to the analysis, there could still be factors that are not 301 

reflected by the surrogate values and other covariates in the model, such as those related to the 302 

collection, processing, and storage of blood or plasma as well as machine artifacts. Furthermore, 303 

the set of covariates included in the GWAS might not be the same as those that are adjusted for 304 

in the omic prediction models. These potential issues with the covariates and unobserved factors 305 

may cause suboptimal accuracy or efficiency in the imputation-based PWAS and TWAS results. 306 

A limitation of our tissue-specific GTEx-based TWAS for lipids is the high number of 307 

missing gene-tissue pairs, due to their absence in the GTEx data. Imputation methods can be 308 

applied to these gene-tissue pairs, so that the missing signed p-values of the tissue-specific gene 309 

expression-lipid associations could be imputed, which could provide more insight into the 310 

connection between the lipid PWAS and lipid TWAS.  311 

Another limitation of our analyses is that for training the omic prediction models, 312 

samples from all ancestry groups were used in order to gain power, but in GLGC, most samples 313 
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are European. This discrepancy in study populations could cause inaccuracy in the analysis 314 

(Abdellaoui et al., 2019; Price et al., 2010; Zhang et al., 2020). A multi-ethnic omic dataset with 315 

a larger sampler size than MESA will facilitate the training of ancestry-specific, high-power 316 

prediction models, and lipid GWAS with more diverse samples will make imputation–based 317 

lipid PWAS and lipid TWAS findings more applicable to individuals from non-European 318 

populations (Bhattacharya et al., 2020; Keys et al., 2020). 319 
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Tables and Figures

Table 1: PWAS results for proteins that are significantly (FDR ≤ 0.05) associated with at least one blood
lipid trait. Next to the PWAS (P) summary statistics of every protein, the TWAS (T) summary statistics of
the same gene are also displayed. Inside each cell is the log10 p-value, followed by the direction of association
in parentheses.

TC TG HDL LDL

Gene P T P T P T P T

APOE 406(+) 16(-) 14(-) . 37(-) 4(+) 850(+) 19(-)
TYK2 43(-) . . . . . 53(-) .
HP 45(-) 3(-) 4(-) . . . 47(-) 3(-)
LTA . . 13(-) . . . . .
MICB 12(+) 3(-) 9(+) . . . 5(+) .
CCL17 . . . . 10(+) 9(+) . .
LILRB2 4(-) 4(+) . . 10(-) 8(+) . .
RBM39 8(-) . . . . . 5(-) .
PCSK7 4(-) 3(-) 8(-) 4(-) . . . .
FN1 7(+) . . . . . 8(+) .
RSPO3 . . 6(+) . 8(-) . . .
PDPK1 . . 7(-) . 4(+) . . .
MICA 6(-) 6(-) . . 4(-) 3(-) 4(-) 4(-)
IL1RN 6(+) . . . . . 3(+) .
MMP9 . . 5(+) . 4(-) . . .
FCGR2A 5(-) 6(-) . . . . 5(-) 6(-)
SERPINA1 4(-) . . . . . 5(-) .
ICAM5 5(-) . . . . . 4(-) .
EPHB6 . . . . 4(-) . . .
CTSB . . 4(+) 6(+) . . . .
HAVCR2 4(-) . . . . . 3(-) .
MET . . 4(+) . . . . .
FCGR2B 3(-) 5(+) . . . . 4(-) 4(+)
ICAM3 4(+) . . . . . . .
CPNE1 4(+) 6(+) . . . . . .
COLEC11 4(+) . . . . . . .
AIF1 . . . . 4(-) . . .
HSPA1A . . 4(-) . . . . .
TYRO3 . . 3(+) . 3(-) . . .
MMP1 3(-) 3(-) . . . . 3(-) .
SHBG . . . . 3(+) . . .
VWF . . . . . . 3(+) .
AGRP . . . . 3(+) . . .
TKT . . . . 3(+) . . .
CSF3 4(-) . . . 8(-) . . .
NAPA . . . . 3(-) . . .
APOB 16(-) . 10(-) . 9(+) . 20(-) .
F2 . . 5(-) . 13(+) . . .
HGFAC 6(-) . 6(-) . . . . .
MDK 5(+) . . . . . . .
BCAM . . 3(-) . . . . .
CFC1 . . 4(-) . . . . .
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Figure 1: Imputation-based proteome-wide association studies (PWAS) for lipids. Panels (b) and (c): the
solid line is the identity line, while the dashed line represents the false discovery rate (FDR) threshold of
0.05.
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Figure 2: Comparison of PWAS and TWAS results for lipids. The subplot inside each panel shows zoomed
results.

(a) (b)

(c) (d)
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Figure 3: GWAS for LDL and prediction models for APOE’s protein and gene expression levels. The
reference and alternative alleles for GWAS and the predictive models have been aligned and reordered so
that all the SNPs have positive GWAS effects. In the center and bottom panels, the size of the circles
indicates the SNP’s GWAS z-score. The z-scores are used to compute the weighted average of the model
weights (dashed line), which has the same sign as and is proportional to the predicted effect of protein or
gene expression on the GWAS outcome.
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Figure 4: Comparison of MESA PBMC PWAS, MESA PBMC TWAS, and GTEx tissue-specific TWAS results for LDL.
Panel (a): signed log p-value and significance of association. Missing values are shown in white. Significance of association
is deteremined by the false discovery rate (FDR) threshold of 0.05. Only genes with at least one significant association with
LDL are displayed. Panel (b): correlation between signed log p-values of MESA PBMC PWAS and signed log p-values of each
GTEx tissue-specific TWAS (i.e. the correlation between the bottom row and every other row of the grid in Panel (a)).

(a)
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