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Abstract 

Remarkably, human brains have the ability to accurately perceive and process the real-world size 

of objects, despite vast differences in distance and perspective. While previous studies have 

delved into this phenomenon, distinguishing this ability from other visual perceptions, like depth, 

has been challenging. Using the THINGS EEG2 dataset with high time-resolution human brain 

recordings and more ecologically valid naturalistic stimuli, our study uses an innovative 

approach to disentangle neural representations of object real-world size from retinal size and 

perceived real-world depth in a way that was not previously possible. Leveraging this state-of-

the-art dataset, our EEG representational similarity results reveal a pure representation of object 

real-world size in human brains. We report a representational timeline of visual object 

processing: object real-world depth appeared first, then retinal size, and finally, real-world size. 

Additionally, we input both these naturalistic images and object-only images without natural 

background into artificial neural networks. Consistent with the human EEG findings, we also 

successfully disentangled representation of object real-world size from retinal size and real-

world depth in all three types of artificial neural networks (visual-only ResNet, visual-language 

CLIP, and language-only Word2Vec). Moreover, our multi-modal representational comparison 

framework across human EEG and artificial neural networks reveals real-world size as a stable 

and higher-level dimension in object space incorporating both visual and semantic information. 

Our research provides a detailed and clear characterization of the object processing process, 

which offers further advances and insights into our understanding of object space and the 

construction of more brain-like visual models. 

Keywords: real-world size, depth perception, RSA, artificial neural networks, object recognition  
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Introduction 

Imagine you are viewing an apple tree while walking around an orchard: as you change your 

perspective and distance, the retinal size of the apple you plan to pick varies, but you still 

perceive the apple as having a constant real-world size. How do our brains extract object real-

world size information during object recognition to allow us to understand the complex world? 

Behavioral studies have demonstrated that perceived real-world size is represented as an object 

physical property, revealing same-size priming effects (Setti et al., 2008), familiar-size stroop 

effects (Konkle & Oliva, 2012a; Long & Konkle, 2017), and canonical visual size effects (Chen 

et al., 2022; Konkle & Oliva, 2011). Human neuroimaging studies have also found evidence of 

object real-world size representation (Huang et al., 2022; S.-M. Khaligh-Razavi et al., 2018; 

Konkle & Caramazza, 2013; Konkle & Oliva, 2012b; Luo et al., 2023; Quek et al., 2023; R. 

Wang et al., 2022). These findings suggest real-world size is a fundamental dimension of object 

representation. 

However, previous studies on object real-world size have faced several challenges. 

Firstly, the perception of an object’s real-world size is closely related to the perception of its 

real-world distance in depth. For instance, imagine you are looking at photos of an apple and a 

basketball: if the two photos were zoomed in such that the apple and the basketball filled the 

same exact retinal (image) size, you could still easily perceive that the apple is the physically 

smaller real-world object. But, you would simultaneously infer that the apple is thus located 

closer to you (or the camera) than the basketball. In previous neuroimaging studies of perceived 

real-world size (Huang et al., 2022; Konkle & Caramazza, 2013; Konkle & Oliva, 2012b), 

researchers presented images of familiar objects zoomed and cropped such that they occupied the 
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same retinal size, finding that neural responses in ventral temporal cortex reflected the perceived 

real-world size (e.g. an apple smaller than a car). However, while they controlled the retinal size 

of objects, the intrinsic correlation between real-world size and real-world depth in these images 

meant that the influence of perceived real-world depth could not be entirely isolated when 

examining the effects of real-world size. This makes it difficult to ascertain whether their results 

were driven by neural representations of perceived real-world size and/or perceived real-world 

depth. MEG and EEG studies focused on temporal processing of object size representations (S.-

M. Khaligh-Razavi et al., 2018; R. Wang et al., 2022) have been similarly susceptible to this 

limitation. Indeed, one recent behavioral study (Quek et al., 2023) provided evidence that 

perceived real-world depth could influence real-world size representations, further illustrating 

the necessity of investigating pure real-world size representations in the brain. Secondly, the 

stimuli used in these studies were cropped object stimuli against a plain white or grey 

background, which are not particularly naturalistic. More and more studies and datasets have 

highlighted the important role of naturalistic context in object recognition (Allen et al., 2022; 

Gifford et al., 2022; Grootswagers et al., 2022; Hebart et al., 2019; Stoinski et al., 2023). In 

ecological contexts, inferring the real-world size/distance of an object likely relies on a 

combination of bottom-up visual information and top-down knowledge about canonical object 

sizes for familiar objects. Incorporating naturalistic background context in experimental stimuli 

may produce more accurate assessments of the relative influences of visual shape representations 

(Bracci et al., 2017; Bracci & Op de Beeck, 2016; Proklova et al., 2016) and higher-level 

semantic information (Doerig et al., 2022; Huth et al., 2012; A. Y. Wang et al., 2022). 

Furthermore, most previous studies have tended to categorize size rather broadly, such as merely 

differentiating between big and small objects (S.-M. Khaligh-Razavi et al., 2018; Konkle & 
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Oliva, 2012b; R. Wang et al., 2022) or dividing object size into seven levels from small to big. 

To more finely investigate the representation of object size in the brain, it may be necessary to 

obtain a more continuous measure of size for a more detailed characterization. 

Certainly, a minority of fMRI studies have attempted to utilize natural images and also 

engaged in more detailed size measurements to more precisely explore the encoding of object real-

world size in different brain areas (Luo et al., 2023; Troiani et al., 2014). However, no study has 

yet comprehensively overcome all the challenges and unfolded a clear processing timeline for 

object retinal size, real-world size, and real-world depth in human visual perception.  

In the current study, we overcome all these challenges by combining high temporal-

resolution EEG, naturalistic images, artificial neural networks, and novel computational methods 

to distinguish the neural representations of object real-world size, retinal size, and real-world 

depth. We applied our novel computational approach to an open EEG dataset, THINGS EEG2 

(Gifford et al., 2022). Firstly, the visual image stimuli used in this dataset are more naturalistic 

and include objects that vary in real-world size, depth, and retinal size. This allows us to employ 

a multi-model representational similarity analysis to investigate pure representations of object 

real-world size, partialing out – and simultaneously exploring – these confounding features. 

Secondly, we are able to explore the neural dynamics of object feature processing in a more 

ecological context based on natural images in human object recognition. Thirdly, instead of 

dividing object size into several levels, we applied more detailed behavioral measurements from 

an online size rating task to obtain a more continuous measure to more finely decode the 

representation of object size in the brain.  

We first focus on unfolding the neural dynamics of pure object real-world size 
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representations. The temporal resolution of EEG allows us the opportunity to investigate the 

representational timecourse of visual object processing, asking whether processing of perceived 

object real-world size precedes or follows processing of perceived depth, if these two properties 

are in fact processed independently. 

We then attempt to further explore the underlying mechanisms of how human brains 

process object size and depth in natural images by integrating artificial neural networks (ANNs). 

In the domain of cognitive computational neuroscience, ANNs offer a complementary tool to 

study visual object recognition, and an increasing number of studies support that ANNs exhibit 

representations similar to human visual systems (Cichy et al., 2016; Güçlü & van Gerven, 2015; 

Yamins et al., 2014; Yamins & DiCarlo, 2016). Indeed, a recent study found that ANNs also 

represent real-world size (Huang et al., 2022); however, their use of a fixed retinal size image 

dataset with the same cropped objects as described above makes it similarly challenging to 

ascertain whether the results reflected real-world size and/or depth. Additionally, some recent 

work indicates that artificial neural networks incorporating semantic embedding and multimodal 

neural components might more accurately reflect human visual representations within visual 

areas and even the hippocampus, compared to vision-only networks (Choksi, Mozafari, et al., 

2022; Choksi, Vanrullen, et al., 2022; Conwell et al., 2022; Doerig et al., 2022; Jozwik et al., 

2023; A. Y. Wang et al., 2022). Given that perception of real-world size may incorporate both 

bottom-up visual and top-down semantic knowledge about familiar objects, these models offer 

yet another novel opportunity to investigate this question. Utilizing both visual and visual-

semantic models, as well as different layers within these models, ANNs provide us the approach 

to extract various image features, low-level visual information from early layers and higher-level 

information including both visual and semantic features from late layers.  
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The novel computational approach by cross-modal representational comparisons we take 

with the current study allows us to compare how representations of perceived real-world size and 

depth emerge in both human brains and artificial neural networks. Unraveling the internal 

representations of object size and depth features in both human brains and ANNs provides us a 

deeper approach to not only explore whether both biological and artificial systems represent 

object real-world size, along with retinal size and real-world depth features, but also investigate 

possible mechanisms of object real-world size representations.  

 

Materials and Methods 

Experimental design, stimuli images and EEG data:  

We utilized the open dataset from THINGS EEG2 (Gifford et al., 2022), which includes EEG data 

from 10 healthy human subjects (age=28.5±4, 8 female and 2 male) in a rapid serial visual 

presentation (RSVP) paradigm with an orthogonal target detection task to ensure participants paid 

attention to the visual stimuli. For each trial, subjects viewed one image (sized 500 × 500 pixels) 

for 100ms. Each subject viewed 16740 images of objects on a natural background for 1854 object 

concepts from THINGS dataset (Hebart et al., 2019). For the current study, we used the ‘test’ 

dataset portion, which includes 16000 trials per subject corresponding to 200 images (200 object 

concepts, one image per concept) with 80 trials per image. Before inputting the images to the 

ANNs, we reshaped image sizes to 224 x 224 pixels and normalized the pixel values of images to 

ImageNet statistics. 
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EEG data were collected using a 64-channel EASYCAP and a BrainVision actiCHamp 

amplifier. We used already pre-processed data from 17 channels (O1, Oz, O2, PO7, PO3, POz, 

PO4, PO8, P7, P5, P3, P1, Pz, P2) overlying occipital and parietal cortex. We re-epoched EEG 

data ranging from 100ms before stimulus onset to 300ms after onset with a sample frequency of 

100Hz. Thus the shape of our EEG data matrix for each trial was 17 channels × 40 time points.  

ANN models:  

We applied two pre-trained ANN models: one visual model (ResNet-101 (He et al., 2016) 

pretrained on ImageNet), and one multi-modal (visual+semantic) model (CLIP with a ResNet-101 

backbone (Radford et al., 2021) pretrained on YFCC-15M). We used THINGSvision 

(Muttenthaler & Hebart, 2021) to obtain low- and high-level feature vectors of ANN activations 

from early and late layers (early layer: second convolutional layer; late layer: last visual layer) for 

the images.  

Word2Vec model:  

To approximate the non-visual, pure semantic space of objects, we also applied a Word2Vec 

model, a natural language processing model for word embedding, pretrained on Google News 

corpus (Mikolov et al., 2013), which contains 300-dimensional vectors for 3 million words and 

phrases. We input the words for each image’s object concept (pre-labeled in THINGS dataset: 

Hebart et al., 2019), instead of the visual images themselves. We used Gensim (Řehůřek & Sojka, 

2010) to obtain Word2Vec feature vectors for the objects in images. 

Representational dissimilarity matrices (RDMs):  
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To conduct RSA across human EEG, artificial models, and our hypotheses corresponding to 

different visual features, we first computed representational dissimilarity matrices (RDMs) for 

different modalities (Figure 2). The shape of each RDM was 200 × 200, corresponding to pairwise 

dissimilarity between the 200 images. We extracted the 19900 cells from the upper half of the 

diagonal of each RDM for subsequent analyses. 

Neural RDMs. From the EEG signal, we constructed timepoint-by-timepoint neural RDMs 

for each subject with decoding accuracy as the dissimilarity index (Figure 2A). We first conducted 

timepoint-by-timepoint classification-based decoding for each subject and each pair of images 

(200 images, 19900 pairs in total). We applied linear Support Vector Machine (SVM) to train and 

test a two-class classifier, employing a 5-time 5-fold cross-validation method, to obtain an 

independent decoding accuracy for each image pair and each timepoint. Therefore, we ultimately 

acquired 40 (1 per timepoint) EEG RDMs for each subject. 

Hypothesis-based (HYP) RDMs. We constructed three hypothesis-based RDMs reflecting 

the different types of visual object properties in the naturalistic images (Figure 2B): Real-World 

Size RDM, Retinal Size RDM, and Real-World Depth RDM. We constructed these RDMs as 

follows:  

(1) For Real-World Size RDM, we obtained human behavioral real-world size ratings of 

each object concept from the THINGS+ dataset (Stoinski et al., 2022). In the THINGS+ 

dataset, 2010 participants (different from the subjects in THINGS EEG2) did an online 

size rating task and completed a total of 13024 trials corresponding to 1854 object 

concepts. The range of possible size ratings was from 0 to 519 in their online size rating 

task, with the actual mean ratings across subjects ranging from 100.03 (‘sand’) to 
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423.09 (‘subway’). We used these ratings as the perceived real-world size measure of 

the object concept pre-labeled in THINGS dataset (Hebart et al., 2019) for each image. 

We then constructed the representational dissimilarity matrix by calculating the 

absolute difference between perceived real-world size ratings for each pair of images.  

(2) For Retinal Size RDM, we applied Adobe Photoshop (Adobe Inc., 2019) to crop objects 

corresponding to object labels from images manually, obtaining a rectangular region 

that precisely contains a single object, then measured the diagonal length of the 

segmented object in pixels as the retinal size measure (Konkle & Oliva, 2011). Due to 

our calculations being at the object level, if there were more than one same objects in 

an image, we cropped the most complete one to get more accurate retinal size. We then 

constructed the RDM by calculating the absolute difference between measured retinal 

size for each pair of images.  

(3) For Real-World Depth RDM, we calculated the perceived depth based on the measured 

retinal size index and behavioral real-world size ratings, such that real-world depth / 

visual image depth = real-world size / retinal size. Since visual image depth (viewing 

distance) is held constant across images in the task, real-world depth is proportional to 

real-world size / retinal size. We then constructed the RDM by calculating the absolute 

difference between real-world depth index for each pair of images.  

ANN (and Word2Vec) model RDMs.  We constructed a total of five model-based RDMs 

(Figure 2C). Our primary analyses used four ANN RDMs, corresponding to the early and late 

layers for both ResNet and CLIP (Figure S1). We also calculated a single Word2Vec RDM for the 

pure semantic analysis (Figure S2). For each RDM, we got the dissimilarities by calculating 1 – 
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Pearson correlation coefficient between each pair of two vectors of the model features 

corresponding to two input images. 

Representational similarity analyses (RSA) and statistical analyses:  

We conducted cross-modal representational similarity analyses between the three types of RDMs 

(Figure 2). All decoding and RSA analyses were implemented using NeuroRA (Lu & Ku, 2020). 

EEG × ANN (or W2V) RSA. To measure the representational similarity between human 

brains and ANNs and confirm that ANNs have significantly similar representations to human 

brains, we calculated the Spearman correlation between the 40 timepoint-by-timepoint EEG neural 

RDMs and the 4 ANN RDMs corresponding to the representations of ResNet early layer, ResNet 

late layer, CLIP early layer, CLIP late layer, respectively. We also calculated temporal 

representational similarity between human brains (EEG RDMs) and the Word2Vec model RDM. 

Cluster-based permutation tests were conducted to determine the time windows of significant 

representational similarity. First, we performed one-sample t-tests (one-tailed testing) against zero 

to get the t-value for each timepoint, and extracted significant clusters. We computed the clustering 

statistic as the sum of t-values in each cluster. Then we conducted 1000 permutations of each 

subject’s timepoint-by-timepoint similarities to calculate a null distribution of maximum clustering 

statistics. Finally, we assigned cluster-level p-values to each cluster of the actual representational 

timecourse by comparing its cluster statistic with the null distribution. Time-windows were 

determined to be significant if the p-value of the corresponding cluster was <0.05. 

EEG × HYP RSA. To evaluate how human brains temporally represent different visual 

features, we calculated the timecourse of representational similarity between the timepoint-by-

timepoint EEG neural RDMs and the three hypothesis-based RDMs. To avoid correlations 
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between hypothesis-based RDMs (Figure 3A) influencing comparison results, we calculated 

partial correlations with one-tailed test against the alternative hypothesis that the partial correlation 

was positive (greater than zero). Cluster-based permutation tests were performed as described 

above to determine the time windows of significant representational similarity. In addition, we 

conducted peak latency analysis to determine the latency of peak representational similarity for 

each type of visual information with the EEG signal. We restricted the time-window to the 

significant (partial) correlation time-window for real-world size, retinal size, and real-world depth, 

and got the individual peak timepoint corresponding to the highest partial correlation. Paired t-

tests (two-tailed) were conducted to assess the statistical differences in peak latencies between 

different visual features. 

ANN (or W2V) × HYP RSA. To evaluate how different visual information is represented 

in ANNs, we calculated representational similarity between the ANN RDMs and hypothesis-based 

RDMs. As in the EEG × HYP RSA, we calculated partial correlations to avoid correlations 

between hypothesis-based RDMs. We also calculated the partial correlations between hypothesis-

based RDMs and the Word2Vec RDM. To determine statistical significance, we conducted a 

bootstrap test. We shuffled the order of the cells above the diagonal in each ANN (or Word2Vec) 

RDM 1000 times. For each iteration, we calculated partial correlations corresponding to the three 

hypothesis-based RDMs. This produced a 1000-sample null distribution for each HYP x ANN (or 

W2V) RSA. We hypothesized that if the real similarity was higher than the 95% confidence 

interval of the null distribution, it indicated that ANN (or W2V) features validly encoded the 

corresponding visual feature. 

Additionally, to explore how the naturalistic background present in the images might 

influence object real-world size, retinal size, and real-world depth representations, we conducted 
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another version of the analysis by inputting cropped object images without background into ANN 

models to obtain object-only ANN RDMs (Figure S3). Then we performed the same ANN x HYP 

similarity analysis to calculate partial correlations between the hypothesis-based RDMs and 

object-only ANN RDM. (We didn’t conduct the similarity analysis between timepoint-by-

timepoint EEG neural RDMs with subjects viewing natural images and object-only ANN RDMs 

due to the input differences.)  

Data and code accessibility:  

EEG data and images from THINGS EEG2 data are publicly available on OSF 

(https://osf.io/3jk45/). All Python analysis scripts will be available post-publication on GitHub 

(https://github.com/ZitongLu1996/RWsize).  
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Figure 1 Overview of our analysis pipeline including constructing three types of RDMs and conducting 

comparisons between them. 
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Figure 2 Methods for calculating neural (EEG), hypothesis-based (HYP), and artificial neural network 

(ANN) & semantic language processing (Word2Vec, W2V) model-based representational dissimilarity 

matrices (RDMs). (A) Steps of computing the neural RDMs from EEG data. EEG analyses were 

performed in a time-resolved manner on 17 channels as features. For each time t, we conducted pairwise 

cross-validated SVM classification. The classification accuracy values across different image pairs 

resulted in each 200 × 200 RDM for each time point. (B) Calculating the three hypothesis-based RDMs: 
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Real-World Size RDM, Retinal Size RDM, and Real-World Depth RDM. Real-world size, retinal size, 

and real-world depth were calculated for the object in each of the 200 stimulus images. The number in the 

bracket represents the rank (out of 200, in ascending order) based on each feature corresponding to the 

object in each stimulus image (e.g. “ferry” ranks 197th in real-world size from small to big out of 200 

objects). The connection graph to the right of each RDM represents the relative representational distance 

of three stimuli in the corresponding feature space. (C) Steps of computing the ANN and Word2Vec 

RDMs. For ANNs, the inputs were the resized images, and for Word2Vec, the inputs were the words of 

object concepts. For clearer visualization, the shown RDMs were separately histogram-equalized 

(percentile units). 

 

Results 

We conducted a cross-modal representational similarity analysis (Figures 1-2, see Method 

section for details) comparing the patterns of human brain activation (timepoint-by-timepoint 

decoding of EEG data) while participants viewed naturalistic object images, the output of 

different layers of artificial neural networks and semantic language models fed the same stimuli 

(ANN and Word2Vec models), and hypothetical patterns of representational similarity based on 

behavioral and mathematical measurements of different visual image properties (perceived real-

world object size, displayed retinal object size, and perceived real-world object depth). 

 

Dynamic representations of object size and depth in human brains 

To explore if and when human brains contain distinct representations of perceived real-world 

size, retinal size, and real-world depth, we constructed timepoint-by-timepoint EEG neural 
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RDMs (Figure 2A), and compared these to three hypothesis-based RDMs corresponding to 

different visual image properties (Figure 2B). Firstly, we confirmed that the hypothesis-based 

RDMs were indeed correlated with each other (Figure 3A), and without accounting for the 

confounding variables, Spearman correlations between the EEG and each hypothesis-based 

RDM revealed overlapping periods of representational similarity (Figure 3B). In particular, 

representational similarity with real-world size (from 90 to 120ms and from 170 to 240ms) 

overlapped with the significant time-windows of other features, including retinal size from 70 to 

210ms, and real-world depth from 60 to 130ms and from 180 to 230ms. But critically, with the 

partial correlations, we isolated their independent representations. The partial correlation results 

reveal a pure representation of object real-world size in the human brain from 170 to 240ms after 

stimulus onset, independent from retinal size and real-world depth, which showed significant 

representational similarity at different time windows (retinal size from 90 to 200ms, and real-

world depth from 60 to 130ms and 270 to 300ms) (Figure 3D).  
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Figure 3 Cross-modal RSA results. (A) Similarities (Spearman correlations) between three hypothesis-

based RDMs. Asterisks indicate a significant similarity, p<.05. (B) Representational similarity time 

courses (full Spearman correlations) between EEG neural RDMs and hypothesis-based RDMs. (C) 

Temporal latencies for peak similarity (partial Spearman correlations) between EEG and the 3 types of 

object information. Error bars indicate ±SEM. Asterisks indicate significant differences across conditions 

(p<.05); (D) Representational similarity time courses (partial Spearman correlations) between EEG neural 

RDMs and hypothesis-based RDMs. (E) Representational similarities (partial Spearman correlations) 
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between the four ANN RDMs and hypothesis-based RDMs of real-world depth, retinal size, and real-

world size. Asterisks indicate significant partial correlations (bootstrap test, p<.05). (F) Representational 

similarity time courses (Spearman correlations) between EEG neural RDMs and ANN RDMs. Color-

coded small dots at the top indicate significant timepoints (cluster-based permutation test, p<.05). Shaded 

area reflects ±SEM.  

 

 Peak latency results showed that neural representations of real-world size, retinal size and 

real-world depth reached their peaks at different latencies after stimulus onset (real-world depth: 

~87ms, retinal size: ~138ms, real-world size: ~206ms, Figure 3C). The representation of real-

word size had a significantly later peak latency than that of both retinal size (t=4.2950, p=.0020) 

and real-world depth (t=18.5847, p<.001). And retinal size representation had a significantly 

later peak latency than real-world depth (t=3.7229, p=.0047). These varying peak latencies imply 

an encoding order for distinct visual features, transitioning from real-world depth through retinal 

size, and then to real-world size.  

 

Artificial neural networks also reflect distinct representations of object size and depth  

To test how ANNs process these visual properties, we input the same stimulus images 

into ANN models and got their latent features from early and late layers (Figure 2C), and then 

conducted comparisons between the ANN RDMs and hypothesis-based RDMs. Parallel to our 

findings of dissociable representations of real-world size, retinal size, and real-world depth in the 

human brain signal, we also found dissociable representations of these visual features in ANNs 

(Figure 3E). Our partial correlation RSA analysis showed that early layers of both ResNet and 
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CLIP had significant real-world depth and retinal size representations, whereas the late layers of 

both ANNs were dominated by real-world size representations, though there was also weaker 

retinal size representation in the late layer of ResNet and real-world depth representation in the 

late layer of CLIP. The detailed statistical results are shown in Table S1. 

Thus, ANNs provide another approach to understand the formation of different visual 

features, offering convergent results with the EEG representational analysis, where retinal size 

was reflected most in the early layers of ANNs, while object real-world size representations 

didn’t emerge until late layers of ANNs, consistent with a potential role of higher-level visual 

information, such as the semantic information of object concepts. 

Finally, we directly compared the timepoint-by-timepoint EEG neural RDMs and the 

ANN RDMs (Figure 3F). The early layer representations of both ResNet and CLIP were 

significantly correlated with early representations in the human brain (early layer of ResNet: 40-

280ms, early layer of CLIP: 50-130ms and 160-260ms), while the late layer representations of 

two ANNs were significantly correlated with later representations in the human brain (late layer 

of ResNet: 80-300ms, late layer of CLIP: 70-300ms). This pattern of early-to-late 

correspondence aligns with previous findings that convolutional neural networks exhibit similar 

hierarchical representations to those in the brain visual cortex (Cichy et al., 2016; Güçlü & van 

Gerven, 2015; Kietzmann et al., 2019; Yamins & DiCarlo, 2016): that both the early stage of 

brain processing and the early layer of the ANN encode lower-level visual information, while the 

late stage of the brain and the late layer of the ANN encode higher-level visual information. 

Also, human brain representations showed a higher similarity to the early layer representation of 

the visual model (ResNet) than to the visual-semantic model (CLIP) at an early stage. 

Conversely, human brain representations showed a higher similarity to the late layer 
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representation of the visual-semantic model (CLIP) than the visual model (ResNet) at a late 

stage. Interestingly, the peaks of significant time windows for the EEG × HYP RSA also 

correspond with the peaks of the EEG × ANN RSA timecourse (Figure 3D,F).  

 

Real-world size as a stable and higher-level dimension in object space 

An important aspect of the current study is the use of naturalistic visual images as stimuli, in 

which objects were presented in their natural contexts, as opposed to cropped images of objects 

without backgrounds. In natural images, background can play an important role in object 

perception. How dependent are the above results on the presence of naturalistic background 

context? To investigate how image context influences object size and depth representations, we 

next applied a reverse engineering method, feeding the ANNs with modified versions of the 

stimulus images containing cropped objects without background, and evaluating the ensuing 

ANN representations compared to the same original hypothesis-based RDMs. If the background 

significantly contributes to the formation of certain feature representations, we may see some 

encoding patterns in ANNs disappear when the input only includes the pure object but no 

background.  

Compared to results based on images with background, the ANNs based on cropped-

object modified images showed weaker overall representational similarity for all features (Figure 

4). In the early layers of both ANNs, we now only observed significantly preserved retinal size 

representations (which is a nice validity check, since retinal size measurements were based 

purely on the physical object dimensions in the image, independent of the background). Real-

world depth representations were almost totally eliminated, with only a small effect in the late 
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layer of ResNet. However, we still observed a preserved pattern of real-world size 

representations, with significant representational similarity in the late layers of both ResNet and 

CLIP, and not in the early layers. The detailed statistical results are shown in Table S2. Even 

though the magnitude of representational similarity for object real-world size decreased when we 

removed the background, this high-level representation was not entirely eliminated. This finding 

suggests that background information does indeed influence object processing, but the 

representation of real-world size seems to be a relatively stable higher-level feature. On the other 

hand, representational formats of real-world depth changed when the input lacked background 

information. The deficiency of real-world depth representations in early layers, compared to 

when using full-background images, might suggest that the human brain typically uses 

background information to estimate object depth, though the significant effect in the late layer of 

ResNet in background-absent condition might also suggest that the brain (or at least ANN) has 

additional ability to integrate size information to infer depth when there is no background.  

 

 

Figure 4 Contribution of image backgrounds to object size and depth representations. Representational 

similarity results (partial Spearman correlations) between ANNs fed inputs of cropped object images 
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without backgrounds and the hypothesis-based RDMs. Stars above bars indicate significant partial 

correlations (bootstrap test, p<.05). 

 

The above results reveal that real-world size emerges with later peak neural latencies and 

in the later layers of ANNs, regardless of image background information. Is this because real-

world size is a more conceptual-level dimension in object semantic space? If so, we might expect 

it to be driven not only by higher-level visual information, but also potentially by purely 

semantic information about familiar objects. To test this, we extracted object names from each 

image and input the object names into a Word2Vec model to obtain a Word2Vec RDM (Figure 

S2), and then conducted a partial correlation RSA comparing the Word2Vec representations with 

the hypothesis-based RDMs (Figure 5A). The results showed a significant real-world size 

representation (r=0.1871, p<0.001) but no representation of retinal size (r=-0.0064, p=0.8148) or 

real-world depth (r=-0.0040, p=.7151) from Word2Vec. Also, the significant time-window (90-

300ms) of similarity between Word2Vec RDM and EEG RDMs (Figure 5B) contained the 

significant time-window of EEG x real-world size representational similarity (Figure 3B).  
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Figure 5 Representation similarity with a non-visual semantic language processing model (Word2Vec) 

fed word inputs corresponding to the images’ object concepts. (A) Representational similarity results 

(partial Spearman correlations) between Word2Vec RDM and hypothesis-based RDMs. Stars above bars 

indicate significant partial correlations (bootstrap test, p<.05). (B) Representational similarity time course 

(Spearman correlations) between EEG RDMs (neural activity while viewing images) and Word2Vec 

RDM (fed corresponding word inputs). Color-coded small dots at the top indicate significant timepoints 

(cluster-based permutation test, p<.05). Line width reflects ±SEM. 

 

Both the reverse engineering manipulation and Word2Vec findings corroborate that 

object real-world size representation, unlike retinal size and real-world depth, emerges in both 

image- and semantic-level in object space. 

 

Discussion 

Our study applied computational methods to distinguish the representations of objects’ perceived 

real-world size, retinal size, and perceived real-world depth features in both human brains and 

ANNs. Consistent with prior studies reporting real-world size representations (Huang et al., 2022; 
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S.-M. Khaligh-Razavi et al., 2018; Konkle & Caramazza, 2013; Konkle & Oliva, 2012b; Luo et 

al., 2023; Quek et al., 2023; R. Wang et al., 2022), we found that both human brains and ANNs 

contain significant information about real-world size. Critically, compared to the prior studies, our 

study offers several important theoretical and methodological advances: (a) we eliminated the 

confounding impact of perceived real-world depth (in addition to retinal size) on the real-world 

size representation; (b) we conducted analyses based on more ecologically valid naturalistic 

images; (c) we obtained precise feature values for each object in every image, instead of simply 

dividing objects into 2 or 7 coarse categories; and (d) we utilized a multi-modal, partial correlation 

RSA that combines EEG, hypothesis-based models, and ANNs. This novel approach allowed us 

to investigate representational time courses and reverse engineering manipulations in unparalleled 

detail. By integrating EEG data with hypothesis-based models and ANNs, this method offers a 

powerful tool for dissecting the neural underpinnings of object size and depth perception in more 

ecological contexts, which enriches our comprehension of the brain's representational mechanisms. 

Using EEG we uncovered a representational timeline for visual object processing, with 

object real-world depth information represented first, followed by retinal size, and finally real-

world size. While size and depth are highly correlated to each other, our results suggest that the 

human brain indeed has dissociated time courses and mechanisms to process them. The later 

representation time-window for object real-world size may suggest that the brain requires more 

sophisticated, higher-level information to form this representation, perhaps incorporating semantic 

and/or memory information about familiar objects, which was corroborated by our ANN and 

Word2Vec analyses. These findings also align with a recent fMRI study (Luo et al., 2023) using 

natural images to explore the neural selectivity for real-world size, finding that low-level visual 
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information could hardly account for neural size preferences, although that study did not consider 

covariables like retinal size and real-world depth. 

 In contrast to the later-emerging real-world size representations, it makes sense that retinal 

size representations could be processed more quickly based on more fundamental, lower-level 

information such as shape and edge discrimination. The intermediate latency for real-world depth 

processing suggests that this feature may precede real-world size processing. Additionally, there 

was a secondary, albeit substantially later, significant depth representation time-window, which 

might indicate that our brains also have the ability to integrate object retinal size and higher-level 

real-size information to form the final representation of real-world depth. Our comparisons 

between human brains and artificial models and explorations on ANNs and Word2Vec offer 

further insights and suggest that although real-world object size and depth are closely related, 

object real-world size appears to be a more stable and higher-level dimension. 

The concept of ‘object space’ in cognitive neuroscience research is crucial for 

understanding how various visual features of objects are represented. Historically, various visual 

features have been considered important dimensions in constructing object space, including 

animate-inanimate (Kriegeskorte et al., 2008; Naselaris et al., 2012), spikiness (Bao et al., 2020; 

Coggan & Tong, 2023), and physical appearance (Edelman et al., 1998). In this study, we focus 

on one particular dimension, real-world size (Huang et al., 2022; Konkle & Caramazza, 2013; 

Konkle & Oliva, 2012b). How we generate neural distinctions of different object real-world size 

and where this ability comes from remain uncertain. Some previous studies found that object shape 

rather than texture information could trigger neural size representations (Huang et al., 2022; Long 

et al., 2016, 2018; R. Wang et al., 2022). Our results attempt to further advance their findings, that 
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object real-world size is a stable and higher-level dimension substantially driven by object 

semantics in object space. 

Increasingly, research has begun to use ANNs to study the mechanisms of object 

recognition (Ayzenberg et al., 2023; Cichy & Kaiser, 2019; Doerig et al., 2023; Kanwisher et al., 

2023). We can explore how the human brain processes information at different levels by 

comparing brain activity with models (Cichy et al., 2016; S. M. Khaligh-Razavi & Kriegeskorte, 

2014; Kuzovkin et al., 2018; Xie et al., 2020), and we can also analyze the representation patterns 

of the models with some specific manipulations and infer potential processing mechanisms in the 

brain (Golan et al., 2020; Huang et al., 2022; Lu & Ku, 2023; Xu et al., 2021). In current study, 

our comparisons result between EEG signals and different ANNs showed that the visual model’s 

early layer had a higher similarity to the brain in the early stage, while the visual-semantic model’s 

late layer had a higher similarity to the brain in the late stage. However, for the representation of 

objects, partial correlation results for different ANNs didn’t demonstrate the superiority of the 

multi-modal model at late layers. This might be due to models like CLIP, which contain semantic 

information, learning more complex image descriptive information (like the relationship between 

object and the background in the image).  Real-world size might be a semantic dimension of the 

object itself, and its representation does not require overall semantic descriptive information of the 

image. In contrast, retinal size and real-world depth could rely on image background information 

for estimation, thus their representations in the CLIP late layer disappeared when input images had 

only pure object but no background. 

Building on the promising findings of our study, future work may further delve into the 

detailed processes of object processing and object space. One important problem to solve is how 

real-world size interacts with other object dimensions in object space. In addition, our approach 
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could be used with future studies investigating other influences on object processing, such as how 

different task conditions impact and modulate the processing of various visual features.   

Moreover, we must also emphasize that in this study, we were concerned with perceived 

real-world size and depth reflecting a perceptual estimation of our world, which are slightly 

different from absolute physical size and depth. The differences in brain encoding between 

perceived and absolute physical size and depth require more comprehensive measurements of an 

object’s physical attributes for further exploration. Also, we focused on perceiving depth and size 

from 2D images in this study, which might have some differences in brain mechanism compared 

to physically exploring the 3D world. Nevertheless, we believe our study offers a valuable 

contribution to object recognition, especially the encoding process of object real-world size in 

natural images. 

In conclusion, we used computational methods to distinguish the representations of real-

world size, retinal size, and real-world depth features of objects in ecologically natural images in 

both human brains and ANNs. We found an unconfounded representation of object real-world size, 

which emerged at later time windows in the human EEG signal and at later layers of artificial 

neural networks compared to real-world depth, and which also appeared to be preserved as a stable 

dimension in object space. Thus, although size and depth properties are closely correlated, the 

processing of perceived object size and depth may arise through dissociated time courses and 

mechanisms. Our research provides a detailed and clear characterization of the object processing 

process, which offers further advances and insights into our understanding of object space and the 

construction of more brain-like visual models. 
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Supplementary materials 

 

Figure S1. Four ANN RDMs of ResNet early layer, ResNet late layer, CLIP early layer, and CLIP late 

later. 
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Figure S2. Word2Vec RDMs. 
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Figure S3. Four ANN RDMs with inputs of cropped object images without background of ResNet early 

layer, ResNet late layer, CLIP early layer, and CLIP late later. 
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Table S1 Statistical results of similarities (partial Spearman correlations) between four ANN RDMs and 

three hypothesis-based RDMs. 

 
ANN × HYP ResNet (early) CLIP (early) ResNet (late) CLIP (late) 

Real-World depth r=.0330, p<.001 r=.0262, p<.001 r=-.0513, p=1 r=.0278, p<.001 

Retinal Size r=.0618, p<.001 r=.0730, p<.001 r=.0221, p<.001 r=.0058, p=.1788 

Real-World Size r=-.0330, p=1 r=-.0027, p=.8710 r=0.2497, p<.001 r=0.2378, p<.001 
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Table S2 Statistical results of similarities (partial Spearman correlations) between four ANN RDMs with 

inputs of cropped object images without background and three hypothesis-based RDMs. 

 
ANN (obj-only imgs) 

× HYP ResNet (early) CLIP (early) ResNet (late) CLIP (late) 

Real-World depth r=-.0109, p=.9382 r=-.0086, p=.8862 r=.0183, p=.0049 r=-.0176, p=.9934 

Retinal Size r=.0323, p<.001 r=.0315, p<.001 r=-.0032, p=.6725 r=-.0031, p=.6705 

Real-World Size r=.0022, p=.3781 r=.0084, p=.1193 r=.0402, p<.001 r=.0154, p=.0149 
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