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Abstract

Background: Patient-reported outcomes (PRO) allow clinicians to measure health-related 

quality of life (HRQOL) and understand patients’ treatment priorities, but obtaining PRO requires 

surveys which are not part of routine care. We aimed to develop a preliminary natural language 

processing (NLP) pipeline to extract HRQOL trajectory based on deep learning models using 

patient language.

Materials and methods: Our data consisted of transcribed interviews of 100 patients 

undergoing surgical intervention for low-risk thyroid cancer, paired with HRQOL assessments 

completed during the same visits. Our outcome measure was HRQOL trajectory measured by the 

SF-12 physical and mental component scores (PCS and MCS), and average THYCA-QoL score.

We constructed an NLP pipeline based on BERT, a modern deep language model that captures 

context semantics, to predict HRQOL trajectory as measured by the above endpoints. We 

compared this to baseline models using logistic regression and support vector machines trained 

on bag-of-words representations of transcripts obtained using Linguistic Inquiry and Word Count 

(LIWC). Finally, given the modest dataset size, we implemented two data augmentation methods 
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to improve performance: first by generating synthetic samples via GPT-2, and second by changing 

the representation of available data via sequence-by-sequence pairing, which is a novel approach.

Results: A BERT-based deep learning model, with GPT-2 synthetic sample augmentation, 

demonstrated an area-under-curve of 76.3% in the classification of HRQOL accuracy as measured 

by PCS, compared to the baseline logistic regression and bag-of-words model, which had an AUC 

of 59.9%. The sequence-by-sequence pairing method for augmentation had an AUC of 71.2% 

when used with the BERT model.

Conclusions: NLP methods show promise in extracting PRO from unstructured narrative data, 

and in the future may aid in assessing and forecasting patients’ HRQOL in response to medical 

treatments. Our experiments with optimization methods suggest larger amounts of novel data 

would further improve performance of the classification model.
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1. Background

Patient-reported outcomes (PRO) allow clinicians to assess patient well-being directly 

without relying on interpretation by a clinician. They are traditionally ascertained using 

surveys. Despite the important role of PRO in making patient-centered treatment decisions, 

barriers remain to routine use of PRO outside of research contexts [1,2]. PRO instruments 

can be time-consuming and expensive to administer. In addition, they are not part of the 

routine clinical workflow, requiring patients to complete an extra task.

Health related quality of life (HRQOL) is an example of PRO representing a patient’s 

perceived physical and mental health [3]. Algorithms to determine psychosocial well-being 

from narrative data sources, such as patient interviews, hold potential in providing a 

streamlined way to gauge a patient’s well-being. Narrative data are increasingly available 

from patient communications and the electronic health record (EHR), and may provide 

insight into HRQOL [4,5]. However, lack of structure in natural language can complicate 

automated interpretation. Natural language processing (NLP) can aid in extracting meaning 

from narrative data.

Thyroid cancer is relatively common in the United States. Because mortality rates are 

low, and a variety of treatment options are available, each with its own risk profile and 

potential for lifelong morbidity, ascertaining HRQOL is essential in thyroid cancer. No tools 

currently exist to extract HRQOL from patient language. Extraction of HRQOL outcomes 

after surgery can help personalize treatment in the face of a myriad of options now available 

to patients [6]. Patients at risk for long-term decrements in HRQOL may need active referral 

to resources such as counseling and support groups. Furthermore, if we are able to identify 

these patients preoperatively, they may opt for less invasive treatment options.

Previous NLP work in the medical field largely draws from data available in the EHR 

[7,8]. Furthermore, many existing NLP approaches train algorithms using the written 

Lian et al. Page 2

Intell Based Med. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



documentation of doctors and other clinicians [9], which are likely to be structured or 

include jargon [10] By contrast, we use a novel and unique dataset of prospectively collected 

and transcribed patient interviews paired with numeric scores on several validated Likert-

like PRO measures for HRQOL, which serves as an annotated machine learning dataset. We 

also analyze speech from transcripts of patients, who have little to no medical background 

and are likely to be less domain-specific than that of medical professionals.

We iteratively implemented and evaluated several methods for inferring HRQOL trajectory 

from narrative data. In addition, we have developed a way to assess whether the size of the 

data set is large enough for training, which points to a distinction between the density of the 

data and its diversity.

2. Materials and methods

Fig. 1 gives an overview of the experiments described in this paper. After pre-processing, 

Linguistic Inquiry and Word Count (LIWC) was used with two different classifiers (logistic 

regression (LR) and a support vector machine (SVM)) to provide an initial baseline model. 

We then leveraged modern NLP models. Fine-tuned BERT-based models were trained and 

compared to the LIWC-based models. Finally, two data augmentation techniques (sequence 

generation using GPT-2, and sequence pairing) were used to optimize performance.

2.1. Dataset

We used a novel dataset from a prospective randomized controlled clinical trial assessing 

surgical interventions for low-risk thyroid cancer (see Declarations for details of ethical 

approval and consent to participate). Each patient was evaluated at up to five time-points: 

preoperative (6 weeks–24 h before operation), and 2 weeks, 6 weeks, 6 months, and 1 

year postoperative. At each visit, the patient participated in a semistructured interview and 

completed several assessments of HRQOL, including the 12-item short form survey (SF-12), 

and the THYCA-QoL. The SF-12 is a 12-item questionnaire measuring the impact of health 

on an individual’s everyday life, and is validated in Americans with cancer [11,12]. The 

THYCA-QoL is a thyroid-cancer specific questionnaire that focuses on common symptoms 

of thyroid cancer or its treatment and has also been extensively validated [13,14].

Each patient had up to 5 transcripts (one from each time point). Each transcript consisted 

of alternating utterances (sequences) between patient and interviewer. Each sequence was 

assigned the HRQOL scores of the transcript from which it originated; thus all sequences 

taken from the same transcript had the same HRQOL scores. We selected the trajectories 

of three HRQOL scores as primary outcome measures: the SF-12 Physical and Mental 

Component Scores (PCS and MCS) and the average THYCA-QoL score (Average THYCA). 

A random sample of sequences from the data is shown in Supplemental Table 4a. Many of 

the sequences do not obviously relate to health issues.

2.2. Pre-processing

First, standard data pre-processing steps were undertaken (Supplemental Methods).

Lian et al. Page 3

Intell Based Med. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Next we calculated HRQOL score trajectory for each sequence. The original HRQOL scores 

were numeric in all cases. Rather than attempt to infer these values directly, we instead 

focused on the HRQOL trajectory, defined as the direction of difference in the HRQOL 

score (PCS, MCS, or average THYCA) between two time points. Sequences associated with 

a transcript with a positive HRQOL trajectory slope were labeled “class 1,” and negative 

HRQOL trajectory slope, “class 0.” Thus a positive slope or “class 1” an improvement in 

patient HRQOL, and vice versa. The problem thus became one of binary classification.

Of up to five transcripts from pre-defined time points at which the HRQOL surveys and 

interviews were administered, two trajectories were computed: the 1–2 trajectory (direction 

of HRQOL change between transcript 1 and transcript 2) and the 2-last trajectory (between 

transcript 2 and the last available transcript).1 Transcript 2 represents the first postoperative 

interview. These trajectories were selected, respec tively, to reflect the HRQOL change 

before and after surgery, and the subsequent recovery or lack thereof. We noted that 1) the 

total number of sequences was modest, on the order of a few thousand of samples for each 

class, and 2) the distribution of trajectories was imbalanced (Fig. 2 a–c).

As imbalanced data sets can bias classification results, we balanced the classes by 

combining the negative-slope 1–2 trajectories with the negative-slope 2-last trajectories (and 

the same with the positive-slope trajectories) into a single dataset. This improved the overall 

balance (Fig. 2 d–f). During training, we under-sampled the majority class while keeping the 

original distribution of classes in the validation/test set. We repeated this process for MCS 

and average THYCA. After this, there were 18194 sequences for PCS, 14450 for MCS, and 

16056 for average THYCA.

In all experiments, we used 70% of the data as a training set, 20% as a test set, and the 

remaining 10% as a validation set for each of the variables.

2.3. Experiments

Our objective was to infer HRQOL trajectory from sequences. The input of each classifier 

consisted of features extracted from sequences using different encoding methods, discussed 

in the following sub-sections. The output was the class label.

2.3.1. Analysis with LIWC features—We used LIWC as an initial benchmark 

encoding method. LIWC is a dictionary-based text analysis tool widely used to ascertain 

the linguistic characteristics of text [15]. It assigns every word in the text to one or more 

categories in an internal dictionary and produces an output specifying the percentage of the 

total words in the text that fall into each linguistic category. LIWC does not consider the 

underlying structure or sequence of speech, but only its lexical contents. Though LIWC is 

limited by the accuracy and comprehensiveness of the dictionary they are based upon, it has 

been used in many studies evaluating indicators of psychosocial well-being [16] and has also 

served as a comparison point for deep learning methods [17–19].

1If transcript 2 was not available, transcript 3 was used in its place.
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For each sequence, frequencies were calculated for 9 LIWC categories of interest (Table 

1), selected by an expert in communications research and medical sentiment analysis (JH) 

based on the research question and dataset properties. The LIWC frequencies became input 

features for the training of the logistic regression (LR) and support vector machine (SVM) 

classifiers.

2.3.2. Analysis using BERT—BERT is a transformer-based language model which 

has achieved state-of-the-art performance on many natural language processing tasks [20]. 

BERT works by parsing large quantities of data and representing words and their statistical 

correlations with other words in a high dimensional feature space. BERT is then fine-tuned 

on a domain-specific corpus of text and applied to downstream tasks. In our experiments, we 

used the fine-tuned BERT as an encoder to extract sequence embeddings, which were then 

input into the classifier. Specifically, we added a linear layer followed by a sigmoid function 

on top of the pre-trained BERT, and they were fine-tuned together for classification.

We used the BERT implementation of Wolf et al. [21]. The first token of the BERT output 

([CLS]) was used as the sequence embedding, a vector with dimension 768 (Fig. 3a). 

An independent BERT model was fine-tuned separately for the analysis of each HRQOL 

measure (PCS, MCS, and average THYCA).

As previously noted, the total number of sequences in our dataset was relatively small. 

We then implemented two methods of data augmentation to further improve classification 

performance.

2.3.3. Training set augmentation via GPT-2—GPT-2 is a large transformer-based 

auto-regressive decoder pretrained on large bodies of text to generate representative 

sequences. We used GPT-2 to augment the training set (and not the test set) by synthesizing 

new sequences semantically similar to the original data.

The pre-trained GPT-2 was first fine-tuned on our dataset D, and then the fine-tuned model 

Gtuned was used to generate synthetic sequences of each class (Supplemental Methods). 

The synthesized sequences Dgenerated were considered to be additional examples of the 

class corresponding to the prompt used. In this way, an arbitrary number of label-invariant 

sequences can be generated.

A BERT was fine-tuned on D, and the trained model was used as a classifier h to evaluate 

the quality of the generated sequences. Each generated sequence was input into h, and output 

was the inferred label alongside a probability score (the softmax of the output). Sequences 

were discarded if their inferred labels did not match the initial prompt and if their probability 

scores were less than 0.9. Thus the filtering attempts to retain only the most salient of the 

synthetic utterances. The effectiveness of this filtering step was tested using an ablation 

study (Supplemental Methods, Supplemental Table 5)

We repeated the BERT fine-tuning trained on D∪Dgenerated. The training set was augmented 

by 2, 3, and 4 times its original size and the model was evaluated on the unchanged test set. 

The hyperparameters were the same as for the non-augmented model.
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2.3.4. Training set augmentation via pairwise sequences—Since we attempted 

to classify changes in the trajectories (and not specific numerical values), the input to the 

classifier could be augmented to use data from more than one sequence. We approached 

this by using a novel method that pairs sequences from two transcripts, both from the same 

patient. This is motivated by the fact that transcripts from the same patient are likely to 

have shared semantics. We paired sequences from transcript 1 and transcript 2 (called text 
a) with sequences from transcript 2 and the final transcript (called text b). Thus we created 

augmented feature vectors from two transcripts of the same patient where each pair shared 

one class label (Supplemental Methods).

The input to BERT then takes the following form: [CLS] sequence 1 [SEP] sequence 2 

[SEP] where the special separating token [SEP] indicates the end of sequence 1 and the start 

of sequence 2. The model structure is shown in Fig. 3b. The two sequences in each pair 

were truncated in turns to fit the maximum length requirement (256). Similar to the GPT-2 

methods, the training set was augmented by 2, 3, and 4 times its original size and the model 

was evaluated on the unchanged test set. Other hyperparameters were the same as previously 

stated.

3. Results

3.1. Baseline models

We began with LR and SVM models trained on LIWC features. These had some 

classification power, but were only slightly better than chance (Table 2; for succinctness, 

only results of evaluation on the variable of PCS are shown; results for MCS and average 

THYCA are given in the Supplement). Though the modest performance may have been 

due to the low dimensionality of LIWC features, which failed to capture features correlated 

with the class labels, more importantly, LIWC does not consider the underlying structure or 

sequence of speech, but only its lexical contents.

We then turned to modern deep learning methods to improve upon these results by fine-

tuning BERT on the down-stream binary classification. We used both the pretrained BERT-

base and clinical BERT, which are pretrained on the Wikipedia dataset and massive clinical 

domain data, respectively. Fine-tuning BERT-base on the classification problem improved 

the accuracy for inferring PCS trajectory by 11.72% and 11.14% compared to LR and SVM, 

respectively. This is expected because BERT considers context semantics, and better feature 

representations can be generated, hence improving performance. Overall, clinical BERT 

performed slightly worse than BERT-base.

3.2. Augmentation via GPT-2

The overall model performance for inferring HRQOL trajectory improved with the GPT-2-

augmented training set (Table 3). We show only results with LR. With a training set 

four times of the original dataset size, the accuracy and AUC improved by 9.60% and 

9.44% compared to the baseline, respectively. This demonstrates that, up to a point, 

adding synthetic samples can boost the classification accuracy of the model. As GPT-2 

captures the semantics of the original sequences during finetuning, it can generate sequences 
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semantically similar to the original data. However, although GPT-2 increases the training 

set size, it does not expand the scope of vocabulary or syntax as evidenced by a plateau 

effect in performance at four times the size of the original training set. Further increases in 

size did not improve the performance. A random selection of utterances created by GPT-2 

augmentation and filtering can be found in Supplemental Table 4b.

3.4. Augmentation via pairwise sequences

Using the pairwise sequences technique, with a training set augmented to 4 times the 

original dataset size (equal to the total number of sequences present in both transcripts 

associated with each trajectory), the LR accuracy and AUC for inferring PCS improved by 

9.50% and 8.37% compared to using the non-augmented dataset, respectively (Table 4). In 

contrast to the GPT-2 augmentation method, this pairing-based data augmentation technique 

does not add new samples; rather, it changes the representation of the data to a format that 

results in more data points, and improves model performance by enhancing the sentiment 

semantics via variations of pairing available samples. In this case, we also observed limits 

to the diversity of the data points that this technique could generate, given the plateau in 

increasing model performance with a certain size of the augmented training set.

4 Discussion

We inferred the trajectory of HRQOL measurements in patient interviews using several 

techniques. While we progressively improved model performance on our classification task, 

overall accuracy remained modest, and at this stage is not ready for implementation in 

clinical care. However, this pilot application is an initial approach that serves as a starting 

point for further investigation.

In this work, we first performed logistic regression as well as SVM with LIWC features as 

a baseline. Then the performance was improved by fine-tuning BERT on the downstream 

task since BERT could capture the context semantics and thus generate better feature 

representation compared to dictionary-based LIWC features. Importantly, training with 

clinical BERT did not lead to any improvement over BERT base likely because the language 

used by patients was primarily lay language rather than professional medical language. 

Furthermore, we presented two data augmentation methods to enhance the diversity and size 

of the training set. Both approaches produced improvements over the baseline by generating 

a certain number of new data points, and they are novel for use in this application.

The size of the dataset was the primary limitation, and more real data should improve 

accuracy as supported by the improvements with synthetic data. The data contained only 

a small portion of the likely utterances of the patients. The process of adding synthetic 

data using GPT-2 can “fill in” missing regions in the space and thus increase the density 

of the data, but cannot expand the diversity of the utterances. Thus the success of the data 

augmentation schemes in improving the classification (even if only modestly) demonstrates 

that more data will improve performance, and motivates the gathering of larger data sets. 

The plateauing effect shows that the new data must be real, and must address the diversity 

of the information rather than just the density of the representation. The dataset utilized 

here is unique as it is rare to find transcribed patient language paired with HRQOL survey 
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data. Given the cost of obtaining patient data, approaches to expand datasets will continue to 

prove worthwhile.

Classifying HRQOL trajectory is of great clinical relevance for assessing and forecasting 

a cancer patient’s response to treatment. In all cases, we found that classification of PCS 

and MCS trajectories was more accurate than average THYCA despite comparable levels 

of data quality. This is a somewhat surprising result, as the average THYCA is the only 

QOL measurement that assesses thyroid-specific outcomes [14]. This may suggest that 

other domains, aside from procedure specific symptoms, are most important in determining 

HRQOL for this cohort [22–24]. With more data, we anticipate increased accuracy of the 

NLP system, and more direct analysis of patient language for deriving HRQOL.

Based on these findings, we propose using the following elements of our methodology may 

be useful and expanded upon for the extraction of PRO using patient narrative data: first, 

retraining BERT models for feature extraction prior to classification; next, using sequence 

generation via GPT-2 and a novel pairing strategy that exploits the expected structure of the 

problem as improvements/deterioration of the QOL values.

5 Conclusion

We demonstrated several proof-of-concept NLP methods for inferring HRQOL 

trajectory from patient language. Leveraging modern machine-learning methods improved 

classification performance compared to logistic regression and bag-of-words type NLP 

methods. Future work with larger datasets pairing narrative data with patient-reported 

outcome measures will provide insights into determinants of HRQOL and facilitate 

improvements in communication between patients and clinicians. As more patient utterances 

and HRQOL measurements are digitally preserved, larger datasets will become available to 

train and perfect algorithms that glean HRQOL information directly from patient language.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Data Analysis Workflow.
Abbreviations: LIWC, Logistic Inquiry and Word Count; LR, logistic regression; SVM, 

support vector machine

A diagram of the experiments described in this paper. After basic pre-processing of 

transcripts, baseline classification models based on logistic regression as well as SVM using 

LIWC features were performed as baselines. This was then compared to fine-tuning BERT, 

and using two data augmentation models to further improve performance.
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Fig. 2. Distribution of HRQOL trajectories
The distributions before combination of two trajectories for each outcome measurement are 

shown for (a) PCS, (b) MCS, and (c) average THYCA. The distributions after combining the 

trajectories are shown for (d) PCS, (e) MCS, and (f) Average THYCA.
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Fig. 3. Structure of BERT-based classification model
In (a), a natural language sequence Seq is sandwiched by two special tokens [CLS] and 

[SEP], indicating the start and end of the sequence. This is input into BERT, which 

transforms the text into a feature vector used to carry out the classification, i.e., the 

prediction of the label. In (b), two sequences Seq1 and Seq2 are concatenated and separated 

(again using [CLS] and [SEP] tokens) and then jointly input into BERT.
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Table 1

Linguistic features of patient interview transcripts.

LIWC CATEGORY EXAMPLES

POSITIVE EMOTIONS Love, nice, sweet

NEGATIVE EMOTION Hurt, ugly, nasty

FEELING Feels, touch

BIOLOGIC PROCESSES Eat, blood, pain

BODY Cheek, hands, spit

HEALTH Clinic, flu, pill

PAST-FOCUSED Ago, did, talked

PRESENT-FOCUSED Today, is, now

FUTURE-FOCUSED May, will, soon

Abbreviations: LIWC, Linguistic Inquiry and Word Count.

The nine LIWC categories used for construction of the baseline predictive model. The right column gives examples of words falling into each 
category.
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Table 2

Baseline model characteristics.

MODEL LR SVM BERT-BASE CLINICAL BERT

ACCURACY 57.24 57.54 63.95 63.00

AUC 59.90 60.90 69.73 69.00

F-1 (MACRO) 57.20 57.48 63.89 61.00

PRECISION 57.22 57.52 63.97 64.00

RECALL 57.21 57.50 63.90 59.00

Abbreviations: LR, logistic regression; SVM, support vector machine.

Baseline model metrics for inference of PCS trajectory are shown (metrics for baseline models inferring MCS, average THYCA trajectory are 
given in the Supplement). Numbers are percentages.
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Table 3

Augmentation via GPT-2 on PCS.

TRAINING SET SIZE (AS MULTIPLE OF ORIGINAL)

1 2 3 4

ACCURACY 63.95 68.16 69.21 70.09

AUC 69.73 75.06 75.97 76.31

F-1 (MACRO) 63.89 67.94 69.08 70.00

PRECISION 63.97 68.40 69.37 70.20

RECALL 63.90 68.03 69.12 70.02

Model metrics for inference of PCS trajectory after augmentation using GPT-2, with augmentation of the training dataset to a 2, 3 and 4 times the 
original size compared to the baseline (metrics for models inferring MCS, average THYCA trajectory are given in the Supplement). Numbers are 
percentages.
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Table 4

Augmentation via pairing sequences for PCS. Numbers are percentages.

TRAINING SET SIZE (AS MULTIPLE OF ORIGINAL)

1 2 3 4

ACCURACY 61.54 64.11 65.35 67.39

AUC 65.68 68.25 70.06 71.18

F-1 (MACRO) 61.49 63.93 65.35 66.26

PRECISION 61.49 64.60 65.41 66.16

RECALL 61.49 64.24 65.41 66.38

Model metrics for inference of PCS trajectory after augmentation using the sequence pairing method, with augmentation of the training dataset 
to a 2, 3 and 4 times the original size compared to the baseline (metrics for models inferring MCS, average THYCA trajectory are given in the 
Supplement). Numbers are percentages.
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