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Human genetic syndromes are often challenging to diagnose clinically. Facial phenotype is a key diagnostic indicator for hundreds
of genetic syndromes and computer-assisted facial phenotyping is a promising approach to assist diagnosis. Most previous
approaches to automated face-based syndrome diagnosis have analyzed different datasets of either 2D images or surface mesh-
based 3D facial representations, making direct comparisons of performance challenging. In this work, we developed a set of
subject-matched 2D and 3D facial representations, which we then analyzed with the aim of comparing the performance of 2D and
3D image-based approaches to computer-assisted syndrome diagnosis. This work represents the most comprehensive subject-
matched analyses to date on this topic. In our analyses of 1907 subject faces representing 43 different genetic syndromes, 3D
surface-based syndrome classification models significantly outperformed 2D image-based models trained and evaluated on the
same subject faces. These results suggest that the clinical adoption of 3D facial scanning technology and continued collection of
syndromic 3D facial scan data may substantially improve face-based syndrome diagnosis.
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INTRODUCTION
Genetic syndromes represent an unusually difficult diagnostic
challenge for even the most experienced clinicians, due to the
large number, complexity, variability, and rarity of these disorders.
Diagnoses are frequently delayed, are often initially incorrect, and
patients often must proceed without even basic information
regarding health and developmental outcomes, let alone tailored
clinical care [1]. While advancements in gene-based technologies
have greatly improved poor diagnostic rates, accurate testing is
often unavailable, and complementary diagnostic modalities thus
remain of great importance. Computer-assisted facial phenotyping
is a complementary diagnostic modality that makes use of
inexpensive, portable, and widely available facial imaging technol-
ogies, along with image processing and statistical methods.
Dysmorphic (abnormal) facial features are associated with many
human genetic syndromes [2] [3]. Several face-based approaches
to genetic syndrome diagnosis have been developed to provide
precision diagnostic assistance in a clinical context [4, 5].

Previous work
A variety of approaches for face-based syndrome diagnosis have
been proposed using different types of facial representation as
input [4, 6–9]. The most common forms of facial representation
used for this purpose are 2D color images, 2.5D depth images, and
3D surface scans. To our knowledge, only one previous study has
performed subject matched comparisons of 2D and 3D facial

images for syndrome classification [10]. However, this study was
limited to a single syndrome class (22q11.2 deletion) and the 2D
images were colorless renderings of 3D surface scans that are not
an accurate proxy for real 2D color or grayscale images.
Outside the application of genetic syndrome diagnosis, several

studies have compared 2D and 3D facial representations for
different purposes. Anas et al. [11] found that using 2D images and
3D surface scans for measuring facial morphology produced
significantly different results, concluding that 3D imaging is a
better approach to quantify facial morphologic phenotypes. Like-
wise, Zogheib et al. [12] found that 3D facial scanning produced
more reliable facial measurements that were closer to the clinical
standard than did 2D photographs. For the task of facial action unit
detection, Savran et al. [13] found that, in general, 3D outperformed
2D facial representations. For the task of facial recognition, Chang
et al. [14] found that 3D and 2D facial representations performed
similarly. Nevertheless, many facial recognition researchers have
turned their focus to 3D to overcome the recognized and inherent
limitations of 2D photography [15]. Thus, many modern proprietary
face-based bio-metric security applications (such as Face ID
developed by Apple Inc.) now rely on 3D information [16].

2D color images. Most syndrome recognition models developed
thus far rely on 2D color images. This is largely due to the relative
ease of collecting 2D facial images using widely available digital
camera technologies. As a result, databases of syndromic 2D
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images tend to be larger than those of syndromic 3D scans.
Gurovich et al. [7] and Matthews et al. [4] provide detailed surveys
of 2D image-based approaches and the different facial represen-
tations that they use. Anatomical landmarks as well as local
geometry and texture features captured around each landmark
are popular types of facial representations derived from 2D
images. State-of-the-art approaches use deep convolutional neural
networks (CNN) that take 2D color images as direct inputs [7, 17].
Despite the ease of acquisition, 2D facial images have some

notable disadvantages for face-based syndrome classification. 2D
facial images are projections of intrinsically 3D structures and, as
such, may discard diagnostically relevant 3D morphologic
information. 2D facial images are also highly sensitive to variations
in illumination and pose. Even when controlling for illumination
and pose, varying the distance from which a frontal 2D image is
captured results in perspective distortions of the resultant 2D
image (see Fig. 1) that could affect a diagnostic model. Finally, 2D
images generally do not contain information about overall facial
size, which may be an important diagnostic indicator for some
syndromes. Therefore, additional calibration procedures or mea-
surements must be used to capture true facial size information
within or alongside 2D facial images.

Depth images. In between 2D color photography and 3D surface
scanning is depth imaging (sometimes called 2.5D imaging). Depth
images are 2D grid-like representations, like 2D color images.
However, each pixel in a color image corresponds to the color and
intensity of light reflected by the subject, whereas each pixel in a
depth image corresponds to the distance of the subject from the
imaging device. Depth images are usually obtained using infrared or
time-of-flight depth sensors and/or multiple cameras that can
compute depth images using stereoscopic methods. Many modern
smartphones have embedded hardware that supports depth imaging
[16]. Depth images have been explored for face-based syndrome
classification but are less common than 2D color images and 3D
surface scans. Previous studies have used principal components
analysis (PCA) and a naive Bayes classifier to analyze syndromic facial
depth images [10]. Many of the limitations of 2D color images also
apply to depth images (such as sensitivity to changes in subject pose).
Nevertheless, unlike 2D color images, depth images are generally
robust to differences in subject illumination.

3D surface representations. 3D surface scanning is the most
sophisticated approach for facial imaging. The typical output

format of 3D surface scanning systems is a discrete 3D surface
mesh consisting of 3D vertices connected by polygons, such as
triangles. Surface color is sometimes captured along with a
polygonal surface mesh, using per-vertex color information, or UV
mapped texture images. Because 3D facial surface meshes are a
loosely structured data type, it is common practice to identify
facial landmarks or dense point correspondences to a reference
surface mesh facilitating model training and inference (see “Facial
Representations” for details).
3D surface scanning is rapidly becoming more widely accessible

and user friendly, although not yet as widespread and easy to use
as 2D color photography. Specialized structured light imaging
systems, such as those sold by 3dMD1 produce scans of the
highest quality and accuracy but are not easily portable. Facial
surface scans can also be acquired using some of the newest
smartphones or by less expensive handheld devices. In general,
3D scan-based syndrome diagnosis approaches are less common
than 2D color image-based approaches, but several advanced
models have been developed that use 3D representations [8, 9].
In theory, a 3D surface representation should result in better

syndrome classification performance than comparable 2D images.
3D surface representations can intrinsically capture 3D human
facial structures without discarding information through a 2D
projection. 3D surface scans are robust to variation in subject
illumination and pose. Finally, 3D scanning systems are typically
calibrated to accurately capture size information.

Contributions
Although intuition suggests that 3D surface representations should
be superior to 2D representations for face-based syndrome
diagnosis, there is a lack of quantitative evidence to support this
claim. It is also unclear whether the performance benefits from 3D
imaging (if any) are sufficient to justify the increased effort of scan
acquisition. This gap largely exists because previously published 2D
and 3D face-based syndrome classification approaches have been
trained and evaluated on different datasets with different numbers
of subjects, different genetic syndrome classes and composition of
the overall data set, and different demographic distributions within
the data. Thus, it is difficult to draw any robust conclusions about
facial representations by comparing previously published results. In
this work, we describe the creation of parallel 2D and 3D facial

80cm
Fig. 1 Frontal renderings of the same example subject surface scan captured using different distances between the camera and the
subject face. Field of view was adjusted to capture the full face in each rendering. Even when subjects are imaged from a frontal orientation,
camera distance influences the appearance of 2D facial photographs that may affect diagnostic models.

1www.3dmd.com
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representations from matched subjects in a large and diverse
syndromic population. We also report the results from subject-
matched analyses of four different 2D and 3D facial representations.
In summary, our experiments are the first to directly compare 2D

and 3D face-based syndrome diagnosis models using identical
patient faces for training and evaluation. This is important for two
reasons. The first reason is that the use of different evaluation data
can affect the metrics used to evaluate diagnostic models. The
second is that the performance of diagnostic models is influenced by
the composition, quality, and amount of data used to train the
model. Thus, results from models trained on different patient data
may reflect differences in the amount, quality, and composition of
the training data, rather than the differences between 2D and 3D
imaging modalities. Our experiments isolate the effects of using
different facial representations on diagnostic model accuracy,
providing empirical justification for continued research, data-collec-
tion, and model development using 3D facial imaging modalities.

MATERIALS AND METHODS
Data description
1907 3D surface scans from subjects with 43 different genetic syndromes
were used in our experiments. Each syndrome was represented by at least
20 subjects. The 3D scans were acquired using a 3DMD facial imaging system
from patients across the United States and Canada and are available through
application to the Face Base consortium2. All scans were in the format of
polygonal meshes with additional per-vertex color information. The
demographic distribution of the subjects is shown in Fig. 2 and Table 1.

Facial representations
The following subsections describe the creation of the different 3D and 2D
facial representations for each subject used in our comparative analyses.
All representations were derived using a single raw 3D surface scan from
each subject so that any variability in the imaging conditions (e.g., facial
expression and illumination) is constant across the different representa-
tions. Figure 3 shows the image-like facial representations used in this
study for an example subject.

3D surfaces. Just as 2D cameras can produce images with different
numbers of pixels, raw 3D surface scans may have different numbers of
vertices that are connected in different ways by different polygonal faces.
Therefore, prior to model training and inference, raw 3D surface scans are
typically processed to produce standardized 3D surface representations
with a uniform number of vertices and a common mesh topology. To
achieve this, dense vertex correspondences are identified between a
reference facial mesh and each raw facial scan.
To facilitate the processing of raw 3D surface scans, eight anatomical

landmarks were first identified on each scan using the automatic approach
described in [18]. Next, dense vertex correspondences were estimated
between a reference facial mesh and each raw facial scan using the non-

rigid iterative closest point algorithm [19] guided by the anatomical
landmarks. The reference mesh used in this work contains 26,649 vertices
and the facial region that is covered by the reference mesh is shown in
Fig. 3. Next, the standardized vertex configurations extracted from each
raw facial scan were rigidly aligned to one another employing Procrustes
alignment. Thus, diagnostically irrelevant information related to facial
position and orientation was removed from the data while information
about facial size and shape was retained. Finally, the aligned vertex
coordinate information for each subject was flattened into a vector of
length 3 × 26649 to be used for model training and inference.

2D color images. 2D color images were created from 3D surface scans by
rendering each scan from a frontal position. First, the raw scans were rigidly
aligned to one another as described in the previous subsection. Next, a
virtual camera was positioned to capture each scan from the same frontal
position. Each scan was then rendered using per-vertex color information to
produce realistic surface shading. To ensure that both 2D and 3D
representations capture the same facial region as one another, the
standardized 3D representations described in the previous subsection were
used to mask regions of each 2D image that were not also captured by the
3D surface representations. Finally, the images were cropped to a bounding
square that captures the full facial region and resized to a resolution of
128 × 128 pixels (slightly larger than the resolution used by [7]).

2D colorless images. 2D colorless images were created from 3D surface
scans using a slight modification of the rendering process for 2D color
images. For colorless images, a uniform grey color was applied to the
surface mesh instead of the available per-vertex color information.
Although this colorless 2D representation is not comparable to any 2D
imaging technique (including black and white photography), we included
it due to its use in previous studies [10], and to investigate the effect of
surface color information on syndrome classification performance.

Depth images. Depth images were created from 3D surface scans using
another slight modification of the rendering process for 2D color images.
For depth images, pixel values were set using the Z-buffer instead of using
surface shading information. Z-buffer values represent the distance of
rendered objects from a particular camera perspective.

EXPERIMENTS
The primary aim of this study was to compare syndrome
classification performance across different 3D and 2D representa-
tions using the same subject faces for training and evaluation.
Therefore, we created five cross-validation folds by randomly
splitting subjects with 70% of subject faces as training samples
and 30% of subject faces as testing samples. Random sampling
was stratified by syndrome class to ensure that an adequate
number of subjects from each syndrome was included in each test
set. The same subject splits were used for all experiments.

2D classifier model
We used the same convolutional neural network (CNN) model
architecture for all 2D representations. The CNN (described in

Fig. 2 Subject demographic histogram. The age and sex distribution of the facial data used in this study. Young subjects (aged 5-20 years)
were generally more numerous than older subjects.
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Table 2) was designed to emulate the model proposed by [7].
Unlike [7], we do not employ any 2D data augmentation or
patch-based ensemble strategies to make the 2D classification
experiments as comparable as possible to the 3D classification
experiments. All CNN models were trained for 100 epochs using a
batch size of 128 and an Adam optimizer with learning rate 10−3.

In addition to training 2D CNNs from scratch, we explored the
use of pre-trained facial recognition CNN models provided by the
DeepFace python library [20]. In these experiments, a CNN pre-
trained on non-syndromic 2D facial images was used to extract
embedding vectors for each syndromic facial image. The
embedding vectors were then used to train and evaluate a MLP

Table 1. The syndrome class distribution of the facial data used in this study as well as per-syndrome accuracy statistics for the top performing 2D
and 3D models.

Syndrome Count Top-1 Accuracy (%) 2D Color (Arcface+MLP) Top-1 Accuracy (%) 3D Surface (PCA+MLP)

Marfan 118 46.3 (11.3) 56.6 (6.1)

Ehlers Danlos 98 35.2 (8.6) 39.3 (5.6)

Turner 89 42.2 (12.1) 63.0 (7.4)

CHARGE 87 45.4 (6.6) 61.5 (10.3)

Neurofibromatosis 75 19.1 (5.9) 24.3 (10.1)

Williams 67 50.0 (12.6) 71.0 (5.8)

22q11.2 Del 61 32.2 (8.2) 37.8 (12.4)

Loeys Dietz 56 22.4 (8.6) 25.9 (9.6)

Down 56 67.1 (14.2) 81.2 (6.9)

Klinefelter 56 42.4 (6.9) 44.7 (13.7)

Phelan McDermid 55 35.3 (5.3) 27.1 (11.3)

Noonan 54 22.5 (12.9) 40.0 (6.4)

Cornelia de Lange 52 57.5 (4.7) 58.8 (9.4)

Achondroplasia 51 53.3 (10.3) 73.3 (11.2)

Rett 50 28.0 (20.0) 26.7 (7.3)

Jacobsen 50 21.3 (8.8) 26.7 (9.4)

Mucopolysaccharidosis 50 46.7 (9.4) 34.7 (5.0)

Costello 48 44.3 (12.3) 50.0 (14.3)

Joubert 46 12.9 (8.3) 30.0 (5.3)

Sotos 44 43.1 (3.8) 66.2 (7.8)

5p Del Cri du Chat 43 36.0 (9.0) 61.5 (10.9)

Cardiofaciocutaneous 36 32.7 (13.6) 25.5 (13.4)

Stickler 36 5.5 (4.5) 16.4 (14.5)

Cockayne 34 68.0 (7.5) 76.0 (15.0)

Kabuki 34 46.0 (13.6) 34.0 (16.2)

Cleft Lip Palate 33 12.0 (4.0) 20.0 (8.9)

Treacher Collins 31 44.4 (12.2) 53.3 (17.8)

Rhizomelic Chondro Punctata 30 57.8 (10.9) 66.7 (7.0)

Osteogenesis Imperfecta 29 15.6 (11.3) 26.7 (11.3)

Trisomy 18 28 45.0 (10.0) 45.0 (17.0)

4p Del Wolff-Hirschhorn 28 52.5 (14.6) 52.5 (14.6)

Pitt Hopkins 28 42.5 (20.3) 45.0 (12.7)

X Linked Hypohidrotic Ectodermal 27 47.5 (9.4) 55.0 (12.7)

Goldenhar 26 12.5 (7.9) 37.5 (7.9)

Fragile X 25 2.5 (5.0) 17.5 (12.7)

Cohen 25 62.5 (19.4) 55.0 (26.2)

Smith Lemli Opitz 24 17.1 (14.0) 34.3 (28.0)

Prader-Willi 22 17.1 (10.7) 22.9 (19.4)

Crouzon 22 28.6 (9.0) 25.7 (16.7)

1p36 Del 22 11.4 (10.7) 14.3 (15.6)

Pierre Robin Sequence 21 3.3 (6.7) 10.0 (8.2)

Rubinstein Taybi 20 16.7 (10.5) 26.7 (20.0)

Coffin Siris 20 23.3 (8.2) 16.7 (14.9)

Mean accuracy is reported as a percentage and standard deviations across cross-validation folds are shown in parentheses.
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classification model with the same structure as the 3D classifier
model described below. We found that the pre-trained ArcFace
[21] model performed best for our application.

3D classifier model
For the 3D classification experiment, we used principal compo-
nent analysis (PCA) to reduce the dimensionality of the 3D surface
data from 3 × 26649 down to 100 following [9] to avoid overfitting.
A multi-layer perceptron classifier model (MLP) was then trained
on the dimensionality reduced data. The MLP architecture
contains a single hidden layer of size 100 with ReLU activation.
All MLP models were trained for 100 epochs using a using a batch
size of 128 and an Adam optimizer with learning rate 10−3.

RESULTS AND DISCUSSION
Classification results
Table 3 shows the mean top-1 and top-3 accuracy scores across all
syndrome classes for the cross-validated syndrome classification

experiments. The 3D surface-based model produced the best
performance of all experiments (40.7% mean top-1 sensitivity) by
a margin of over 6%. Among the 2D representations, color images
produced the best results (34.2% mean top-1 sensitivity), followed
by colorless images (26.3% mean top-1 sensitivity). Depth images
produced the worst classification results of all models evaluated
(24.8% mean top-1 sensitivity).
We also investigated performance differences between facial

representations within specific genetic syndrome classes (Table 1).
Overall, the performance advantage of 3D representations is
relatively consistent across syndrome classes although some
differences were observed. Due to the much smaller sample sizes
of individual syndrome classes, performance estimates are less
precise and comparisons on a per-syndrome basis are more
difficult.

Discussion
Overall, the experimental results support the proposition that 3D
surface representations are superior to 2D representations for
face-based syndrome diagnosis given equivalent subject faces for
model training and evaluation. Compared to the best performing
2D representation (color images), the mean top-1 sensitivity of a
diagnostic model trained using 3D surface representations was
roughly 6% higher. All experiments were performed using the
exact same subject faces for training and evaluation to control for
performance variability from using different subjects, with
different demographic and syndrome class distributions. By using
a single 3D surface scan to derive all 3D and 2D representations,
we were also able to ensure equivalent facial expressions and
facial regions across the different facial representations.
Although our color renderings were created as a proxy for 2D

color photographs, there are some relevant differences between
our renderings and real color photographs. The backgrounds of
our rendered images are uniformly black, unlike real images with
complex and diverse backgrounds. Furthermore, our 3D align-
ment procedure removes pose variation from the image data and
all images are captured using the same fixed camera distance
from each subject face. As shown in Fig. 1, camera distance can
have a noticeable effect on the appearance of frontal 2D
photographs. Our rendering pipeline also uses the same virtual
lighting conditions for each subject, although lighting conditions
during the process of 3D scanning may still affect the per-vertex
color information of each raw 3D scan. Typically, real world 2D
facial photographs are captured under less controlled circum-
stances compared to the rendering process used for our simulated
2D color image representations. More precisely, real 2D images are
often taken from different perspectives, with different lighting
conditions and backgrounds. For our experiments, we chose not
to simulate real life variation in imaging conditions so that our
results simulate 2D photography in a controlled environment.
Thus, it may be expected that real-world results for 2D images
would lead to worse results than described here.

Fig. 3 The three image-like facial representations used in this study from an example subject.

Table 2. The 2D classifier model architecture.

Layer Output Dimensions

Input [128, 128, 3]

Convolution [128, 128, 8]

Convolution [128, 128, 16]

Max Pool [16, 64]

Convolution [16, 64]

Convolution [32, 64]

Max Pool [32]

Convolution [32]

Convolution [32, 64]

Max Pool [16, 64]

Convolution [16, 64]

Convolution [16, 16, 128]

Max Pool [8, 8, 128]

Convolution [8, 8, 128]

Convolution [8, 8, 256]

Average Pool [4, 4, 256]

Flatten 4096

Dense (relu) 100

Dropout (0.3) 100

Dense (softmax) 43

All convolutional layers use 3 × 3 kernels and are followed by both ReLU
activation and batch normalization.
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Although the 3D model outperformed 2D models for most
syndromes (Table 1), some syndromes (Phelan McDermid,
Mucopolysaccharidosis, Kabuki, Cohen, and Crouzon) showed
lower performance for the 3D approach. This suggests that the
methods used to measure 3D facial phenotype could still be
improved. One potential source of noise in the 3D data is the
process of estimating vertex correspondences between raw 3D
scans and a reference facial mesh. Using improved anatomical
landmark estimation algorithms to guide dense vertex correspon-
dence estimation could lead to more robust 3D representations.
Another potential direction to improve 3D models would be to
use 3D surface texture as predictor of genetic syndrome diagnosis
in addition to 3D geometry. 3D surface mesh textures can be
encoded as per-vertex colors, or as 2D images that are mapped
onto a surface mesh by assigning 2D image coordinates to each
3D vertex. Either encoding could be passed as an additional input
to a syndrome classification model. The proposition that facial
complexion carries diagnostically relevant information is also
supported by a comparison of the 2D model results. In our
experiments, 2D color representations (34.2% mean top-1
sensitivity) outperformed 2D colorless representations (26.3%
mean top-1 sensitivity) that had surface color information
removed. One interpretation of this result is that facial complexion
carries diagnostically relevant information for some genetic
syndromes. Some syndromes are known to be associated with
unique features that manifest in the complexion of the skin rather
than in the geometry of the facial structure. For example,
neurofibromatosis is characterized by café au lait spots and
Prader-Willi syndrome is characterized by hypopigmentation.
These features can only be detected by imaging modalities that
capture skin complexion information such as color-based 2D
classification models or 3D models that include texture informa-
tion. Another possibility is that our dataset contains spurious
correlations between facial complexion or illumination at the time
of 3D scanning. While all model development efforts should
carefully consider the demographic distribution of their data,
special care should be taken for data representations that include
complexion information so that models are not ethnically biased.
One additional advantage of 3D surface scanning is the ability to
explicitly separate geometric information and information about
facial complexion as they are acquired by scanning systems
through different mechanisms. Although 3D scanning offers the
possibility to isolate information about facial geometry, facial
shape does vary across ethnic groups [22, 23] and 3D models can
still be ethnically biased when trained on imbalanced data.
Our experiments also revealed that using a pre-trained CNN to

extract facial embedding vectors (34.2% mean top-1 sensitivity)
performed as well or better than training a CNN from scratch
(32.6% mean top-1 sensitivity). However, even when additional
non-syndromic facial images were used to pre-train a CNN, the 2D
models did not achieve the performance level of the 3D model
(40.7% mean top-1 sensitivity). Nevertheless, this result suggests
that syndromic and non-syndromic faces are similar enough to
make transfer-learning between non-syndromic and syndromic

datasets viable. Furthermore, it suggests that images rendered
from 3D surface scans are similar enough to real 2D facial images
to make transfer-learning between 3D and 2D datasets viable. We
believe that using 3D facial scans to investigate and improve 2D
facial diagnosis models is also a very promising avenue for future
research. High quality 3D scans can be used to generate 2D facial
images of the same subject from various perspectives, and with
different lighting conditions and backgrounds. These images
could be used to evaluate how sensitive existing 2D models are to
different imaging conditions. Furthermore, images of the same
subject under different conditions could be used to train models
that are invariant to differences in those conditions.

CONCLUSION
For a variety of reasons, it can be concluded that 3D scans are
superior to 2D images for face-based genetic syndrome diagnosis.
As demonstrated in this work, 3D surface scans can be converted
into 2D images taken from any perspective using a configurable
rendering pipeline. Furthermore, our subject-matched experi-
ments revealed that 3D surface representations produce improved
syndrome classification performance compared to 2D representa-
tions. We believe that investment in clinical 3D imaging systems
and syndromic 3D data collection is likely to result in continued
improvements to both 3D and 2D face-based syndrome diagnosis
models.

DATA AVAILABILITY
The 3D facial scan data used in this work is available through application to the Face
Base consortium (www.facebase.org).
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