Skip to main content
. 2023 Feb 7;31(9):1010–1016. doi: 10.1038/s41431-023-01308-w

Table 2.

The 2D classifier model architecture.

Layer Output Dimensions
Input [128, 128, 3]
Convolution [128, 128, 8]
Convolution [128, 128, 16]
Max Pool [16, 64]
Convolution [16, 64]
Convolution [32, 64]
Max Pool [32]
Convolution [32]
Convolution [32, 64]
Max Pool [16, 64]
Convolution [16, 64]
Convolution [16, 16, 128]
Max Pool [8, 8, 128]
Convolution [8, 8, 128]
Convolution [8, 8, 256]
Average Pool [4, 4, 256]
Flatten 4096
Dense (relu) 100
Dropout (0.3) 100
Dense (softmax) 43

All convolutional layers use 3 × 3 kernels and are followed by both ReLU activation and batch normalization.