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Summary
In this study we examined how genetic risk for asthma associates with different features of the disease and with othermedical conditions

and traits. Using summary statistics from two multi-ancestry genome-wide association studies of asthma, we modeled polygenic risk

scores (PRSs) and validated their predictive performance in the UK Biobank. We then performed phenome-wide association studies of

the asthma PRSs with 371 heritable traits in the UK Biobank. We identified 228 total significant associations across a variety of organ

systems, including associations that varied by PRS model, sex, age of asthma onset, ancestry, and human leukocyte antigen region al-

leles. Our results highlight pervasive pleiotropy between asthma and numerous other traits and conditions and elucidate pathways

that contribute to asthma and its comorbidities.
Introduction

Asthma is a common respiratory disorder, affecting 3%–

4% of people globally, with prevalences exceeding 15%

in many regions among different groups.1–3 The disease

is characterized by episodic airflow obstruction caused

by airway narrowing from bronchial constriction and

inflammation, which can be induced by inhaled expo-

sures, such as viruses, allergens, and pollutants.4 Genetic

factors account for a substantial portion of overall disease

liability,5 with over 200 different genetic risk loci reported

for asthma in large genome-wide association studies

(GWASs).6,7 These GWAS findings have implicated many

genes and pathways in the pathogenesis of asthma,8 but

the significant GWAS alleles contribute only modestly to

asthma heritability9 and individually paint a limited pic-

ture of the overall genetic risk for asthma.10 By instead

considering the cumulative contribution from all com-

mon genetic variants and modeling a comprehensive

polygenic risk score (PRS), we can measure how genetic

risk for asthma differs by sex, age of disease onset, and

ancestry and the extent to which it is associated with

other traits and diseases, generating new insights into

asthma etiology and its shared biology with other traits.

Previous studies that have developed PRSs for asthma

have focused on predictive performance11–15 or associa-

tions with specific traits,15–21 while broader studies of

cross-trait genetic correlations between asthma and other

conditions offer less interpretable findings than PRS associ-

ations in terms of relative disease risk.7,22–29 In this study,

we aimed to provide a quantitative overview of the genetic

landscape for asthma in terms of other heritable traits and
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conditions and their associations with genetic asthma risk.

We first modeled PRSs of asthma using GWAS summary sta-

tistics from the Trans-National Asthma Genetic Con-

sortium (TAGC; 23,948 cases, 118,538 controls)30 and the

Global Biobank Meta-analysis Initiative (GBMI; 153,763

cases, 1,647,022 controls)7 and then derived scores for indi-

viduals in the UK Biobank (UKB; n ¼ 398,744).31 We as-

sessed the predictive performance of our models in several

UKB populations stratified by age of disease onset, sex, and

ancestry. We then performed phenome-wide association

studies (PheWASs) of genetic asthma risk with 371 heritable

traits reported in the UKB using both GBMI and TAGC PRS

models and analyzed sensitivities to asthma status, age of

disease onset, ancestry, and human leukocyte antigen

(HLA) region alleles. Our results highlight shared genetic ar-

chitecture between asthma and numerous other traits and

conditions, including some with sex, age, and/or ancestry

dependencies, elucidating the affected pathways that

contribute to asthma and its comorbidities.
Subjects and methods

Study populations and asthma phenotyping
The polygenic risk models used in this study were derived from

summary statistics of the TAGC and GBMI meta-analyses of

asthma.7,30,32 The TAGC meta-analysis integrated data from 66

GWASs from multiple populations: European ancestry (19,954

cases, 107,715 controls), African ancestry (2,149 cases, 6,055 con-

trols), Japanese (1,239 cases, 3,976 controls), and Latino (606

cases, 792 controls). Summary statistics from TAGC were available

for the entire multi-ancestry sample (23,948 cases, 118,538 con-

trols) and for the European-ancestry subset (19,954 cases,
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107,715 controls). Twenty-seven of the 66 studies included in

TAGC only included cases of asthma with age of onset %16 years

(8,976 cases, 18,399 controls). Cases of asthma were based on doc-

tor’s diagnosis and/or standardized questionnaires.

The GBMI includes combined health and genomic data from

over 2.2 million participants across 23 biobanks.33 The discovery

GWAS dataset used to model the GBMI asthma PRS consisted of

197,342 cases and 1,903,937 controls from eight biobanks

(BioBank Japan,34 BioVU,35 Lifelines,36 Ontario Health Study,37

Estonian Biobank,38 FinnGen,39 Michigan Genomics Initiative,40

and the HUNT Study41). The cohort was 66.3% European

(141,957/1,251,642 cases/controls), 27.7% East Asian (33,312/

549,116 cases/controls), 2.4% African (8,661/42,279 cases/con-

trols), 2.1% South Asian (6,162/38,103 cases/controls), and 1.4%

admixed American (7,250/22,797 cases/controls).32 Asthma case

and control statuses were assigned according to specific Interna-

tional Classification of Diseases (ICD)-9 and ICD-10 codes in

participant electronic health records,33 except for BioBank Japan,

which used physician’s diagnosis or past medical history

(including self-report) to assign asthma status, and the Lifelines

study, which used doctor’s diagnosis or current symptoms/

treatment.

To evaluate the TAGC and GBMI polygenic risk models, PRSs

were derived for genotyped individuals in the UKB.31 We tested

our model in three different population samples defined by

ancestry: white British (n ¼ 376,237), white non-British

(n ¼ 27,026), and African (n¼ 7,196). The white British and white

non-British populations were as defined by the UKB,31 while the

African-ancestry population combined samples with African an-

cestries from multiple UKB cohorts. For this African-ancestry pop-

ulation, we included individuals from the ‘‘Black or Black British,’’

‘‘African,’’ ‘‘Caribbean,’’ and ‘‘Any other Black background’’ co-

horts with a first principal component (PC) of ancestry value

>150 (UKB data field 22009), which indicated significant African

admixture and greater genetic dissimilarity from the white UKB

cohorts. UKB data are available following a process described at

https://www.ukbiobank.ac.uk/enable-your-research.

We used quality-control metrics derived centrally by the UKB to

process the genotype data, including ancestry PC values and

ancestry group designation.31 We excluded individuals with

poor-quality genotypes based on excess heterozygosity, missing-

ness, and/or ambiguous genetic sex assignment. For pairs of indi-

viduals whowere first- or second-degree relatives, only the individ-

ual with the smallest number of missing genotypes was included.

We performed additional quality control of genotypes, requiring

an imputation quality score (INFO) >0.8, a minor allele frequency

(MAF)>0.1%, variant call rate>95%, and a Hardy-Weinberg equi-

librium p value >0.1 3 10�10.

We defined asthma in the UKB according to age of asthma diag-

nosis fields (UKB data fields 3786 and 22147), with individuals

with a diagnosis before age 66 years considered to have had

asthma. As in our previous study,9 we defined childhood-onset

asthma (COA) and adult-onset asthma (AOA) in the UKB using

strict age-of-onset criteria to minimize the likelihood of misclassi-

fication; COA was defined as an asthma diagnosis before 12 years

of age (n ¼ 9,611) and AOA was defined as asthma onset after age

25 years and before 66 years (n ¼ 21,427). Participants older than

38 years of age without an asthma diagnosis (self-reported or ICD-

10 codes) were included as controls for these fields. Individuals

with chronic obstructive pulmonary disease (COPD), emphysema,

or chronic bronchitis (self-reported or ICD-10 codes) were

excluded from the AOA and control groups.
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PRS modeling
Polygenic risk models were generated from each of the TAGC and

GBMI results, separately. For TAGC, we derived polygenic risk

models from the GWAS summary statistics. For GBMI, we adop-

ted the model published by Wang and colleagues32 from the

GBMI leave-UKB-out multi-ancestry GWAS deposited on the

Polygenic Score Catalog (PGS001787).42 All polygenic risk

models were generated using PRS-CS,43 a Python-based program

that applies a high-dimensional Bayesian regression framework

with continuous shrinkage priors placed on single-nucleotide

polymorphism (SNP) effect sizes. The default half-Cauchy priors,

a ¼ 1 and b ¼ 0.5, were used for determining the local shrinkage

parameters in the PRS-CS model (cj). To determine the global

shrinkage parameter (4), the ‘‘PRS-CS-auto’’ algorithm was

applied to estimate the value directly from the GWAS summary

statistics. Each autosomal chromosome was modeled separately,

producing different parameters for each. For the Gibbs sampling

used to derive the global shrinkage parameter and posterior SNP

effect sizes, we ran 10,000 Markov Chain Monte Carlo iterations

with 5,000 burn-in steps for the TAGC models, and the GBMI

models used the default parameters of 1,000 and 500, respec-

tively.32 For each set of TAGC summary statistics, we trained

two different models, incorporating European linkage disequilib-

rium (LD) panels from either the 1000 Genomes (1KG) Project44

or from the UKB, as prepared by the PRS-CS developers.43 The

GBMI model utilized the European 1KG LD panel. To improve

computational efficiency and standardize the reference sets, the

LD panels were created for common (minor allele frequency

>1%), non-ambiguous (no A/T and C/G) HapMap3 SNPs with

INFO >0.8 (UKB ¼ 1,117,425 SNPs; 1KG ¼ 1,120,696 SNPs).43

LD block boundaries were determined using LDetect on European

samples from 1KG (n ¼ 1,703 blocks).45 Previous studies have

shown that European-based LD panels can adequately approxi-

mate LD in multi-ancestry GWAS with majority European

ancestry.32,46 Posterior SNP effect sizes were combined into aggre-

gate scores for individuals in the UKB using the Plink (v2.00a2

AFX2) ‘‘score’’ function.47 Effects for missing genotypes were

imputed as the posterior SNP effect size multiplied by the effect

allele frequency. We converted the PRSs to Z scores for analysis.
Asthma prediction in the UKB
We evaluated scores from five different polygenic risk models,

four from TAGC utilizing either the 1KG or UKB LD reference

panels with each of the European- and multi-ancestry summary

statistics and one fromGBMI excluding UKB participants and uti-

lizing the 1KG LD panel.7,32 We assessed the predictive perfor-

mance of the five PRSs in the white British, white non-British,

and African-ancestry populations in the UKB using receiver-oper-

ating characteristic curves.48 We estimated the variance ex-

plained by each PRS using R2 on liability scale, using bootstrap

sampling (n ¼ 1,000) to derive 95% confidence intervals

(CIs).49 We selected the PRS with the highest area under the

receiver-operating-characteristic curve (AUC) for all subsequent

primary statistical analyses. PRS associations with asthma were

evaluated using logistic regressions, adjusting for sex and the first

10 PCs of ancestry (first 20 PCs in African-ancestry samples). In

assessing relative risks between PRS quantiles, we set individuals

with scores between the 40th and 60th percentiles as the reference

group. Interaction effects with sex for PRS associations were

tested by adding a PRS-by-sex interaction term to the logistic

regression models.
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PheWAS
Traits included in the PheWAS were selected from 4,178 UKB phe-

notypes with additive SNP-heritability estimates from the Neale

Lab UKB SNP-Heritability Browser (http://www.nealelab.is/

uk-biobank/), as updated on October 19, 2019. SNP heritability

was estimated using partitioned LD score regression50 and as-

signed confidence ratings based on effective sample sizes, standard

errors, sex biases, and ordinal coding. We considered traits with

estimated SNP heritability >0.10 with low, medium, or high con-

fidence estimates (n ¼ 519). We then omitted those that were not

interpretable as biomedical phenotypes or laboratory values, such

as occupations or food preferences. We extracted phenotypes from

the UKB using the ukbREST tool on a local data server.10 Pheno-

types derived from ICD-10 codes in participant hospital inpatient

records correspond to primary diagnoses (UKB data field 41202).

Some phenotypes were refined to improve interpretability. We

removed the self-reported (UKB data field 20002) and doctor-diag-

nosed diabetes (UKB data field 2443) fields, which did not distin-

guish between type 1 and type 2 and instead used primary and sec-

ondary ICD-10 codes (UKB data fields 41202 and 41204) to

indicate either disease. For forced expiratory volume in 1 s

(FEV1), we only considered the percentage predicted phenotype

(UKB data field 20154). For COPD, we expanded the definition

to account for all self-reported or doctor-diagnosed COPD, emphy-

sema, or chronic bronchitis (UKB data fields 20002, 41202, 41204,

22128, 22129, 22130, 22148, 22149, 22150, 3992). Following

filtering and refinement, 371 traits remained (208 binary pheno-

types, 163 quantitative traits) for association testing with the

PRS. Twenty-nine of the traits were measured in only one sex,

including traits that could apply to either sex but were assessed

in sex-specific survey questions (e.g., UKB data fields 6153 and

6177). Traits were manually categorized into 13 groups according

to their affiliated biological system: anthropometric (n ¼ 45),

asthma and allergic disease (n ¼ 23); cardiovascular (n ¼ 39),

gastrointestinal (n ¼ 12); hematologic and blood chemistry

(n ¼ 46); musculoskeletal and skin (n ¼ 34); neoplasms

(n¼ 14); neurologic and behavioral (n¼ 48); ocular (n¼ 32); other

(n ¼ 14); pulmonary (n ¼ 17); renal and urologic (n ¼ 9); and

reproductive, endocrine, and metabolic (n ¼ 38).

We performed separate PheWAS in the following UKB cohorts:

white British, white British excluding individuals with diagnosis

or self-report of asthma, white non-British, and African ancestry.

We tested associations between each of the PheWAS traits and

the asthma PRS using logistic regressions for binary phenotypes

and linear regressions for quantitative traits, adjusting for sex

and the first 10 PCs of ancestry (first 20 PCs in African-ancestry

samples). Quantitative traits were standardized using a Z score

transformation but were not normalized prior to association

testing, as it was assumed sample sizes were sufficiently large to

invoke the central limit theorem. Phenome-wide significance

was determined using Bonferroni multiple-test correction

(p < 0.05/371), which was conservative considering the high cor-

relations between many pairs of traits (e.g., left arm fat mass, right

arm fat mass). For display purposes, we labeled highly correlated

trait groupings as single traits, such as for anthropometric mea-

sures with values from both the left and right sides, resulting in

253 non-redundant traits, and displayed the strongest trait associ-

ation statistics from within each grouping. Trait associations with

p values less than the minimum subnormal double-precision

floating-point number, 2�1074, were labeled as p < 4.9 3 10�324.

In defining the non-asthma PheWAS population in the UKB, we

excluded individuals with a report of asthma in any of the
Human
following UKB fields: 3786, 22147, 6152, 20002, 22127, and

41202. We did not further exclude individuals based on COPD,

emphysema, or chronic bronchitis, as we did in defining the

AOA and control groups, so that we would compare the PRS asso-

ciation effects for these traits across PheWAS cohorts.

When comparing individual trait associations between different

PRSmodels, we determined bias toward one PRS or the other based

on the absolute differences between regression effect sizes. There-

fore, for quantitative traits, the biases equated to the total differ-

ences in standardized effect sizes [Dbz] between PRS associations,

whereas, for binary traits, the biases were equivalent to the relative

change in odds ratio (OR) (OR1/OR2). To evaluate whether there

were differences in association strengths between PRSs for specific

phenotypic categories, we regressed the effect sizes or ORs of all

nominally significant (p < 0.05) PheWAS associations of one PRS

against the other with a fixed intercept at zero for each category

and then performed one-sample t tests of the resultant slopes

against a value of 1. When applicable, we combined the binary

and quantitative results into one p value for each category using

Stouffer’s method weighted by the number of traits in each cate-

gory by variable type (binary or quantitative).

To test for significant differences in individual PRS-trait associa-

tion effects, whether between different populations for the same

PRS or between different PRSs for the same population, we used

the Wald statistic:

W ¼ b1 � b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
seðb1Þ2 þ seðb2Þ2

q
where b1 and b2 are the estimated effect sizes for each PRS associ-

ation, and W asymptotically follows a z distribution for binary

traits and a t distribution for quantitative traits. For the PheWAS

in non-asthmatic individuals, we used inverse probability weight-

ing to mitigate potential selection bias induced from conditioning

on asthma status.51 Regression weights were set as the inverse pre-

dicted probability of never having asthma, as determined from a

logistic regression of asthma (union of all asthma phenotypes)

against the PRS, sex, ancestry PCs 1–10, and four additional envi-

ronmental confounders: body mass index (BMI), the Townsend

deprivation index, disability allowance, and pack years smoking.

HLA effects
To evaluate the extent to which the HLA region contributed to

PRS-trait associations, we calculated modified PRSs for individuals

in the white British cohort, in which all contributions from SNPs

in the extended HLA region (chr6:28477797-33448354, GRCh37)

were removed. We then performed a PheWAS using the HLA-

removed scores and compared the association effect sizes with

those generated from the initial PRS PheWAS in the white British

population. Statistical probabilities for differences in AUCs be-

tweenmodels were estimated using 1,000 bootstrap permutations.

Trait mediation analysis
To quantify the relative contributions of eosinophilia, lung func-

tion, and allergic disease on the overall genetic risk of asthma,

we performed mediation analyses52 with each factor modeled as

a mediator between the PRS and asthma. We performed separate

tests for asthma, COA, and AOA. We used blood eosinophil count

(UKB field 30150), ratio of FEV1 to forced vital capacity (FVC) (UKB

field 20258), and age of hay fever diagnosis (UKB field 3761) as the

mediators in our models, denoting eosinophilia, lung function,

and allergic disease, respectively. Z score transformation was first
Genetics and Genomics Advances 4, 100233, October 12, 2023 3

http://www.nealelab.is/uk-biobank/
http://www.nealelab.is/uk-biobank/


Figure 1. Asthma liability explained by
GBMI and TAGC polygenic risk scores
R2 on the liability scale with 95% CIs are
shown for the GBMI PRS and best-per-
forming TAGC PRS for all asthma, COA
(<12 years old), and AOA (R25 and <66
years old) in three different UKB popula-
tions according to ancestry. AUC, area un-
der the curve.
applied to each trait within the white British UKB population. The

mediation analysis consisted of three regression models:

Y ¼ i1 þ cXþ b1Z þ e1 (Equation 1)

M ¼ i2 þ aXþ b2Z þ e2 (Equation 2)

Y ¼ i3 þ c0Xþ bMþb3Z þ e3 (Equation 3)

where Y is the dependent asthma phenotype;X is the PRS;M is the

mediating trait; c, a, c0, and b are coefficients relating the indepen-

dent variables to the dependent variables; Z is a matrix of baseline

covariates with b coefficients; i is the intercept; and e are the resid-

uals. We included sex and the first 10 PCs of ancestry as fixed co-

variates. We also included BMI (UKB field 21001), the Townsend

deprivation index (UKB field 189), and estimated pack years of

smoking (UKB fields 2867, 2887, 2897, 2907, 3436, 3456, 3486,

6183, 6194, 20160, 21022) as fixed covariates to mitigate against

unmeasured confounding. The proportion of the PRS effect on

asthma mediated by each mediating trait was determined using

the standardized logistic solution proposed byMacKinnon et al.53:

cs ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2s2

MX

p2=3

s
(Equation 4)

Proportion mediated ¼ ab

cstandardized
(Equation 5)

where cs is the standardized form of the c coefficient from Equa-

tion 1 and s2
MX is the residual variance from Equation 2. We per-

formed bootstrap sampling (n ¼ 1,000) to derive 95% CIs.
Results

Genetic risk prediction of asthma

We evaluated the predictive performance of five genetic

riskmodels for asthma, derived using the PRS-CS polygenic

prediction method,43 on summary statistics from either

the TAGC30 or GBMI7 meta-analyses of asthma GWASs.

The four TAGC scores featured between 694,173 SNPs

and 699,291 SNPs, depending on the LD panel. The

GBMI-based PRS consisted of 637,438 SNPs.7We compared

the performance of these five scores in predicting asthma

in white British, white non-British, and African-ancestry

population samples in the UKB (Table S1).
4 Human Genetics and Genomics Advances 4, 100233, October 12, 2023
The GBMI PRS was the most accu-

rate in all populations, with an AUC

of 0.623 in white British, 0.608 in

white non-British, and 0.545 in Afri-

can-ancestry individuals. Because
the GBMI model was the best performing in each group

(Figure 1), we used the individual risk scores generated

from that model for the remainder of the study, except

where we further compare trait associations between

models below (see section ‘‘trait association differences

by PRS model’’). The OR for asthma per standard deviation

(SD) increase in the PRS was 1.56 (95% CI¼ 1.54–1.58). In-

dividuals with a PRS in the top decile were 4.69 times (95%

CI¼ 4.43–4.95) more likely to have had asthma than those

in the lowest decile (Figure 2A).

Genetic risk by sex and age of onset

Many features of asthma differ by sex and age at disease

onset. For example, COA is more prevalent in males and

has a high rate of remission, while AOA is more prevalent

in females and is associated with more severe symp-

toms.54,55 Moreover, genetic risk factors contribute more

to the development of COA relative to AOA.9,56 We there-

fore tested PRS associations with asthma by age of onset

and by sex to quantify these differences and identify poten-

tial interaction effects. The mean PRS was significantly

higher in individuals with COA (m ¼ 0.55) than in individ-

uals with AOA (m ¼ 0.31; p ¼ 3.4 3 10�87; Figure 2B). The

OR for each SD increase in the PRS was 1.83 (95%

CI ¼ 1.79–1.87) for COA and 1.43 (95% CI ¼ 1.41–1.45)

for AOA (Figure 2C). Individuals with a PRS in the top decile

were 8.3 times (95% CI ¼ 7.4–9.3) more likely to have had

COA and 3.5 times (95% CI ¼ 3.3–3.8) more likely to

have had AOA than those in the lowest decile. Accordingly,

the asthma PRS was better at predicting COA (AUC¼ 0.665)

than AOA (AUC ¼ 0.600; Figure 2D). These results reinforce

how genetic risk factors contribute more to COA. Indeed,

AOA was more prevalent than COA in individuals with a

lower asthma PRS, and COA was more common in individ-

uals with a higher PRS (Figure 3A).

We also observed significant interaction effects between

the PRS and sex, depending on age of onset.While the over-

all risk of COA was higher in males than in females, regard-

less of genetic risk, the PRS was slightly more correlated

with disease risk in females (interaction p ¼ 1.0 3 10�2; ra-

tio of ORs ¼ 1.06; Figure 3B). We observed the opposite

effects in AOA, with a higher overall risk in females but a



Figure 2. PRS prediction of asthma in white British UKB participants
(A) Odds ratios (ORs) with 95% CIs of asthma risk for individuals in different GBMI PRS quantiles relative to those with scores in the
40th–60th quantile.
(B) Density plot showing distributions of PRS scores by asthma status, with mean scores indicated by vertical lines.
(C) ORs with 95%CIs of COA and AOA risk for individuals in different PRS quantiles relative to those with scores in the 40th–60th quantile.
(D) Receiver-operating-characteristic curves for the PRS as a predictor of asthma, COA, and AOA.
greater PRS correlation inmales (interaction p¼ 4.63 10�2;

ratio of ORs ¼ 1.03; Figure 3C). Overall, these results

showed that genetic risk is higher in COA than AOA and

that sex interacted with the age of asthma onset.

PheWAS of asthma PRS

To quantify the polygenic pleiotropy between asthma and

other traits and conditions, we performed a PheWAS of the

GBMI asthma PRS with 371 heritable biomedical traits in

the UKB white British population (n ¼ 376,237). After

applying a conservative Bonferroni correction for multiple

testing, 214 traits were significantly associated with the

asthma PRS across a variety of biological systems (Figure 4;

Table S2). As expected, asthma and its related traits and co-

morbidities were the most strongly associated phenotypes,

including wheezing (p < 4.9 3 10�324, OR ¼ 1.30), treat-

ment with albuterol (p < 4.9 3 10�324, OR ¼ 1.59),

FEV1/FVC (p < 4.9 3 10�324, bz ¼ �0.08), diagnosis of

hay fever/allergic rhinitis or eczema (p < 4.9 3 10�324,

OR ¼ 1.24), and eosinophil count (p < 4.9 3 10�324, stan-

dardized effect of 1 SD increase in PRS [bz] ¼ 0.11). In line
Human
with our earlier GWAS findings,9 the PRS was significantly

associated with younger age of onset as a quantitative trait

(p ¼ 3.7 3 10�111, bz ¼ �0.12), where each SD increase in

the PRS corresponded to 2.1 years (95% CI ¼ 1.9–2.3)

younger age of onset. Other significant disease associations

of note include several immune-mediated diseases, such as

celiac disease (p ¼ 1.5 3 10�40, OR ¼ 1.38), type 1 diabetes

(T1DM; p ¼ 8.2 3 10�41, OR ¼ 1.26), and hypothyroidism

(p ¼ 2.3 3 10�36, OR ¼ 1.10).

Twenty-nine of the UKB traits included in our study were

measured in only one sex (Table S2), and 17 of those were

significantly associated with the asthma PRS (Figure 4). In

females, age at first live birth (p ¼ 2.5 3 10�46, bz ¼ �0.04,

b ¼ �0.17 years), age at menopause (p ¼ 7.1 3 10�22,

bz ¼ �0.03, b ¼ �0.14 years), and hormone-replacement

therapy (p ¼ 5.6 3 10�19, OR ¼ 1.26) were the top three

sex-specific associations with the asthma PRS. In males, in-

sulin treatment (p¼ 3.03 10�29, OR¼ 1.26), hypertension

treatment (p ¼ 1.1 3 10�9, OR ¼ 1.03), and male pattern

baldness (p ¼ 1.7 3 10�7, OR ¼ 1.03) were the top three

sex-specific associations.
Genetics and Genomics Advances 4, 100233, October 12, 2023 5
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Figure 3. Asthma risk vs. GBMI PRS by sex and age of onset
(A) Predicted risks of COA and AOA are plotted against the PRS score separately for males and females in the white British UKB popu-
lation with 95% CIs.
(B) Predicted risks of COA are plotted on a log scale with 95%CIs, with the different slopes demonstrating the PRS-sex interaction for COA.
(C) Predicted risks of AOA are plotted on a log scale with 95% CIs, demonstrating the PRS-sex interaction for AOA.
Trait association differences by PRS model

The GBMI and TAGC PRSs were derived from different co-

horts that used different phenotype definitions for asthma.

The GBMI meta-analysis defined asthma predominantly

according to ICD codes from health records of adult partic-

ipants,7,33 whereas TAGC relied more on physician diag-

nosis and over 40% of its studies were limited to COA.30

To explore how these differences might affect pleiotropic

associations with asthma, we repeated the PheWAS using

the best-performing TAGC PRS (multi-ancestry cohort,

UKB LD panel), and compared the association results

with those from the GBMI PRS PheWAS. The association

effect size and OR correlations between PheWASs were

r ¼ 0.87 and r ¼ 0.90, respectively (Figure 5).

The TAGC PRS was significantly associated with 110

traits after Bonferroni correction (Figure S1; Table S3),

including 14 that were uniquely associated with the

TAGC PRS. The TAGC PRS was not significantly associated

with 118 of the traits significantly associated with the

GBMI PRS. Of the 45 binary traits that were significantly

associated with both PRSs, celiac disease (UKB field

20002) had the largest relative effect size bias toward the

TAGC PRS (ORTAGC ¼ 1.81, ORGBMI ¼ 1.38), and breathing

problems at work (UKB field 22616) had the largest effect

size bias toward the GBMI PRS (ORTAGC ¼ 1.31,

ORGBMI ¼ 1.57; Figure 5A). Of the 51 quantitative pheno-

types significantly associated with both PRSs, age of

asthma diagnosis (UKB field 22147) had the largest differ-

ence in association effect sizes biased toward the TAGC

PRS (bz,TAGC ¼ �0.11, bz,GBMI ¼ �0.10), whereas FEV1 (per-

centage predicted; UKB field 20154) had the largest bias to-
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ward the GBMI PRS (bz,TAGC ¼ �0.05, bz,GBMI ¼ �0.09;

Figure 5B).

Categorically, anthropometric trait associations were the

most biased toward the GBMI PRS (p ¼ 4.4 3 10�14), fol-

lowed by asthma and allergic disease (p ¼ 1.0 3 10�11),

pulmonary (p ¼ 1.1 3 10�6), musculoskeletal and skin

(p ¼ 5.4 3 10�8), and other (p ¼ 1.8 3 10�3) traits

(Figures 5C and 5D). Notably, the TAGC PRS was not signif-

icantly associated with any of the 24 neurologic and

behavioral traits that were significantly associated with

the GBMI PRS, including five measures of smoking. Most

of the remaining traits that were significantly associated

with the GBMI PRS and not the TAGC PRS were related

to cardiovascular and metabolic health (Tables S2 and S3).

Trait associations in a non-asthma population

Trait associations with asthma genetic risk scores do not

necessarily arise from shared genetic architecture but could

be secondary to disease-induced physiological and/or

behavioral changes. To evaluate the degree to which the

trait associations with asthma genetic risk were indepen-

dent of asthma, we repeated the PheWAS of the GBMI

asthma PRS in the white British population, excluding all

individuals with a report or diagnosis of asthma (remain-

ing n ¼ 328,353). We used inverse probability weighting

to mitigate selection bias induced from conditioning on

asthma (see section ‘‘subjects and methods’’). Of the 205

non-asthma-defining significant traits in the initial

PheWAS, 54 (26.3%) were no longer significantly associ-

ated with the asthma PRS after correcting for multiple

testing, and 17 had significantly weaker association effects
023



Figure 4. Phenome-wide association test of GBMI asthma PRS in the UKB
The p values for associations with the asthma PRS are shown for 257 non-redundant traits out of 371 heritable phenotypes tested in the
UKB. Traits to the right of the dashed line were significantly associated after correcting for multiple testing (p< 1.353 10�4). Traits with
association p values <13 10�10 are labeled. Traits are grouped by corresponding organ system. The direction of each arrow corresponds
to the direction of the association effect. ALP, alkaline phosphatase; AST, aspartate aminotransferase; BMI, body mass index; CRP,
C-reactive protein; COPD, chronic obstructive pulmonary disease; DED, diabetes-related eye disease; FEV1, forced expiratory volume
in 1 s; FVC, forced vital capacity; GGT, gamma-glutamyl transferase; HbA1C, glycated hemoglobin; Hgb, hemoglobin; HDL, high-den-
sity lipoprotein; HRT, hormone-replacement therapy; MCH, mean corpuscular hemoglobin; RBC, red blood cell; T1DM, type 1 diabetes
mellitus; T2DM, type 2 diabetes mellitus; Tx, treatment.
in the non-asthmatic cohort (Figure 6; Table S4). Of the 17

traits with weaker association effects, five were related to

asthma and allergic disease, eight were related to pulmo-

nary function, and four were related to leukocyte counts.

PRS associations with FEV1 (Db ¼ �35%, pDb ¼ 8.4 3

10�15), FVC (Db ¼ �25%, pDb ¼ 2.0 3 10�5), FEV1/FVC

(Db ¼ �42%, pDb ¼ 1.4 3 10�38), and COPD prevalence

(Db ¼ �49%, pDb ¼ 8.6 3 10�10) were all significantly

weaker in the non-asthmatic cohort. The association

with total leukocyte counts was also significantly weaker

(Db ¼ �31%, pDb ¼ 7.9 3 10�5), including significant re-

ductions in association strength for eosinophil counts

(Db ¼ �18%, pDb ¼ 1.1 3 10�15) and neutrophil counts

(Db ¼ �38%, pDb ¼ 2.4 3 10�5), specifically. These results

highlight specific trait associations with genetic asthma

risk that arise largely due to disease-induced changes, but

most of the traits with significantly reduced effect sizes

(n ¼ 13/17, 76%) nonetheless remained significantly asso-

ciated with the asthma PRS. Importantly, for the vast ma-

jority of traits, their association effect sizes did not change
Human
significantly in the non-asthmatic cohort relative to the

cohort with asthmatics, indicating that most trait associa-

tions with genetic asthma risk are due to pleiotropic effects

arising from shared biology.

Replication in subjects with different ancestries

To assess the robustness of the asthma PRS-trait associa-

tions, we performed PheWASs of the GBMI PRS in two

other UKB cohorts, a white non-British population (n ¼
27,026; Table S5) and a population of individuals with Af-

rican ancestries (n ¼ 7,196; Table S6). In the white non-

British population, 208 (97%) of the trait associations

had consistent directions of effect with the white British

cohort, of which 139 (65%) replicated at p < 0.05. Consid-

ering asthma prediction was similar in the white British

and white non-British cohorts (Table S1), the non-repli-

cated traits were likely due to the loss of power in the

smaller cohort.

In the population with African ancestries, 109 (52%) of

the significant trait associations from the white British
Genetics and Genomics Advances 4, 100233, October 12, 2023 7
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Figure 5. Scatterplots of GBMI PRS vs.
TAGC PRS-trait associations in the UKB
(A and B) Binary (A) and quantitative
(B) traits association effects are shown
with 95% CIs, colored according to which
PRSs had significant associations. Traits
highlighted in red had the largest effect
bias toward one or the other PRS models.
(C and D) Binary (C) and quantitative
(D) traits association effects are shown
with 95% CIs, colored according to which
trait categories were significantly biased
toward one of the PRS models. ICD-10, In-
ternational Classification of Diseases, 10th

revision.
PheWAS yielded the same direction of effect, with 20

(11%) at p < 0.05. Although this cohort was relatively

small, the PRS was also less predictive of asthma in this

cohort relative to the others (Table S1), demonstrating

the limited portability of PRSs across populations,57 even

when using a PRS based on multi-ancestry GWASs. For

the traits that replicated at p < 0.05 in the white non-

British and African-ancestry cohorts (n ¼ 18), we tested

for differences in association effect sizes between African

ancestry and the white British and white non-British co-

horts. We identified four traits with significantly different

effects, including wheezing in the past year (p ¼ 9.7 3

10�5), and three measures of self-reported asthma (UKB

data fields 20002, p ¼ 8.8 3 10�4; 6152 [asthma],

p ¼ 4.5 3 10�4; 6152 [none], p ¼ 7.2 3 10�4). In each

case, the PRS association effect sizes were significantly

smaller in the African-ancestries population (Table S6)

and likely reflect the lower predictive accuracy of the PRS

in the population with African ancestries.

Influence of the HLA region

The HLA region on chromosome 6p21.3 is the most gene-

dense and polymorphic region in the human genome,58

encoding proteins with critical roles in immune responses.

Genetic variants in the HLA region have been robustly

associated with risk for both autoimmune and allergic dis-

eases.59,60 To investigate the influence of HLA region al-

leles on asthma PRS associations, we measured GBMI
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PRS-trait associations after removing

HLA region variants from the asthma

PRS (Table S7). The region contained

only 0.7% (n ¼ 4,694) of the total

number of modeled SNPs but

included 39 of the top 100 by scoring

weight. The correlation between the

whole-genome PRS and the HLA-

removed PRS was 0.88.

Removal of the HLA region had a

negligible effect on the PRS associa-

tion and predictive performance with

asthma (Db¼0%, DAUC ¼ �0.003). We

observed no difference for COA
(Db¼0%, DAUC ¼ 0.000). The HLA-removed PRS wasmargin-

ally worse at predicting AOA (Db ¼ �4%, DAUC ¼ �0.004)

compared to the whole-genome PRS, but none of these dif-

ferences were statistically significant.

In contrast, PRS associations with autoimmune condi-

tions were dramatically reduced after removing the HLA re-

gion variants. Associations with celiac disease (Db ¼�68%,

pDb ¼ 1.5 3 10�10), T1DM (Db ¼ �60%, pDb ¼ 1.5 3 10�8),

hypothyroidism (Db ¼ �51%, pDb ¼ 6.5 3 10�6), and their

corresponding treatments were significantly weaker with

the HLA-removed PRS (Figure 7). The only trait with a

significantly stronger association with the asthma PRS af-

ter removing the HLA region was eosinophil levels

(Db¼ 10%, pDb¼ 4.23 10�6), suggesting an opposite effect

of the HLA region compared to the rest of the genome’s

shared architecture with blood eosinophil levels. No other

traits demonstrated significantly different association ef-

fect sizes with the HLA-removed PRS. Overall, these results

reveal that the pleiotropy between asthma and immune-

mediated traits is largely concentrated within the HLA

region.

Mediation of cardinal asthma-associated traits on

genetic risk for asthma

Allergic disease, lung function, and eosinophils are all

highly correlated with asthma, yet there is considerable

heterogeneity among these traits in asthmatic patients.

To quantify the relative extent to which each of these traits
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Figure 6. GBMI PRS-trait associations in non-asthmatics
(A and B) Scatterplots of binary (A) and quantitative (B) trait associations with the GBMI PRS in UKBwhite British for individuals with no
history of asthma vs. all individuals are shown with 95% CIs. Traits with significant differences in association effect sizes are labeled and
colored according to trait category.
(C and D) Forest plots of binary (C) and quantitative (D) trait associations with the GBMI PRS with significant effect size differences be-
tween the non-asthmatic population and the entire white British cohort are shown with 95% CIs. COPD, chronic obstructive pulmo-
nary disease; WB, white British.
mediate the genetic risk of asthma, we performed media-

tion analyses52 with each trait modeled as a mediator be-

tween the GBMI PRS and asthma, stratified by COA and

AOA. Blood eosinophil count, FEV1/FVC, and age of hay

fever diagnosis were used as the metrics for eosinophilia,

lung function, and allergic disease, respectively (Figure 8).
Human
For COA, age of hay fever diagnosis mediated the largest

proportion of genetic risk (12%) relative to eosinophil

count (6%) and FEV1/FVC (4%). In AOA, however, age of

hay fever diagnosis did not mediate any of the genetic

risk (�1%), while eosinophils mediated the greatest pro-

portion (8%), followed by FEV1/FVC (5%). These results
Genetics and Genomics Advances 4, 100233, October 12, 2023 9



Figure 7. Changes in asthma PRS associations after removing HLA region
Changes in PRS association effect sizes after removing the HLA region from the PRS (Db) are shown with 95% confidence intervals for
traits with significant effect reductions and for COA and AOA. Traits with a negative Db had a weaker association with the asthma PRS,
and traits with a positive Db had a stronger association with the asthma PRS after removing HLA region alleles from consideration.
are consistent with clinical observations of allergic disease

being a prominent comorbidity with COA and further in-

dicates that this may be due to shared genetics.
Discussion

This study provides a quantitative overview of the genetic

landscape for asthma, revealing polygenic pleiotropy be-

tween asthma and hundreds of other traits and conditions

across a variety of biological systems and highlights differ-

ences by sex and age of onset. Previous studies have devel-

oped PRSs for asthma,6,7,11–21 with comparable AUC values

when reported,12,14,21 but most were more limited by just

focusing on predictive performance11–15 or by testing asso-

ciations with specific traits.15–21 Our study features a more

comprehensive evaluation of the traits and conditions

associated with genetic asthma risk, including depen-

dencies on age of onset, sex, ancestry, disease status, and

HLA alleles, thereby revealing novel features of asthma

and its associated traits.

Utilization of a PRS enabled us to perform direct quanti-

fication of relative disease risks and facilitated additional

analyses that can account for genetic risk strata, disease sta-

tus, mediating effects, and/or confounding factors. In

contrast, previous studies of cross-trait genetic correlations

with asthma provide estimates of shared genetic effects

among common variants but are less interpretable in terms

of relative disease risk.7,22–29 The relative risks between

different disease pairs with similar genetic correlation esti-
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mates can vary dramatically.61 PRS-based associations

therefore offer a different view of multimorbidity with

additional utility than cross-trait genetic correlation esti-

mates alone.

Age and sex both significantly alter genetic effects on

asthma risk. Asthma that begins in childhood (COA) is

more often diagnosed in males and is associated with

different risk factors compared to asthma that develops

in adulthood (AOA), which is more commonly diagnosed

in females and is associated with increased respiratory

symptoms and a lower frequency of quiescent dis-

ease.54,55,62 In fact, clinically, COA and AOA are often

considered different subtypes of asthma. Recent studies

have revealed that the genetic etiologies of COA and

AOA are indeed partly distinct,9,56 with an estimated ge-

netic correlation of rg ¼ 0.67.56 We previously reported

that the genetic risks for AOA were largely a subset of

those for COA but with overall smaller effect sizes.9

Consistent with this, SNP-based heritability estimates

for COA were approximately three times greater than

those estimated for AOA.9,56 These combined findings

indicate that genetics plays a more prominent role in

asthma that presents earlier in life and, conversely, risk

of AOA is more environmentally mediated. In the present

study, the genetic risk for asthma was significantly associ-

ated with a younger age of onset and was a better predic-

tor of COA than AOA.

Our results further reinforced that genetic risk for

asthma acts through different mechanisms depending on

the age of onset. The mediation analyses revealed that
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Figure 8. Mediation of cardinal asthma-associated traits on ge-
netic risk for asthma
For the PRS associations with asthma, the estimated proportions
mediated by eosinophil count (blue), FEV1/FVC (green), and age
of hay fever diagnosis (orange) are shownwith 95% confidence in-
tervals. Mediation analysis was conducted separately for COA,
AOA, and all asthma. In each instance, the asthma PRS was the in-
dependent variable, asthma status was the dependent variable,
and one of the three traits was the mediator.
genetic risk for COA is more related to allergic disease,

whereas genetic risk for AOA is more related to eosino-

philia. These findings align with observations that allergic

asthma is the predominant endotype in children.54,62,63

Mechanistic differences between COA and AOA may

also be contributing to the trait association differences

we observed between the GBMI PRS PheWAS and the

TAGC PRS PheWAS. The GBMI PRS was modeled primarily

on ICD codes in adults and is therefore likely identifying

more of an adult-onset phenotype than the PRS from

TAGC, in which the cases in 40% of the studies were

COA. Indeed, the binary UKB trait with the second largest

association bias toward the GBMI PRS was the primary

asthma ICD-10 code. Of the 1,667 individuals in the

UKB with a primary asthma ICD-10 code and information

on age of asthma diagnosis, only 471 (28%) reported an

asthma diagnosis in childhood, whereas 945 (57%) re-

ported a first asthma diagnosis in adulthood (>25 and

<66 years old). Anthropometric traits, consisting almost

entirely of body-fat measures, were the most biased toward

the GBMI PRS, and the TAGC PRS was not associated with

any of the 24 neurologic and behavioral traits associated

with the GBMI PRS, including five different measures of

smoking behavior. These findings accord with genetic cor-

relation results reported by Ferreira et al.,56 in which COA

had a larger allergic component than AOA, whereas only

AOA had significant genetic overlap with obesity-related

traits and smoking history. Of the traits more strongly asso-

ciated with the TAGC PRS, celiac disease stood out as hav-

ing the greatest effect size difference. Previous studies have
Human G
reported correlations between COA and celiac disease inci-

dence,64–68 including a study by Hemminki et al.65 that

found the risk of celiac disease following an asthma-related

hospitalization was greater only in individuals that were

diagnosed with asthma before 20 years of age. Importantly,

while the relative composition of COA and AOA cases in

GBMI and TAGC likely contributed to trait association dif-

ferences between their respective PRS PheWASs, other fac-

tors, such as relative training data sample size, overall age

distribution, ancestry composition, phenotype accuracy,

and/or overlap between asthma cases and COPD, could

also have contributed. Therefore, we cannot be certain

what underlies the differences between the GBMI and

TAGC PRS PheWASs. Nonetheless, our results demonstrate

how compositional differences in PRS training datasets

inevitably produce models with different genetic architec-

tures for the same disease.

In addition to allergic diseases (hay fever/allergic

rhinitis, eczema), pulmonary traits were among those

most strongly associated with the asthma PRSs. Multiple

studies have previously reported significant genetic over-

lap between asthma and various measures of lung

function,7,21,24,56,69,70 but their causal relationships are

complex.71 In our study, most asthma PRS associations

with pulmonary traits remained significant after excluding

individuals with an asthma diagnosis, indicating that

asthma and lung function share a genetic architecture in-

dependent of asthma diagnosis. However, the correspond-

ing effect sizes upon excluding asthmatics were greatly

reduced, and half of the traits that were no longer signifi-

cantly associated with the asthma PRS were pulmonary

traits, suggesting that asthma itself leads to lower lung

function. For example, after removing the asthma cases,

the PRS association with COPD was still statistically signif-

icant, but its effect was substantially weaker in the non-

asthmatic cohort (Db ¼ �48%, pDb ¼ 2.5 3 10�9). This

combination of shared genetics and disease-induced

changes could explain the contradictory results regarding

the causal order of the association between lung function

and asthma.71

Many risk loci for asthma and allergy are also associated

with one or more autoimmune diseases.57,59,72 We

observed significant associations with the GBMI asthma

PRS and celiac disease, hypothyroidism, and T1DM, and

additionally for ulcerative colitis with the TAGC PRS. Our

results showed that the genetic overlap between asthma

and immune-mediated conditions was primarily due to ge-

netic variation at the HLA locus, as their PRS associations

were significantly reduced after removing HLA region var-

iants from the PRS. Interestingly, genetic risk of asthma, ac-

cording to the TAGC PRS, had a protective effect on risk for

ulcerative colitis, which is consistent with reports that

many alleles associated with both asthma and autoim-

mune diseases have opposite effects on pathogenesis.59,60

The asthma PRSs were also significantly associated with

immune cell types. Eosinophils, in particular, had the

most significant quantitative trait associations with both
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the GBMI (p < 4.9 3 10�324, bz ¼ 0.11) and TAGC

(p < 4.93 10�324, bz ¼ 0.07) PRSs. Eosinophils are granulo-

cytes that contribute to immunity during multicellular

parasitic infection, but, in geographical regions where para-

sites are less abundant, eosinophils can contribute to type 2

inflammation and subtypes of severe asthma.73 Notably, the

PRS association with eosinophil levels was the only associa-

tion that was significantly stronger after removing the HLA

region from the PRS (Db ¼ 10%, pDb ¼ 4.23 10�6), suggest-

ing that the shared architecture between asthma and blood

eosinophil levels resides outside of the HLA region.

We also found links between asthma, obesity, and insu-

lin resistance, an observation that is well established in

both children and adults.74 Mendelian randomization

studies indicated that BMI causally increases the risk of

asthma,28,75,76 but findings from prospective studies sug-

gest that asthma is also a risk factor for subsequent

obesity.77–80 Our study suggested that the PRS associations

with body fat were not due to asthma onset: most of the

associations with body-fat-related traits remained signifi-

cant after removing the asthma cases from the PheWAS.

The GBMI PRS had greater association effects with

obesity-related traits than the TAGC PRS did, which could

be due to significant genetic correlations between obesity-

related traits and AOA but not COA.28,56 Insulin resistance

has been reported to modify the association between

obesity and asthma in adults,81 suggesting that features

of metabolic syndrome may contribute to asthma risk in-

dependent of obesity. A recent study found that asthma

was associated with metabolic syndrome independent of

BMI, but only in adults.82 In our study, body-fat traits

had stronger associations than T2DM with the GBMI PRS

but weaker associations than T2DM for the TAGC PRS.

Together these findings showed that both insulin and

obesity are associated with asthma risk, but the strength

of their associations depend on the population and/or

how asthma is defined.

Another notable finding was the significant association

between the asthma PRS and bilirubin, a metabolite of

heme. A study by Turi et al.83 identified dose-dependent

protective associations between unconjugated bilirubin

measured in plasma at age 1 year and subsequent diagno-

ses of recurrent wheeze and COA.83 The study found that

higher concentrations of bilirubin within the normal

physiological range were associated with protection from

asthma. Our study extends the link between asthma and

bilirubin by showing that higher genetic risk for asthma

is significantly correlated with lower total bilirubin levels

and further demonstrates that this relationship is due at

least in part to shared genetics.

There are some important caveats and limitations of our

study. First, the genetic risk for asthma captured by the

PRSs were limited to HapMap3 SNPs genotyped in the

training data and the UKB. The genetic risk modeled in

this study was therefore limited to that captured by com-

mon tag SNPs and could not account for independent con-

tributions from lower-frequency variants or from a more
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comprehensive SNP coverage. Second, the PRSs were

modeled using summary statistics from multi-ancestry

GWASs,30,32 but most samples nonetheless consisted of in-

dividuals of European ancestries. Residual population

stratification in GWASs can lead to biased PRS associations

in test cohorts with overlapping population structure.84

Therefore, any stratification biases within the TAGC or

GBMI GWASs could have confounded certain PRS associa-

tions, and we did not model this potential effect. More-

over, performances of PRSs suffer when applied to popula-

tions with different ancestries, due to differences in LD

structure, allele frequencies, effect sizes, and heritability.85

Unsurprisingly, the accuracy of the PRSs was lowest in the

African-ancestry cohort. We had less power to detect PRS-

trait associations in this cohort as well, due to its smaller

sample size. Larger non-European training samples and

the development of new methods to improve bias correc-

tion and cross-population PRS accuracy are needed to pre-

vent PRS use from exacerbating health disparities.86 Third,

the PRSs applied in this study were modeled on asthma

phenotypes that included both COA and AOA cases. The

models therefore likely best represent genetic risk common

to both COA and AOA. PRSs modeled on COA or AOA

alone may associate with different sets of traits than those

identified in this study and better capture genetic differ-

ences between COA and AOA. Fourth, we did not account

for potential assortative mating effects, which can inflate

genetic correlation estimates for etiologically independent

traits,87 although the impact of assortative mating on PRS-

trait associations has not yet been thoroughly investi-

gated.88 Fifth, the phenotypes based on ICD codes

included in our PheWAS correspond to principal diagnoses

responsible for hospital admission and do not include sec-

ondary diagnoses that coexist at admission or subse-

quently develop. Use of ICD codes to denote disease phe-

notypes is also subject to misclassification.89,90

Consequently, the associations reported in our study for

such traits may not be representative of overall risk. Sixth,

the UKB captured all phenotype data from adults. There-

fore, for traits measured at the time of study, such as BMI

or lung function or leukocyte proportions, we are unable

to make conclusions about potential associations earlier

in life. For example, eosinophil count measured in child-

hood would likely mediate more of the genetic risk of

COA than would the eosinophil counts recorded in the

UKB. Furthermore, although our previous sensitivity anal-

ysis on COA in the UKB suggested that recall bias did not

contribute to our GWAS results,9 we cannot exclude recall

bias among participants for early-life diagnoses, such as

COA, which could have inflated associations in the non-

asthmatic cohort if a proportion of COA cases were mis-

specified as controls. Seventh, estimation of direct and in-

direct effects within our mediation analyses inherently

assumed no unmeasured mediator-outcome confounders

affected by the PRS. We modeled for confounding with

BMI, the Townsend deprivation index, disability, and

smoking history, but, considering the polygenic pleiotropy
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demonstrated by the PRS, it is unlikely that this assump-

tion was strictly met for all models. Therefore, our media-

tion results serve to illustrate relative correlations rather

than provide strict causal inferences. Finally, associations

with the asthma PRS do not necessarily represent causal

biological relationships. We removed traits that were not

interpretable as biomedical phenotypes or laboratory

values, but any number of intermediate or correlated fac-

tors could contribute to associations observed with the

asthma PRS.

In summary, we quantified the probabilities of devel-

oping asthma based on relative genetic risk and identified

numerous traits across a wide spectrum of biological sys-

tems that were significantly associated with genetic risk

for asthma.We identified trait associations that were limited

to specific PRS models, demonstrating how different PRS

training data produce models with different architectures.

Most PRS-trait associations remained significant after con-

trolling for asthma status, indicating shared genetics, but

lung function traits and inflammatory markers were signif-

icantly less associated with genetic asthma risk in non-asth-

matics, suggesting disease-state-induced changes of these

traits. We found the genetic overlap with autoimmune-

related phenotypes was largely limited to the HLA region

and showed etiological differences between COA and

AOA, with genetic risk of COA mediated more by allergic

disease and AOA more closely tied to eosinophilia. Overall,

this study sheds light on how asthma is related to other

traits and conditions and opens new avenues for investiga-

tion, where further research may guide improved risk man-

agement and more effective therapies.
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