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Removal of false positives in metagenomics-
based taxonomy profiling via targeting Type
IIB restriction sites

Zheng Sun 1,6, Jiang Liu2,6, Meng Zhang 3,6, Tong Wang1, Shi Huang4,
Scott T. Weiss1 & Yang-Yu Liu 1,5

Accurate species identification and abundance estimation are critical for the
interpretation of whole metagenome sequencing (WMS) data. Yet, existing
metagenomic profilers suffer from false-positive identifications, which can
account for more than 90% of total identified species. Here, by leveraging
species-specific Type IIB restriction endonuclease digestion sites as reference
instead of universal markers or whole microbial genomes, we present a
metagenomic profiler, MAP2B (MetAgenomic Profiler based on type IIB
restriction sites), to resolve those issues. We first illustrate the pitfalls of using
relative abundance as the only feature in determining false positives. We then
propose a feature set to distinguish false positives from true positives, and
using simulated metagenomes from CAMI2, we establish a false-positive
recognition model. By benchmarking the performance in metagenomic pro-
filing using a simulation dataset with varying sequencing depth and species
richness, we illustrate the superior performance of MAP2B over existing
metagenomic profilers in species identification. We further test the perfor-
mance of MAP2B using real WMS data from an ATCC mock community, con-
firming its superior precision against sequencing depth. Finally, by leveraging
WMS data from an IBD cohort, we demonstrate the taxonomic features gen-
erated by MAP2B can better discriminate IBD and predict metabolomic
profiles.

During the past decades, advances inmetagenomics have dramatically
increased our understanding of microbial life and greatly promoted
developments related to food production, agriculture, environmental
remediation, drug discovery and human health1. Currently, culture-
independent high-throughput sequencing (e.g., amplicon sequencing
andwholemetagenome sequencing) is the predominant technique for
metagenomics and has played a pivotal role in identifying causes
of antibiotic resistance2, infectious disease outbreaks3, and cancer

oncogenesis4,5. It is well known that amplicon sequencing suffers
from off-target amplification6, biased abundance estimation, limited
taxonomic resolution, insensitivity to degraded DNA, and an inability
to simultaneously capture all microorganisms (e.g., bacteria, fungi,
archaea, and virus) in one sequencing7. Notably, whole metagenome
sequencing (WMS) can capture all microorganisms at the species
(or even strain) resolution, hence having greater potential for
clinical practice than amplicon sequencing. However, false-positive
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identification presents a major challenge for the interpretation of
WMS data8.

The false-positive identification issue in WMS data could be
influenced by both experimental and computational factors. For
example, contamination of the samples can be introduced from
laboratory kits, reagents, or the environment during sample collection,
DNA extraction, handling, storage, or sequencing, which can yield high
numbers of spurious identifications9–11. The false positives due to
contaminations in the wet-lab environment could be largely avoided
by using data from multiple control groups as filters12. However,
computationalmethods (e.g., reference-basedmetagenomic profilers,
which attempt to efficiently decode WMS reads without assembly)
were found to have a more significant effect size on the false-positive
identification issue inWMSdata. For example, a similar number of false
positives was identified by comparing simulated WMS data and real
WMS data of an ATCC mock community13. No state-of-the-art meta-
genomic profilers excelled in taxon identification and abundance
estimation at the species level14. Such bottleneck faced by traditional
metagenomic profilers is due to their reliance on universal single-copy
markers or whole microbial genomes as references. This often results
in challenges likemissingmarkers ormulti-alignment of short reads. In
contrast, we found that species-specific Type IIB restriction endonu-
clease digestion sites, which are evenly and abundantly distributed
across microbial genomes, outnumber universal markers and can
naturally avoid the multi-alignment problem. Thus, we believe they
have the potential to serve as effective reference markers to address
the above bottleneck.

Here, we presentMAP2B (MetAgenomic Profiler based on type IIB
restriction site), a metagenomic profiler that can effectively eliminate
false positives and hence generate higher precision andmore accurate
taxonomic profiles fromWMS data. In this study, we first illustrate the
pitfall of using relative abundances to filter out false positives. To
resolve this issue, we propose a more meaningful feature set for
determining false positives and establish a false-positive recognition
model using simulation data in CAMI2. Then we systematically
benchmark the performance ofMAP2B in species identification using a
series of systematically generated simulation data with varying
sequencing depth and species richness based on random microbial
genomes in NCBI RefSeq. We then leverage data of an ATCC mock
community (MSA 1002) to further validate and demonstrate the pre-
cision, accuracy and the potential of MAP2B in dealing with real WMS
data. Finally, we demonstrate the power of using MAP2B to better
discriminate disease status and predict metabolomic profiles, lever-
aging WMS data from an IBD cohort15. In summary, MAP2B can sig-
nificantly improve the precision and recall in species identification,
which will vastly optimize the decoding of the taxonomic structure in
microbiome studies usingWMSdata, e.g., it will profoundly reduce the
false-positive rate and therefore improve the resolution for differential
abundance analysis, biomarker detection, phenotype classification,
and disease prediction.

Results
The pitfall of using relative abundances to filter out false
positives
Currently, usersonly rely on relative abundances generatedby existing
metagenomic profilers to filter out false positives. However, as shown
in Fig. 1a–c, those false positives are not necessarily species of low
abundances. Hence, only using relative abundances to filter out false
positives will lead to a substantial drop in Precision and Recall. Indeed,
the benchmark study of CAMI2 (Critical Assessment of Metagenome
Interpretation: second round of challenge)14 shows that several widely
used tools for metagenome analysis, such as Bracken16, MetaPhlAn217,
and mOTUs218, have an average Precision range of 0.11 to 0.60 and
Recall rangeof0.62 to0.67 for three simulateddatasets (marine, plant-
associated, and strain madness). These results highlight the difficulty

of accurately interpreting metagenomic data, even with state-of-the-
art tools. To explicitly demonstrate the issue of using relative abun-
dances to filter out false positives, let’s consider the first sample
(labeled as No.0) in each of the three CAMI2 simulated datasets. We
sorted the identified species based on the descending order of their
relative abundances generated by each of the five representative
metagenomic profilers with their latest version: MetaPhlAn419,
mOTUs320, Bracken16, Kraken221, and KrakenUniq22 (see Fig. 1a–c). True
and false positives are shown in green and yellow, respectively. False
negatives are shown in gray. An ideal profiler should identify all the
true positives but nothing else (as shown in the “ground truth” rows in
Fig. 1a–c). However, existing metagenomic profilers suffer from false
positives and/or false negatives. We clearly see that the highly abun-
dant species arenot necessarily the true species, and the falsepositives
are not necessarily species of low abundances. This underscores the
pitfall of using only the relative abundance to filter out false positives.

A feature set in determining false positives
Wesought to resolve this false-positive identification issue by selecting
a moremeaningful set of features to better discriminate true positives
from false positives. This feature set includes four features: genome
coverage, sequence count, taxonomic count, and G-score, which are
defined in order here.

When determining a true positive, reads from present microbes
should distribute relatively uniformly across their genomes rather
than being concentrated in one or a few genomic regions22. There-
fore, we hypothesize that the uniformity of genome coverage is a
critical metric in determining true positives. It is well known that the
endonucleases from the Type IIB restriction-modification systems
differ from all other restriction enzymes23. In particular, the Type IIB
enzymes cleave DNA on both sides of their recognition at fixed
positions to cut out the recognition site with iso-length DNA frag-
ments. In a previous study, we demonstrated that Type IIB restriction
sites arewidely and randomly distributed alongmicrobial genomes24.
This suggests an efficient method to identify a microbial species and
estimate its abundance by profiling the sequence coverage of a fixed
set of taxonomic markers of this species in WMS data. First, a true
positive should have sufficient reads that can hit the individual
markers. Second, the genome coverage (i.e., the sequence coverage
of the whole set of species-specificmarkers in our context) should be
as large as possible. Here, we identified ~8607 species-specific 2b tags
for each species (i.e., iso-lengthDNA fragments produced by Type IIB
enzyme digestion) based on an integrated genomedatabase of GTDB
(Genome Taxonomy Database)25 and Ensembl Fungi26 (Supplemen-
tary Fig. S1). In this work, we used CjepI as a representative type IIB
enzyme to perform in silico restriction digestion for each species in
GTDB and Ensemble Fungi. For species-i in this integrated database,
we denote its total number of 2b tags generated by in silico digestion
of its genome as Hi. Among the Hi tags, there are Ei tags that are
single-copy within species-i’s genome and are unique to species-i
w.r.t all other species in the database. The genome coverage of
species-i (denoted as Ci) in a WMS dataset can be formally quantified
by the ratio between the number of its observed distinct (or non-
redundant) species-specific 2b tags (denoted as Ui) in the WMS data
and the total number of its species-specific 2b tags (i.e., Ei) in the
integrated database: Ci =Ui=Ei (“Methods”).

As we know, metagenomic profiling often produces two funda-
mentally different types of relative abundances: sequence abundance
and taxonomic abundance. The former describes the proportion of
DNA content of a species in a microbial sample, while the latter gives
the cell ratio between a species and its entire microbial community27.
Consider species-i with genome size Li and ploidy Pi in a microbiome
sample. Denote Ri as the DNA content (e.g., the number of metage-
nomic reads) assigned to species-i. The number of cells classified as
species-i is simply given byNi =Ri=ðLiPiÞ. The sequence and taxonomic
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abundance of species-i are given by Si =Ri=
P

jRj and Ti =Ni=
P

jNj ,
respectively.Wehave shown that,mathematically, there is nouniversal
or sample-independent algebraic relation between the two types of
relative abundances27. Hence, they offer different perspectives in
describing the relative abundance of a species and would benefit the
accuracy of species identification. In this study, we use the sequence
count and the taxonomic count as features. Here, the taxonomic count
of species-i, denoted asNi, is simply calculated as the average count of
the sequenced unique 2b tags, i.e., Ni =Qi=Ui, where Qi is the number
of tags unique to species-i in the WMS data. The sequence count of
species-i, denoted as Ri, is defined to be the average count of the
inferred unique 2b tags sequenced per read, i.e., Ri = eQi=R, where
eQi =Qi=Ci is the inferred number of sequenced unique 2b tags in
theWMSdata, and R is the total number of reads in theWMS data (see
“Methods”). Notably, the sequence count Ri (or the taxonomic count
Ni) shares the flavor of sequence abundance Si (or the taxonomic
abundance Ti), but they are not exactly the same.

In our previous study, we have illustrated the G-score of species-i,
denoted as Gi, which is the geometric mean of Qi and Ui, i.e.,
Gi =

ffiffiffiffiffiffiffiffiffiffi
QiUi

p
(“Methods”) as an empirically useful feature in determining

false positives24. In the three-dimensional space spanned by genome
coverage, taxonomic count, and sequence count of different species,
we can observe a separation between true positives (dot) and false
positives (cross) in the three simulated CAMI2 samples (Fig. 1d–f).
Moreover, by coloring the identified species with their G-score, we can
visually assess the probability of a species being a true positive or false
positive. Taken together, these four features provide a promising

foundation to construct a machine-learning classifier to discriminate
true positives from false positives.

The workflow of MAP2B
To eliminate false positives, we developed MAP2B, a metagenomic
profiler that takes WMS data as input and generates taxonomic
abundances for identified species. Instead of directly estimating the
relative abundances of the species through aligning reads against the
whole microbial genome or marker genes as existing metagenomic
profilers do, we use the following two-round reads alignment strategy.

First, 2b tags are in silico extracted from the input WMS data
(Fig. 2a) and aligned against a preconstructed unique 2b tag
database (Fig. 2b). Here, the preconstructed unique 2b tag data-
base is obtained as follows. We use a Type IIB enzyme (CjepI) to in
silico digest all microbial genomes in GTDB25 and Ensembl
Fungi26. Then we compare the theoretically existent 2b tags for
each species with all the others in the integrated microbial gen-
ome database to identify species-specific (or unique) 2b tags.
Here theoretically existent 2b tags include all the 2b fragments
generated by CjepI during the in silico restriction digestion. In
total, there are 48,475 species in the preconstructed unique 2b-
tag database. This first-round reads alignment against a massive
number of reference genomes in database will generate pre-
liminary profiling results (Fig. 2c). The first-round output also
includes the genome coverage, taxonomic count, sequence
count, and G-score of those identified species, which will be
passed into a pretrained classifier (e.g., Random Forest) to
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Fig. 1 | Comparison of the conventional method with MAP2B in false-positive
recognition using three CAMI2 simulation data. To illustrate the pitfall of using
relative abundance as the only threshold in species identification and the potential
of MAP2B to address this issue, we compared the profiling results generated by
different tools. Specifically, the short read WMS data labeled with No.0 in each of
the three CAMI2 simulation datasets of a marine, b plant-associated, and c strain
madness were processed by state-of-the-art metagenomic profilers (such as
MetaPhlAn4, mOTUs3, Bracken, Kraken2, and KrakenUniq) and MAP2B. From left
to right in each bar plot, identified species were ranked by their abundance in
decreasing order (the x-axis), and the ground truth was also illustrated to

demonstrate the pitfall of conventional methods. We again employed the short
readWMS data labeled with No.0 in each of the three CAMI2 simulation datasets of
d marine, e plant-associated, and f strain madness to illustrate the clear boundary
between false positives and true positives using the four features. In the 3D scatter
plots, we showed the distributions of true-positive and false-positive species with
the x-axis as taxonomic count, the y-axis as sequence count, the z-axis as the cov-
erage of the identified species, and color referring to identified species’ G-score.
Based on the ground truth, true positives and false positives are shaped as dots and
crosses. All four features are scaled by min-max to fit and be visualized in the 3D
scatter plots.
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discriminate false positives from true positives (Fig. 2d, e). The-
oretically existent 2b tags of those true-positive species deter-
mined by the machine-learning classifier will be compared to
construct a sample-specific unique 2b-tag database (Fig. 2f). Due
to the benefits from the drastic decrease in species number
(typically on the order of hundreds for a microbiome sample)
compared to that of the preconstructed database (i.e., 48,475),

the sample-specific unique 2b-tag database will contain much
more (approximately twice) unique 2b tags for each species
(Supplementary Fig. S2). Finally, the in silico extracted 2b tags
from metagenomic data will be aligned to the sample-specific
unique 2b tag database. This second-round reads alignment will
generate final taxonomic profiling results (Fig. 2g). The two-round
reads alignment strategy follows a reasonable logic flow of
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qualitative analysis first and then quantitative analysis, which can
generate a highly accurate profiling result.

Benchmarking MAP2B with state-of-the-art metagenomic
profilers
To evaluate the performance of MAP2B in decoding the taxonomic
structure of microbiome samples using WMS data, we randomly
selected microbial genomes in the NCBI RefSeq (v.24/06/2021) and
systemically simulated a WMS dataset with sequencing depth varying
from 7.5 to 150 million reads and species richness varying from 10 to
500 (“Methods”). Thenwecompared theprofiling results generatedby
MetaPhlAn4, mOTUs3, Bracken, Kraken2, KrakenUniq, and MAP2B
through a series of measurements (detailed information regarding the
software, databases, and parameters utilized in the comparison can be
found in the Supplementary Information). In particular, we used Pre-
cision, Recall, and F1 score to evaluate the species identification, and
used L2 similarity (1 - L2 distance) and BC similarity (1 - Bray-Curtis
dissimilarity) to evaluate the abundance estimation (Fig. 3). We found
that: (1) In terms of species identification, regardless of the sequencing
depth, although Bracken, Kraken2, and KrakenUniq have increasing
identification performance in species richer samples, MetaPhlAn4 and
mOTUs3 outperformed them in Precision (average Precision for
MetaPhlAn4, mOTUs3 vs. Bracken, Kraken2 and KrakenUniq is 0.829,
0.444 vs. 0.052, 0.102 and0.190), Recall (0.868, 0.489 vs. 0.333, 0.329,
0.303), and F1 score (0.846, 0.445 vs. 0.085, 0.145, 0.211), which is
consistent with previous benchmarking work13,14; (2) As for the abun-
dance estimation, the L2 (or BC similarity) revealed a performance
rank (excludingMAP2B) asMetaPhlAn4 (with mean L2 similarity 0.916
andmeanBC similarity 0.861),mOTUs3 (0.813, 0.474), Bracken (0.802,
0.321), Kraken2 (0.785, 0.306) and KrakenUniq (0.768, 0.283); (3)
MAP2B outperformed all state-of-the-art metagenomic profilers in all
measurements regardless of the species richness and sequencing
depth (mean Precision = 0.989, Recall = 0.988, F1 score = 0.988,
L2 similarity = 0.994, and BC similarity = 0.989).

As we know, the number of identifiable species largely depends
on the reference databases used by different metagenomic profilers.
To minimize the influence of database discrepancies on evaluating
the performance (especially the Recall), we selected the microbial
genomes largely shared among reference databases used bymultiple
metagenomic profilers to simulate the WMS data. After comparing
the profiling results generated by the above profilers, we found that
the potential bias introduced by different reference databases on
measuring the Recall has been minimized, e.g., the Recall for all
profilers reach up to 0.99 or 1 (Supplementary Fig. S3). Nevertheless,
the conclusion that MAP2B exhibits a better performance in species
identification when evaluated by Precision, Recall and F1 score, as
well as its higher L2 similarity and BC similarity compared to
others remains valid. For example, the performance based
on Precision ranking is: MAP2B, 0.997; MataPhlAn4 0.967;
mOTUs3, 0.931; Kraken2, 0.907; Bracken, 0.868; and KrakenUniq,
0.828, while the ranking based on L2 similarity is: MAP2B, 0.995;
Bracken, 0.993; Kraken2, 0.988; KrakenUniq, 0.984; mOTUs3, 0.981
and MataPhlAn4, 0.972.

In addition, estimating accurate species abundance can be chal-
lenging when microbial genomes are not present in the reference
database, which is a common issue for all metagenomic profilers (due
to the reliance on reference databases). To demonstrate the limited
influence of unknown species’ influence on MAP2B’s performance, we
held out 1000, 5000, and 10,000 microbial genomes from the GTDB
during thedatabase construction and then simulatedWMSsequencing
data based on these held-out genomes and evaluated MAP2B’s per-
formance using these independent datasets (Supplementary Fig. S4).
Our preliminary results showed no significant drop in the performance
of species identification or abundance estimation (F1 = 0.922,
L2 similarity = 0.954 when holding out 1000 to 10,000 independent
genomes forWMSdata simulation and testing). To further evaluate the
robustnessofMAP2B in handling complex scenarios such asmutations
in sequencing data, we simulated WMS data with varying mutation
rates of 1%, 2%, and 3%, which are representative of the nucleotide
divergence observedbetween different strainswithin the same species
(Supplementary Fig. S4). Our comparison results show that evenwith a
high mutation rate of 3% in the sequencing data, MAP2B maintained a
high level of precision (and accuracy), achieving an F1 score of 0.989
(and an L2 similarity of 0.990). These results suggest that MAP2B can
effectively handle genomic variations in metagenomic data, making it
a reliable tool for accurate taxonomic profiling of complex microbial
communities, especially in eliminating false positives in species iden-
tification. Taken together, we illustrated a superior performance of
MAP2B in both species identification and abundance estimation
compared with other state-of-the-art metagenomic profilers based on
in silico simulation metagenomes.

The performance of MAP2B in mock WMS data
To further test the capability of MAP2B, we compared the profiling
results of realWMS data (~10GB) of an ATCCmock sample (MSA 1002)
generated byMAP2B and existingmetagenomic profilers. MSA 1002 is
a genomic DNAmixture of 20microbial species with equal abundance
(5% for each). Itwasprepared from fully sequenced, characterized, and
authenticated ATCC Genuine Cultures that were selected based on
relevant phenotypic and genotypic attributes (such as Gram stain, GC
content, genome size, and spore formation) and has been widely used
to distinguish incorrect classifications introduced by experimental and
computational factors13. We found that MAP2B profiling results can
better decode the taxonomic structure of the mock community, e.g.,
average F1 score (and L2 similarity) in species identification is 1 (0.923)
by MAP2B compared to 0.950 (0.888), 0.930 (0.913), 0.471 (0.908),
0.571 (0.846), and 0.851 (0.840) by MetaPhlAn4, mOTUs3, Bracken,
Kraken2, and KrakenUniq separately (Fig. 4). Notably, no false positive
was reported for mock samples by MAP2B, while other metagenomic
profilers reported 25% to 70% false-positive species in their profiling
results.

Application of MAP2B in real WMS data
Todemonstrate thepractical advantages ofMAP2B,we appliedMAP2B
to a real WMS dataset collected from a human cohort study named
PRISM15, a study aimed at understanding gut microbiome structure

Fig. 2 | The workflow of MAP2B. a For any input WMS data, 2b tags can be
extractedby in silico digestion basedonagiven type IIB restriction enzyme.bThen,
theWMSoriginated 2b tags will bemapped against a preconstructed unique 2b tag
database. To construct the unique 2b tag database, we first in silico digested all
microbial genomes in the GTDB and Ensembl Fungi, then compared the theoreti-
cally existed 2b tags from each species with all the other species within database.
After comparison, species-specific 2b tags (unique 2b tags) were identified and
gathered to construct a unique 2b tags database. c In the first round of reads
alignment, we calculate the coverage, taxonomic count, sequence count and G
score for each species. d Then the four features will be passed into a machine-
learning model for false-positive recognition, which was preconstructed (trained)

by CAMI2 datasets. e After first-round reads alignment and false-positive elimina-
tion by our machine-learning model, a high-precision species identification result
will be generated. f Then, a sample-dependent unique 2b tag database will be
constructed based on the species identification result, which aims to accurately
estimate the taxonomic abundance of identified species by increasing their unique
2b tags. The procedure of reconstructing unique 2b database is similar to (c) but
only uses the genomes from the identified species instead of 48,475 microbial
species. g In the second round of reads alignment, we calculate the average
sequencing coverage of all 2b tags for each species to finally estimate their taxo-
nomic abundance (see “Methods”).
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and metabolic activity in inflammatory bowel disease (IBD) using
metagenome sequencing data and metabolic profiles of individuals
(n = 220) with and without IBD. We hypothesized that the accurate
taxonomic features generated by MAP2B (such as the abundance
profile Ti and genome coverage profiles Ci) could be better associated
with disease status and metabolic activity. To test this hypothesis, we
first performed Principal Coordinates Analysis (PCoA) and permuta-
tional multivariate analysis of variance (PERMANOVA) to visualize and
quantify the differences between IBD patients and healthy controls.
We then employed MiMeNet28 and mNODE29 to predict the metabo-
lomic profiles based on the taxonomic profiles. All the above analyses
were conducted using the output of different metagenomic profilers
and compared to demonstrate the superior performance of MAP2B.

To test if the taxonomic profiles (both the abundance and cov-
erage profile) by MAP2B can better distinguish IBD from non-IBD, we
compared the PCoA plots and PERMANOVA pseudo-F statistic based
on taxonomic profiles generated by different metagenomic profilers

for the discovery cohort (n = 155) and validation cohort (n = 65) sepa-
rately (Fig. 5a, “Methods”).We found thatwhen the abundance profiles
were used in PCoA and PERMANOVA, the community-level difference
between IBD and non-IBD is similar regardless of the metagenomic
profiler used, e.g., the F values are approximately 5.9 for all profilers in
the discovery cohort. However, if we use the taxonomic coverage in
PCoA and PERMANOVA, the difference between IBD and non-IBD is
muchmore significant in the PCoA plot, and the F value reaches 9.3 for
the discovery cohort. Moreover, we observed similar comparison
results of PCoA and PERMANOVA on the validation cohort (Supple-
mentary Fig. S5a): F value reaches 3.7 in MAP2B (using coverage)
compared to approximately 2.6 in other profilers (using abundance).
This suggests a bottleneck in discriminating disease status using
taxonomic abundance, while taxonomic coverage can better distin-
guish IBD from non-IBD.

We then sought to test if the more accurate taxonomic profiles
producedbyMAP2Bcanbetter predictmetabolic activities. Specifically,
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Fig. 3 | Performance comparison of MAP2B with state-of-the-art metagenomic
profilers in species identification and abundance estimation using a set of
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we employedMiMeNet28 andmNODE29 to predictmetabolomic profiles
based on the taxonomic profiles. We first performed fivefold cross-
validation in the discovery cohort (n = 155 paired microbiome-
metabolome samples, “Methods”) to determine the best hyperpara-
meter set and then predicted metabolite concentrations for the vali-
dation cohort (n =65 paired microbiome-metabolome samples,
“Methods”). To compare the prediction performance, wemeasured the
SCC (Spearman Correlation Coefficient) of a metabolite between its
true concentration values and the predicted values by microbial com-
position across all samples in the validation cohort. We adopted the
same prediction procedure for taxonomic profiles from different
metagenomic profilers and intended to find out which metagenomic
profiler gives the most useful taxonomic profile for such a prediction
task. (1) The taxonomic abundance obtained by MAP2B outperformed
others in themean SCC computed by averaging SCCs of all metabolites
(Fig. 5b), e.g., MAP2B (0.337 by MiMeNet) was ranked the first and
followed by mOTUs3 (0.329). (2) We observed the largest number of
metabolites with SCCs larger than 0.5 by using MAP2B’s taxonomic
abundance among all methods used for taxonomic profiling (Fig. 5c).
We identified 119 accurate predictions with MiMeNet using MAP2B
profiles, while only 108 accurate predictions were identified based on
MetaPhlAn4 profiles, ranked the second. (3) MAP2B used the lowest
taxonomic features to achieve this high prediction performance
(Fig. 5d). Only 238microbial species predictedbyMAP2Bare used in the
metabolome prediction, while mOTUs3 and MetaPhlAn4 need 461 and
367 features. (4) The above observations by mNODE are quite in line
with MiMeNet (Supplementary Fig. S5b, c). Taken together, we
demonstrated that the machine-learning-driven accurate taxonomic
profiling provided by MAP2B can best discriminate IBD from non-IBD,
and the taxonomic abundance and coverage by MAP2B can more
accurately predict metabolomic profiles with the fewest features com-
pared to state-of-the-art metagenomic profilers.

Discussion
Currently, existing reference-based metagenomic profilers can be
divided into three categories based on their algorithms and output
abundance type: (1) DNA-to-DNAmethods such as Bracken16, Kraken21,

PathSeq30, and Clark31, which use whole microbial genomes as the
reference and usually output sequence abundances in their profiling
results; (2) DNA-to-Protein methods such as Kaiju32 and Diamond33

which used whole protein sequence as the reference and usually out-
put sequence abundance; (3) DNA-to-Marker such as MetaPhlAn and
mOTUs which use universal single-copy markers as the reference and
output taxonomic abundance13. All three types ofmethods suffer from
false-positive and false-negative issues in species identification27.

There are four major reasons for low Precision, i.e., false-positive
identifications especially by DNA-to-DNA methods: (1) Conserved
and low complexity regions in microbial genomes will lead to multi-
alignment for the sequencing reads and then generate
misclassifications22; (2) About 1–5% of human reads are highly similar
to microbial genomes, it will further confuse the microbial species
identification13, and it is not practical to remove host DNA by current
experimental approaches34; (3) It is impossible to distinguish false
positives from true positives using relative abundance as the thresh-
old, because as we have illustrated false positives are not necessarily
low abundant taxa24, and previous studies reported that less than 0.1%
of the DNA may derive from microbes of interest35, 36; (4) Additional
spurious identifications can also result from contamination in the
reference genome databases themselves37.

On the other hand, DNA-to-Marker methods also suffer from low
Recall more than DNA-to-DNA methods, i.e., false-negative identifica-
tions inmicrobial profiling13, because DNA-to-Marker methods such as
MetaPhlAn andmOTUs have less identifiable species in their reference
databases compared to DNA-to-DNA methods, which is caused by (1)
missing of universal markers in some microbial genomes; (2) incom-
plete genome information in publicly available databases which may
contribute to the missing marker issue, and (3) unfriendly reference
database customization24. Notably, it is possible that the markers of
low abundance species may not be fully detected in the sequencing
data, especially if the markers do not cover the entire genome of the
microbe38.

Considering the biological relevance, the development of meta-
genomic profilers that are able to provide taxonomic abundance
(instead of sequence abundance) is highly encouraged27. MAP2B does
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not belong to any of the three existing categories yet can produce
taxonomic abundance. While a typical DNA-to-Marker method often
uses relatively long universal single-copy markers, we leveraged
thousands of short species-specific 2b tags that are distributed all over
the microbial genome for species identification. The taxonomic mar-
kers for conventional DNA-to-Marker methods are often located at a
particular region of a genome. In WMS data, we often can’t have a
complete alignment of the full-length marker genes and thus produce
a low recall of microbial identification. Differently, the short 2b tags in
MAP2B are usually distributed far apart across a microbial genome,
and we often observe a relatively high sequence coverage on each
taxonomic marker in practice, significantly mitigating the low-recall
issue in the conventional DNA-to-Marker methods. Notably, MAP2B
combines merits from both DNA-to-Marker and DNA-to-DNAmethods
to perform species identification and abundance estimation. For
example, MAP2B preconstructed a marker reference database similar
to what a typical DNA-to-Marker method did. Given these unique 2b
tags are located far apart from each other in the microbial genomes

and can be recognized as the reduced genomes, the alignment of
massive reads to the reference reduced genome database for taxo-
nomic profiling is highly consistent with what conventional DNA-to-
DNA methods did. These combined characteristics from DNA-to-
Marker and DNA-to-DNA methods enable MAP2B to provide compre-
hensive genetic features such as species’ genome coverage, taxonomic
count, and sequence count at the same time, laying a solid foundation
for its excellent performance in eliminating false positives.

MAP2B was motivated and inspired by 2bRAD-M computational
pipeline for processing 2bRAD sequencing data. Notably, All the
unique 2b tags mentioned here can be enriched and sequenced from
any microbiome samples with 2bRAD-M protocol we developed pre-
viously. With this protocol, we generated a novel 2bRADmetagenomic
data type, which is distinct from either conventional 16S rRNA
sequencing data or metagenomics data. Therefore, the false-positive
reduction algorithm in the MAP2B also offers a noteworthy opportu-
nity to improve the taxonomic profiling accuracy of 2bRAD-M24 based
on 2bRAD sequencing data. Other than adding a machine-learning
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model to correct high-positive issue to 2bRAD-M, we also updated the
reference database, including 48,475 identifiable microbial species, as
well as the adjustment in input data types, which now include both
conventional metagenomic data and 2bRAD sequencing data. These
improvements enable MAP2B to have versatile potential to perform
microbiome analysis from themassive publicly availablemetagenomic
sequencing datasets.

Species identification issues such as false positives and
false negatives are the global challenges that faced by all existing
metagenomic profilers. To our knowledge, there have been many
efforts by state-of-the-art metagenomic profilers to deal with these
issues. For example, as themain cause for false-positive identifications,
the ambiguous reads (in reads alignment) are: (1) spited evenly across
all matches in Kraken21; (2) pushed count to the lowest common
ancestor of matched genomes in Bracken16; (3) in synergy with unique
k-mers for abundance estimation22. However, optimization around a
single taxonomic feature (abundance) cannot effectively solve the
false-positive issue. Recently, the coverage of genomes has been
proved useful in determining the existence of species39, while we
believe the key to addressing the species identification issue is invol-
ving more biologically significant taxonomic features (e.g., the taxo-
nomic features of coverage, taxonomic count, sequence count, and G
score in this study) in false-positive recognition and expanding the
identifiable species as large as possible.

MAP2B does have some limitations. For instance, it has classifi-
cation issues for unknown species for which we have no genome
reference. (Note that all other reference-based metagenomic profilers
suffer from this issue.) To alleviate this problem, we employed GTDB
(v.202) and Ensembl Fungi as the reference database, which includes
more than 48,000 microbial species in total. Additionally, any new
version database with a higher number of identifiable species can be
accepted by MAP2B. However, GTDB has more than 40% inconsistent
taxonomic annotationwithNCBI RefSeq sinceGTDB is based onANI of
microbial genomes instead of morphological classification. In order to
mitigate the impact of annotation differences on the interpretation of
microbial data, we provide both RefSeq and GTDB versions of micro-
bial databases in our GitHub repository. Moreover, the increasing
number of Metagenomic-Assembled Genomes (MAGs) have been
identified inmicrobiome studies focusing on a range of habitats (such
as human, gut, oral, soil, marine, etc.), which have largely expanded
our capability to explore the unknown microbial world. In our next
work, for a microbiome taxonomic profiling task focusing on the
specific habitats (such as gut microbiota) or disease status, we can
establish a habitat/disease-centric reduced reference genome data-
base with both existing reference genomes and high-quality MAGs to
address the challenges. We believe that MAP2B will serve as a strong
candidate metagenomic profiler for decoding the taxonomic struc-
ture, eliminating false positives in species identification, and conse-
quently enhancing the interpretation of metagenomic data in
microbiome studies.

Methods
Rationale of avoiding false-positive and improving false-
negative identifications
By comparing 2b fragments (or tags) generatedby in silicodigestion of
all publicly available microbial genomes in GTDB, we found there are
some special 2b tags contained in each species that have no duplica-
tions in any other species, which can serve as markers for species
identification and abundance estimation. We named these special 2b
tags as species-specific 2b tags or unique 2b tags. In the database
combined with GTDB and Ensembl Fungi, we found that there are, on
average, 8607 unique 2b tags for each species (digested by CjepI),
presenting the preconstructed unique 2b tagdatabase forMAP2B. Due
to the special marker selection, MAP2B can naturally avoid confusion
from conserved and low complexity regions in microbial genomes24.

Notably, we have proved that a single type IIB enzyme, e.g.,BcgI, would
meet the requirement for decoding microbial samples with high
accuracy while the combination of different IIB enzymes will be mar-
ginal in improving its accuracy24.

On the other hand, MAP2B significantly improves the Recall in its
profiling results compared to other profilers by: (1) expanding the
identifiablebacterial andarchaeal species to47,894 (basedon theGTDB
database release 20225) and 581 fungal species (based on the Ensemble
release 4826). To our knowledge, MAP2B has the largest number of
identifiable species compared to existing DNA-to-Marker metagenomic
profilers, e.g., mOTUs3 (~33,000) and MetaPhlAn4 (~24,000); (2) the
widely distributed unique 2b tags across the microbial genome. For
example, when determining a true positive, reads from existent
microbes should distribute relatively uniformly across the genome
rather than being concentrated in one or a few locations22. Therefore,
the markers that are widely distributed across the microbial genome
will provide more precise microbial identification. In previous studies,
we have proved that unique 2b tags (regardless of which enzyme is
used) are widely and evenly distributed on microbial genomes24.

Difference between MAP2B and Marker-based metagenomic
profilers
It is worth noting that the database of MAP2B differs fundamentally
from the databases of traditional universal marker methods such as
MetaPhlAn. This is because MAP2B does not rely on representative
sequences for each species. Instead, MAP2B marks species-specific 2b
tags for each genome in its database (Supplementary Fig. S6). Unlike
traditional methods that rely on universal markers, the selection of
taxa-specific 2b tags can be conducted separately at any taxonomy
level, as we can always compare the 2b tags of one specific genome
with those of all other genomes from different species (or any higher
taxonomy levels) to obtain species-specific (or other taxonomy level-
specific) 2b tags,without considering themarkers’ similaritywithin the
same species as in the case of traditional universal markers methods.
Indeed, strain/species/genus/family/order/class/phylum-specific 2b
tags can be generated separately, and the selection process is not
affected by the variation among different genomes (e.g., conspecific
strains) within the same taxa. This means that the computation of
species-specific 2b tags is independent of the set of strain-specific 2b
tags. Therefore, in the construction of the species-specific 2b tag
database that contains numerous conspecific strains, we simply record
all species-specific 2b tags for each of the 259,388 genomes in our
database.

Calculation of the four features
Based on the unique nature of species-specific 2b tags, we proposed
four features, including genome coverage, taxonomic count, sequence
count, and G-score (Supplementary Fig. S7), which can be calculated
from the first-round reads alignment in MAP2B (Fig. 2a–c).

Consider a database of microbial genomes (e.g., GTDB25). For
species-i in this database, we denote its total number of 2b tags gen-
erated by in silico digestion of its genome as Hi. Among the Hi tags,
there are Ei tags that are single-copy within species-i’s genome and are
unique to species-i w.r.t all other species in the database. Given an
input WMS dataset, we in silico extract 2b tags, map them to the
species-specific 2b tags and denote the number of tags unique to
species-i as Qi. Among the Qi tags unique to species-i, there are Ui

distinct or nonredundant ones.
The genome coverage of species-i, denoted as Ci, is defined as:

Ci =
Ui

Ei
, ð1Þ

which quantifies the percentage of unique 2b tags present in the
sequencing data.
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In theWMS data of complexmicrobial communities, typically, we
have the genome coverage Ci<1, because some of the species-specific
or unique 2b tags (e.g., the two tags highlighted in red dashed boxes)
are absent in the sequencing data. To take this into account, we infer
the actual number of sequenced unique 2b tags, denoted as eQi, by the
genome coverage correction, i.e.,

eQi =
Qi

Ci
: ð2Þ

The taxonomic count of species-i, denoted as Ni, is simply cal-
culated as the average count of the sequenced unique 2b tags, i.e.,

Ni =
eQi

Ei
=
Qi

Ui
: ð3Þ

The sequence count of species-i, denoted as Ri, is defied to be the
average count of the inferred unique 2b tags sequenced per read:

Ri =
eQi

R
=
QiEi

UiR
, ð4Þ

hereR is the total number of reads in theWMSdata, whichmight vary a
lot across different samples.

G score (Gi) is simply the geometric mean of Ui and Qi, i.e.,

Gi =
ffiffiffiffiffiffiffiffiffiffiffiffi
Qi*Ui

p
: ð5Þ

The four features above are then log-transformed before input-
ting into the false-positive recognition model.

MAP2B workflow
First, we downloaded 258,406 bacterial and archaeal genomes from
the GTDB release 20225 and 982 fungal genomes from the Ensemble
release 4826.We in silicodigested all themicrobial genomes usingCjepI
as the type IIB enzyme. Comparing theoretically existent 2b tags across
different species, we found an average of 8,607 unique tags for each
species. This allows us to construct a unique 2b tag database that
contains 2b tags unique to each of 48,475 (47,894 + 581) microbial
species in the GTDB and Ensemble.

Secondly, in silico digestion also works for WMS data, generating
2b tags that can be mapped against the preconstructed unique 2b tag
database for species identification. In the first round of reads align-
ment, we calculate the coverage, taxonomic count, and sequence
count for feeding the machine-learning model to recognize false
positives (which is trained using CAMI2 simulation data). After gen-
erating species identification results, a sample-specific unique 2b tag
database will be constructed, aiming to accurately estimate the taxo-
nomic abundance of identified species by increasing their unique
2b tags.

The taxonomic abundance (Ti) of a given species can be calcu-
lated as the ratio between cells of a species and all cells in themicrobial
community. By calculating the average coverage of all theoretically
existent 2b tags (Hi) for each species, we are able to estimate the
number of cells belonging to a species present in a sample at a given
sequencing depth. In the second round reads alignment, due to the
increased unique 2b tags in the sample-specific unique 2b tag data-
base, we estimate the relative abundance of each microbial species
using an adjusted formula as below:

Ti =
Qi=HiPn
j = 1Qj=Hj

ð5Þ

The taxonomic coverage Oi is similar to Ci calculated by Eq. (1);
the only difference between Ci and Oi is the unique 2b tag databases

used for reads alignment, e.g.,Ci is generated in thefirst roundof reads
alignment by searching against the preconstructed unique 2b tag
databasewhileOi is generated in the second round of reads alignment
by searching against the sample-specific unique 2b tag database.

Oi =
Ui

Ei
, ð6Þ

Benchmarking MAP2B
To evaluate the performance of MAP2B, we simulated a series of
simulation data. Specifically, for Fig. 3, we first simulated microbial
profiles (n = 54) varied in species richness (from 10 to 500) with
known taxonomic abundance (taxonomic abundance was created
randomly from a log-normal distribution using the function rlnorm in
the R language with the following parameters: meanlog = 0
and sdlog = 1). Then, for each species richness, we generated different
reads (from 7.5 million to 150 million) using the Wgsim
(https://github.com/lh3/wgsim, with default parameters) to simulate
changeable sequencing depth in the real world. In order to ensure the
randomness and generality of the benchmarking simulation data,
source genomes were selected from the intersection of RefSeq
and GTDB. The simulation scripts for WMS data can be found at
https://github.com/sunzhengCDNM/MAP2B. Notably, we generated
both sequence abundance and taxonomic abundance as ground truth
(e.g., for a given taxonomic abundance, its sequence abundance can
be inferred accordingly: taxonomic abundance equals sequence
abundance divided by their genome length), the former is used to
benchmark DNA-to-DNA metagenomic profilers (e.g., Bracken, Kra-
ken2, and KrakenUniq) while the latter is used to benchmark DNA-to-
Marker methods (e.g., mOTUs3 and MetaPhlAn4) and MAP2B.

To minimize the influence of different reference databases
on measuring the recall, we further selected the shared microbial
genomes between different metagenomic profilers (e.g., mOTU3,
MetaPhlAn4, and Kraken2) as source genomes for simulating
the WMS data. Since selecting the intersection of different metage-
nomic profilers’ reference genomes dramatically decreased the
number of source genomes for simulation, we slightly adjusted the
species number (from 25 to 400) and sequencing depth (from 8
million to 102 million) in the simulation data (n = 30) for Supple-
mentary Fig. S3.

We conducted additional simulations (n = 27) to further evaluate
the performance ofMAP2B onWMSdata using independentmicrobial
genomes from GTDB. We simulated datasets with 1000, 5000, and
10,000 genomes from GTDB that were held out during the construc-
tion of the unique 2b tag database. These genomes were then used as
the source to generate simulated data with varying sequencing depth
and species richness. To evaluate the effect of genomic variations, we
also simulated datasets (n = 27) with different mutation rates of 1, 2,
and 3%.Weused theWgsim software and set the “-r”parameter to0.01,
0.02, and 0.03, respectively, to control the mutation rates. The results
of these simulations are presented in Supplementary Fig. S4. As for the
usages of state-of-the-art metagenomic profilers, the default para-
meters were employed as previously described24; please see the Sup-
plementary Information for more details. To ensure the accuracy of
benchmarking, we used the taxid (NCBI RefSeq) when processing the
comparisons between ground truth and profiling results by different
metagenomic profilers.

Principal coordinates analysis and PERMANOVA test
Parallel-Meta 3.540 was used to draw the PCoA plots, which are based
on Bray-Curtis (BC) dissimilarity matrixes derived from the taxonomic
profiles by different metagenomic profilers. Differences in beta-
diversity (and PCoA) based on BC dissimilarity were determined
using permutational multivariate analysis of variance (PERMANOVA)
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with 999 random permutations. The test statistic is a pseudo-F ratio,
similar to the F-ratio in ANOVA. It compares the total sum of squared
dissimilarities (or ranked dissimilarities) among objects belonging to
different groups to thatof objects belonging to the samegroup. Larger
F-ratios indicate more pronounced group separation.

Metabolomic profiles prediction by MiMeNet and mNODE
To explore whether the microbial composition inferred fromMAP2B
is most helpful in capturing microbial activities, we compared
the accuracy of predicting metabolomic profiles based on the taxo-
nomic profiles by different metagenomic profilers. Specifically, we
performed fivefold cross-validations in the discovery cohort of
PRISM (individual = 155) to determine the best hyperparameter
set and then generated predictions for metabolite concentrations
based on the taxonomic profiles in the validation cohort of NLIBD
(individual = 65).

MiMeNet (Microbiome-Metabolome Network)28 and mNODE
(Metabolomic profile predictor using Neural Ordinary Differential
Equations)29 are computational methods used in this study to predict
metabolomic profiles based on microbial compositions and later
integrate microbiome and metabolome data to uncover microbe-
metabolite interactions in a data-driven manner. MiMeNet uses
neural networks (i.e., multilayer perception) to predict metabolite
abundances from microbe features, and mNODE is based on a state-
of-the-art family of deep neural network models (i.e., neural
ordinary differential equations). For both methods and taxonomic
profiles from all metagenomic profilers, only microbial taxa with
a prevalence larger than 10% are kept. The software is made
freely available at https://github.com/YDaiLab/MiMeNet and https://
github.com/wt1005203/mNODE.

Statistics and reproducibility
In evaluating overall performance, we utilized precision, recall, and the
F1 score to assess the accuracy of species identification. Precision
represents the ratio of true-positive species to the total species iden-
tified by a method. Recall is the ratio of true-positive species to the
total species present in a sample. The F1 score is the harmonicmean of
precision and recall. As for abundance estimation accuracy, we
employedL2 similarity (1 - L2 distance) andBray-Curtis similarity (1 - BC
dissimilarity). Scripts used for generating simulation data for repro-
ducibility purposes are available onourGitHub repository in the folder
“Manuscript/Figure3/WMS simulation”. Our sample size references
benchmark works like the CAMI2 simulation datasets (minimum 10 for
different scenarios). Accordingly, we generated 54, 30, and another
54 simulation datasets with varied sequencing depth and species
richness to compare the performance of different metagenomic pro-
filers using random NCBI genomes (Fig. 4), shared genomes (Supple-
mentary Fig. S3), and unknown or highly mutated genomes
(Supplementary Fig. S4). All the microbial species and genomes used
for generating the simulation data were randomly selected. No data
were excluded from the analyses, and the investigators were not
blinded to allocation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The WMS data of the ATCC MOCK MSA 1002 generated in this study
have been deposited in the NCBI SRA database (and Figshare) under
PRJNA1006621 (or can be downloaded from https://doi.org/10.6084/
m9.figshare.21627077.v3). The computational pipeline of 2bRAD-M is
licensed under the MIT license. The MAP2B computational pipeline
and related database files are publicly available at GitHub (https://
github.com/sunzhengCDNM/MAP2B).

Code availability
All source data and codes for the generation of figures and tables in the
manuscript can be accessed at GitHub (https://github.com/
sunzhengCDNM/MAP2B/tree/master/Manuscript) or Zenodo (https://
zenodo.org/record/8265883).
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