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Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs, incretin mimetics) and dipeptidyl peptidase-4 inhibitors (DPP-4is, 
incretin enhancers) are glucose-lowering therapies with proven cardiovascular safety, but their effect on microvascular disease 
is not fully understood. Both therapies increase GLP-1 receptor agonism, which is associated with attenuation of numerous 
pathological processes that may lead to microvascular benefits, including decreased reactive oxygen species (ROS) produc-
tion, decreased inflammation and improved vascular function. DPP-4is also increase stromal cell-derived factor-1 (SDF-1), 
which is associated with neovascularisation and tissue repair. Rodent studies demonstrate several benefits of these agents in 
the prevention or reversal of nephropathy, retinopathy and neuropathy, but evidence from human populations is less clear. 
For nephropathy risk in human clinical trials, meta-analyses demonstrate that GLP-1RAs reduce the risk of a composite renal 
outcome (doubling of serum creatinine, eGFR reduction of 30%, end-stage renal disease or renal death), whereas the benefits 
of DPP-4is appear to be limited to reductions in the risk of albuminuria. The relationship between GLP-1RAs and retin-
opathy is less clear. Many large trials and meta-analyses show no effect, but an observed increase in the risk of retinopathy 
complications with semaglutide therapy (a GLP-1RA) in the SUSTAIN-6 trial warrants caution, particularly in individuals 
with baseline retinopathy. Similarly, DPP-4is are associated with increased retinopathy risk in both trials and meta-analysis. 
The association between GLP-1RAs and peripheral neuropathy is unclear due to little trial evidence. For DPP-4is, one trial 
and several observational studies show a reduced risk of peripheral neuropathy, with others reporting no effect. Evidence in 
other less-established microvascular outcomes, such as microvascular angina, cerebral small vessel disease, skeletal muscle 
microvascular disease and autonomic neuropathies (e.g. cardiac autonomic neuropathy, gastroparesis, erectile dysfunction), 
is sparse. In conclusion, GLP-1RAs are protective against nephropathy, whereas DPP-4is are protective against albuminu-
ria and potentially peripheral neuropathy. Caution is advised with DPP-4is and semaglutide, particularly for patients with 
background retinopathy, due to increased risk of retinopathy. Well-designed trials powered for microvascular outcomes are 
needed to clarify associations of incretin therapies and microvascular diseases.
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Introduction

In the last 20 years, several incretin-based therapies, namely 
glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-
1RAs, incretin mimetics) and dipeptidyl peptidase-4 inhibitors 
(DPP-4is, incretin enhancers), have been developed for people 
with type 2 diabetes [1]. Although DPP-4is have proven car-
diovascular safety [2, 3], only GLP-1RAs have demonstrated 
a reduction in major adverse cardiac events (MACE) [4, 5]. 
These findings have come from the need for new glucose-
lowering therapies (GLTs) to demonstrate cardiovascular 
safety prior to approval by the Food and Drug Administra-
tion. Whether these therapies reduce the risk of microvas-
cular diseases is less clear, as many of these cardiovascular 
outcome trials (CVOTs) do not report extensive microvascu-
lar outcomes. Furthermore, these trials were not designed to 
investigate microvascular outcomes, meaning greater statisti-
cal uncertainty to detect an impact. This review summarises 
evidence on whether incretin therapies could reduce microvas-
cular disease, summarising observational studies and clinical 
trials, and exploring potential mechanisms.

Microvascular disease and the potential 
of incretin therapies

Incretin therapies could play an important role in the preven-
tion of microvascular disease via an increase in GLP-1 ago-
nism. This was initially suggested by bariatric surgery, which 
increases GLP-1 and is highly efficacious in the primary pre-
vention of microvascular disease (RR 0.37, 95% CI 0.30, 0.46) 
[6, 7]. Furthermore, GLP-1 agonism increases beta cell preser-
vation and insulin secretion and decreases glucagon secretion, 
leading to a reduction in plasma glucose [8, 9]. GLP-1 agonism 
also delays gastric emptying, with subsequent slower digestion 
of carbohydrate and a reduction in the peak concentration of 
postprandial glucose [10]. The reduction in hyperglycaemia is 
likely to attenuate all pathophysiological processes that lead to 
microvascular disease in diabetes, as this is the ultimate cause 
of complications, however, GLP-1 agonism may also attenuate 
specific pathophysiological processes on top of the glucose-
lowering effect [11]. These are summarised in Fig. 1, based on 
the processes summarised by Madonna et al [12].

Hyperglycaemia results in activation of the polyol 
pathway, which leads to loss of NADPH and increased 
production of reactive oxygen species (ROS) [13]. ROS 
production is further increased via generation of AGEs and 
their interaction with receptors (RAGE); the protein kinase 
C (PKC) pathway; and the hexosamine pathway. Interest-
ingly, GLP-1 agonism may attenuate some of these pro-
cesses as its administration is associated with decreased 
ROS [14, 15]. For example, GLP-1 agonism is associ-
ated with increased cellular cAMP and activity of protein 

kinase A, which potentially offset effects of the PKC path-
way [11, 16], and is also associated with decreased RAGE 
expression [11, 17], which may additionally offset further 
pathological sequalae, such as the crosslinking of collagen 
(basement membrane thickening) [18], alteration of tran-
scription factors [19] and inflammation [20].

The microcirculation in type 2 diabetes is associated with 
an abnormal profile of vascular progenitor cells [21–23], with 
decreased endothelial colony forming cells (CD34+KDR+ cells 
identified on flow cytometry) and decreased circulating angio-
genic cells, which may adversely impact cardiovascular tissue 
repair/regeneration and susceptibility to atherogenesis [22, 23]. 
DPP-4is, in particular, may attenuate this pathway because as 
well as inhibiting the breakdown of GLP-1, they also inhibit the 
breakdown of stromal cell-derived factor-1 (SDF-1) (or its com-
monly measured isoform, SDF-1α) [24]. In vitro research sup-
ports a role of SDF-1 in promoting angiogenesis as it is associated 
with an increase in progenitor cells (identified by their uptake of 
acetylated LDL [AcLDL]) [25]. Furthermore, this is supported 
by evidence in human participants as sitagliptin (a DPP-4i) was 
associated with an increase in circulating CD34+KDR+ cells 
identified by flow cytometry, compared with control participants 
[26]. GLP-1 agonism, shown to improve angiogenesis in vitro 
[27, 28], may also improve vascular repair/regeneration.

Endothelial dysfunction is also observed in diabetes, with 
impaired nitric oxide (NO) synthesis [21]. Contributing to 
this is the activation of poly-ADP-ribose polymerase (PARP) 
in response to diabetic microvascular damage, which trig-
gers an inflammatory cascade via NF-κB activation [12, 29]. 
Decreased Notch-1 (which inhibits PARP) additionally aug-
ments this [29]. Potentially countering this, GLP-1 agonism 
is associated with improved NO production in vitro and flow-
mediated vasodilation in human study participants [30, 31]. 
Through improved vascular angiogenesis and endothelial func-
tion, leading to increased blood flow, insulin sensitivity may 
also be improved as greater perfusion leads to greater glucose 
and insulin delivery and greater cellular glucose uptake [32].

Diabetes is also associated with a proinflammatory state, 
with increased circulating IL-8 and TNF-α [12, 13]. Toll-like 
receptors-2 and -4 play a central role by activating NF-κB 
and triggering an inflammatory cascade [33]. GLP-1 ago-
nism ameliorates ROS, which may drive these processes [14, 
15]. An anti-inflammatory effect of GLP-1 agonism is fur-
ther suggested by an associated decrease in TNF-α, mono-
cyte chemoattractant protein-1 and IL-6 [34–36].

Further microvascular damage occurs via hyperosmolar-
ity, driven by hyperglycaemia and the highly osmotic sorbi-
tol (polyol) pathway [12, 13]. Hyperosmolarity induces the 
expression of Aquaporin-1 channels, which are permeable 
to water, and consequently result in an adverse loss of intra-
cellular volume [37]. Cyclooxygenase-2 is also triggered by 
hyperosmolarity, and has pathological pro-angiogenic, and 
potentially pro-atherogenic, effects [38–40]. It is unknown 
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whether incretins have specific mechanisms to counteract 
hyperosmolarity-driven damage, but, as with other pathways, 
they will likely ameliorate this via glucose-lowering effects.

An appreciation that the vasculature differs across end-organs 
is also required when considering pathology, as the effects of 
incretins may similarly differ. For example, whilst insulin resist-
ance is important in determining capillary rarefaction and vascu-
lar dysfunction in skeletal muscle [32], loss of retinal perfusion 
is more related to loss of autoregulation and early pericyte and 
endothelial cell death, amongst other factors [41]. Furthermore, 
end-stage proliferative retinopathy is driven by neovascularisa-
tion [41], which may be less detrimental elsewhere. Converse 
to reduced blood flow, vasodilation of renal afferent arterioles is 
seen in early diabetes, which increases glomerular BP and may 
drive pathological hyperfiltration [42]. Similar differences in both 
the pathology of complications and mechanisms of impact with 
incretin therapies may occur within different microvasculatures 
of relevance to common microvascular complications in diabetes, 
for example between the blood–brain- and blood–retinal barriers.

In addition to the pathways described in Fig. 1, concomitant 
obesity, hypertension and dyslipidaemia also contribute to vascu-
lar and end-organ damage. GLP-1RAs cause, via an anorexigenic 
mechanism, a reduction in mean body weight compared with 
placebo, which varies from −3.80 kg (95% CI −4.46, −3.14) 
for subcutaneous semaglutide to −0.80 kg (−1.41, −0.19) for 
dulaglutide [43]. Similarly, GLP-1RAs result in mean systolic 
BP reduction, from −1.76 mmHg (95% CI −2.82, −0.70) for 
exenatide extended release to −3.06 mmHg (−4.21, −1.91) for 
oral semaglutide, and, although to a lesser extent, several GLP-
1RAs result in a diastolic BP reduction [43]. GLP-1RAs also 
decrease mean LDL-cholesterol (ranging from −0.08 to −0.16 
mmol/l) and some show a modest decrease in triacylglycerol (for 
liraglutide: −0.30 mmol/l [95% CI −0.49, −0.11]) compared 
with placebo [44].

In addition to vascular effects, GLP-1 receptors have also 
been identified in the peripheral nervous system and kidneys, 
where they may have direct actions on organ-specific patho-
physiological processes [45–47]. Similarly, SDF-1 may have 
beneficial end-organ effects, particularly for neuropathy, via 
enhancing tissue repair [48]. However, these benefits are 
debated [24, 46], with potential harms to the retina reported 
[49], and conflicting nephropathy findings [24, 46]. DPP-4 
may also regulate other hormones, including granulocyte-
macrophage colony-stimulating factor and IL-3 [50], but the 
significance of this for microvascular disease is unknown.

Nephropathy

GLP‑1RAs

Evidence of a nephroprotective effect of GLP-1RAs 
comes from several rodent studies demonstrating reduced 

albuminuria, oxidative stress and inflammation; improved 
BP; and fewer pathological histology findings (glomerular 
hypertrophy, mesangial matrix expansion and glomerular 
lipid accumulation) [11, 51].

Data from CVOTs for GLP-1RAs are harder to interpret 
as they were not designed for renal outcomes. Hard renal 
outcomes (e.g. end-stage renal failure, dialysis or renal 
death) have a much lower incidence than MACE, for which 
these trials are powered to detect a difference; this could 
mean that even a very large difference may not be detected 
due to the lower absolute risk and subsequent larger sta-
tistical uncertainty. Therefore, unsurprisingly, individual 
CVOTs do not find a reduction in the risk of hard renal 
endpoints. However, trials do show a consistent reduction 
in albuminuria compared with placebo (RR 0.77, 95% CI 
0.70, 0.84 for new macroalbuminuria in a meta-analysis) 
[52]. Similarly, meta-analysis demonstrated a reduction in 
a composite renal outcome that included albuminuria [53], 
but it remained unclear whether this simply reflected a large 
risk reduction in albuminuria rather than a reduction in other 
renal outcomes. However, meta-analysis has now confirmed 
a risk reduction for a renal composite outcome that excluded 
albuminuria with GLP-1RAs (RR 0.92, 95% CI 0.84, 0.99) 
[52], although of a lesser magnitude compared with albu-
minuria. The FLOW trial (semaglutide vs placebo), an RCT 
powered for a composite renal outcome that excludes albu-
minuria, is underway to clarify this [54].

The mechanisms behind the renoprotective effects of 
GLP-1 therapy are likely to be multifactorial, and GLP-1 
receptors within the kidney may play a crucial role. One 
meta-analysis by Chalmoukou et al showed that the reduc-
tion in nephropathy was strongly explained by systolic BP 
reduction [52], whereas another found that the risk reduction 
was explained by HbA1c reduction (not found in the meta-
analysis by Chalmoukou et al) [53]. Interestingly, despite the 
impressive reduction in BMI with GLP-1RA use, this was not 
a mediating factor. Analysis of individual-level data is needed 
alongside further mechanistic work to clarify these findings.

DPP‑4is

As with GLP-1RAs, early rodent studies were promising 
for nephroprotective effects of DPP-4is, with observed 
improvements in albuminuria, filtration barrier remodelling, 
glomerular oxidative stress, creatine clearance and histologi-
cal markers [11, 51]. CVOTs similarly showed a reduction 
in albuminuria, although to a lesser extent than with GLP-
1RAs, with less albuminuria progression (HR=0.86 [95% CI 
0.78, 0.95]) in the CARMELINA trial (linagliptin) [55], and 
similar benefits in the SAVOR-TIMI 53 trial (saxagliptin) 
[56]. One observational study showed a further beneficial 
association of DPP-4is compared with sulfonylureas, with 
a composite renal outcome that did not include albuminuria 
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(HR=0.91 [95% CI 0.85, 0.97]) [57]. However, this has not 
translated to a decrease in the composite renal outcome in 
a meta-analysis of RCTs [52]. Given the reasonably narrow 
confidence intervals (RR=1.03 [95% CI 0.93, 1.15]), it is 
unlikely that this is related to lack of power and suggests a 
true lack of substantial benefit.

Why GLP‑1RAs may be more reno‑protective 
than DPP‑4is

Collectively, whilst both GLP-1RAs and DPP-4is appear to 
improve albuminuria, only GLP-1RAs result in an improve-
ment in the more clinically meaningful composite renal 
outcome. There are two hypotheses for why this difference 
exists. First, GLP-1 agonism has numerous positive physi-
ological effects (Fig. 1) and GLP-1RAs, as exogenous incre-
tin mimetics, result in a far higher degree of GLP-1 agonism 
compared with DPP-4is, which are incretin enhancers and 
limited to increasing endogenous production of GLP-1 [58]. 
Furthermore, some of the benefits of GLP-1 agonism could 
be offset with DPP-4is through the increase in SDF-1, with 
potential associations with pathological processes such as 
natriuresis and renal hyperfiltration, atherogenesis, podocyte 
injury and glomerulosclerosis [24], although this is disputed 
[46]. Future RCTs involving DPP-4is could measure changes 
in plasma SDF-1 concentrations to investigate if this is asso-
ciated with outcomes.

Retinopathy

GLP‑1RAs

As with nephropathy, rodent studies suggested protec-
tive effects of GLP-1 agonism for retinopathy, including 
decreased glial activation, neural apoptosis and electrore-
tinographical abnormalities; protection of the blood–retinal 
barrier; downregulation of growth factors; and prevention 
of cell loss in the inner and outer nuclear layers (albeit tran-
siently) [11, 59]. Furthermore, these beneficial processes 
may occur through glucose-independent pathways, including 
reduced retinal glutamate production and increased prosur-
vival signalling pathways [11, 59].

Unfortunately, RCTs suggest a different picture to pre-
clinical studies, and concern has arisen because semaglutide 
was associated with an increased risk of retinopathy com-
plications in the SUSTAIN-6 RCT (HR 1.76, 95% CI 1.11, 
2.78) [4]. Other CVOTs have not found significant differ-
ences in ocular outcomes (although they were not powered 
for this). Furthermore, most meta-analyses of RCTs do not 
find significant associations between GLP-1RAs and retinop-
athy outcomes [60–62], however, there were wide confidence 
intervals, contributed to by heterogeneity in findings. In two 

meta-analyses, GLP-1RAs were associated with retinopathy 
progression, but both had flaws. In one, authors only included 
trials with cardiovascular benefit, but excluded studies uti-
lising off-market drugs and included a trial (PIONEER-6) 
where superiority of the primary cardiovascular outcome 
was not shown [63, 64]. After changing the included studies 
accordingly, there was no longer an association with retin-
opathy [64]. The other positive meta-analysis was contributed 
to by a mistaken input for the LEADER trial [65]. One meta-
analysis looking at semaglutide use only, found an increased 
risk of retinopathy compared with placebo [66].

There has been much debate as to why retinopathy risk 
was higher in the SUSTAIN-6 trial. First, participants in 
SUSTAIN-6 had a high prevalence of background retinopa-
thy, and post hoc analysis suggested that in individuals with-
out pre-existing retinopathy, ocular events were no different 
[67]. As such, it may be that these adverse outcomes are 
limited to those at high baseline risk. Furthermore, com-
pared with other CVOTs, participants in SUSTAIN-6 had a 
high baseline HbA1c, owing to no upper limit for HbA1c in 
the inclusion criteria, and a subsequent large reduction in 
HbA1c (larger still in the subgroup with pre-existing retin-
opathy) [60, 67]. The increased risk may be related to the 
rapid decrease in HbA1c that occurs with GLP-1RA use; this 
is supported by meta-analysis showing that the magnitude 
of HbA1c reduction is associated with the risk of retinopa-
thy outcomes with GLP-1RA use (and not with systolic BP 
or weight) [60]. This phenomenon has been noted before, 
such as within the DCCT where intensive treatment was 
associated with both a larger HbA1c reduction from base-
line and an increased risk of worsening of retinopathy at 6 
and/or 12 months [68]. Interestingly, over a mean 6.5 years 
follow-up, the overall risk of retinopathy and progression of 
retinopathy was reduced with intensive therapy compared to 
conventional therapy [69]. Given that SUSTAIN-6 had an 
observation period of approximately 2 years, it is unclear 
whether a longer follow-up may have seen a reversal of the 
negative relationship between semaglutide and retinopathy 
complications. The FOCUS trial, an ongoing RCT compar-
ing semaglutide and placebo, will investigate this further and 
will report retinopathy progression at 5 years as the primary 
outcome [70].

DPP‑4is

Pre-clinical studies showed similar promise that DPP-4is 
may reduce the risk of retinopathy. In rodent studies, DPP-4 
inhibition has been shown to prevent blood–retinal barrier 
breakdown, decrease retinal inflammation and neuronal 
apoptosis, reduce gene expression responsible for increased 
levels of growth factors and decrease neovascularisation 
[11, 59]. Moreover, there is supportive observational evi-
dence in humans. In a retrospective cohort study of German 
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electronic medical records (N=630 after propensity score 
matching), vildagliptin was associated with a lower inci-
dence of retinopathy (OR 0.55, 95% CI 0.39, 0.77) [71]. 
This was supported by another smaller retrospective obser-
vational study (N=82) in South Korea finding that DPP-4is 
were associated with reduced progression of retinopathy 
[72].

Despite these positive findings, interventional studies 
suggest a different picture: DPP-4is may increase risk of 
diabetic retinopathy. In the TECOS trial, there was a higher 
crude prevalence of diabetic eye disease (3.1% in the sit-
agliptin group vs 2.5% in placebo) and retinopathy (2.8% 
with sitagliptin vs 2.2% with placebo) [73]. Although not 
reported, these differences correspond to an OR of 1.26 
(95% CI 1.04, 1.54) for diabetic eye disease and 1.31 (1.06, 
1.61) for retinopathy. Meta-analysis of RCTs supports that 
DPP-4i use is associated with increased risk of diabetic 
retinopathy in pairwise meta-analysis (OR 1.27, 95% CI 
1.05, 1.53) [74]. Similar to the increased retinopathy risk 
with GLP-1RA use, this may be related to the reduction in 
HbA1c with DPP-4is (mean reduction: 0.30% to 0.80%), as 
across GLTs retinopathy risk is related to the magnitude of 
HbA1c decrease [74].

Lack of retinal protection with incretin therapies

Given the data, caution should be given to the use of sema-
glutide and DPP-4is with regards to risk of retinopathy. 
Debate exists as to why the protective effects of incretin 
therapies were never realised in CVOTs. This could be 
related to the physiological differences between rodents and 
humans, or to the lack of GLP-1 receptors within the retina, 
in contrast to the kidneys and nerves [30]. For DPP-4is, the 
additional increase in SDF-1 may be harmful, due to its 
neovascular effect that may cause proliferation and damage 
that may mimic the pathological processes that occur in the 
development of diabetic retinopathy [49].

Peripheral neuropathy

GLP‑1RAs

Early pre-clinical diabetic rodent experiments demon-
strated various improvements in nerve function following 
initiation of a GLP-1RA. These benefits included improve-
ment of sensory and motor nerve electrophysiology and 
behavioural sensory loss, reduction of intraepidermal 
nerve fibre densities in the sole skins, restoration of myelin 
fibre size, prevention of Schwann cell apoptosis, reduc-
tion of myelinated nerve fibre density and reduction of 
neuropathic pain [75].

Whether GLP-1RAs result in a clinically significant 
decrease in neuropathy incidence or severity remains to be seen, 
with only a few studies in humans undertaken, most of which 
involved less than 100 participants (Table 1). In the two larger 
studies, an observational study from the United States national 
claims database OptumLabs Data Warehouse (N=8252) and 
the GRADE RCT (N=5047), no difference in incidence of neu-
ropathy was seen compared with other GLTs [76, 77].

DPP‑4is

Similar to rodent studies with GLP-1RAs, those with 
DPP-4is showed promise in reducing the incidence of 
neuropathy, with observations including decreased nerve 
fibre density and improved nerve conduction velocity [78]. 
Evidence from human studies is suggestive of a beneficial 
effect (Table 1). Two large observational studies of elec-
tronic medical records suggested a decreased incidence of 
neuropathy with both vildagliptin and sitagliptin compared 
to sulfonylureas [71, 76]. Findings from large RCTs are 
mixed, however, with only one trial suggesting a 19.5% 
(95% CI 10.1, 29.0) reduction in small fibre peripheral 
neuropathy with linagliptin compared to placebo [79]. It 
is unclear why these findings differ, but it may be related 
to different comparators (placebo or other GLTs), different 
DPP-4is, different measures of neuropathy and varying 
statistical power.

Comparing GLP‑1RAs and DPP‑4is for peripheral 
neuropathy

Although evidence is inconclusive, DPP-4is appear to be 
more promising than GLP-1RAs in reducing peripheral neu-
ropathy incidence. This is further supported by an observa-
tional study showing that liraglutide appeared to be associ-
ated with a higher incidence of neuropathy compared with 
sitagliptin (HR 1.36 [95% CI 1.03, 1.80]). However, this 
was not significant when accounting for multiple testing 
(p=0.09) [76]. A potential reason for a theoretical superi-
ority of DPP-4is over GLP-1RAs may be because of the 
additional increase in SDF-1 [48].

Autonomic neuropathy

Given that some evidence exists that incretin therapies 
may decrease peripheral neuropathy risk, particularly 
within rodent studies, it follows that they may addition-
ally protect against disorders of the autonomic nervous 
system via the same mechanisms, including cardiac 
autonomic neuropathy (CAN), gastroparesis and erec-
tile dysfunction.
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Whilst cardiovascular safety for DPP-4is and GLP-
1RAs is clear [2–5], measures of CAN are strong predic-
tors of cardiovascular death and can also cause symptoms, 
most notably from orthostatic hypotension. It is unclear 
how GLP-1 agonism affects the autonomic nervous sys-
tem and these may be more complex than the mechanisms 
related to peripheral neuropathy due to the many inputs 
that determine both sympathetic and parasympathetic auto-
nomic activity [80]. Furthermore, the role of GLP-1RAs 
on sympathetic drive is particularly debated. For example, 
GLP-1 receptors have been observed in the carotid body 
and activation of these diminish the sympathetic response 
to high plasma glucose and/or insulin [81]. Conversely, 
GLP-1RAs cause an increased resting heart rate (increased 
by approximately 3 beats-per-min), which may suggest an 
increase in sympathetic drive [80]. Other studies have 
reported decreased vagal tone, decreased 30:15 value from 
the lying-to-standing test and a decreased heart rate vari-
ability with GLP-1 RAs [47, 80], However, there are incon-
sistencies in the literature. Although unclear at present, this 
evidence suggests that GLP-1RAs may lead to autonomic 
imbalance and CAN.

Determining whether incretins may be beneficial for 
reducing autonomic neuropathy that contributes to gastro-
paresis is difficult, namely because GLP-1 receptor activa-
tion in the stomach has a potent effect at delaying gastric 
emptying [82]. Despite this, glucose-lowering effects may 
protect against a neuropathy-induced gastroparesis, as 
long-term glucose control is associated with lower inci-
dence of gastroparesis in the follow-up of the DCCT/EPIC 
trials [83], in addition to the other discussed mechanisms 
by which incretin therapies may protect nerves and the 
microvasculature.

Erectile function depends on healthy vascular and nerv-
ous function; disorders of either system can result in erec-
tile dysfunction [84]. There are therefore two pathophysi-
ological processes by which diabetes can result in erectile 
dysfunction and that incretin therapies may modify. Few 
data exist, although a positive effect was suggested in the 
REWIND RCT of dulaglutide, with a small reduction in 
erectile dysfunction incidence and severity vs placebo [85].

Incretins and other microvascular 
pathologies

Vascular damage may also have a direct causative effect in 
other microvascular pathologies, such as microvascular cardiac 
angina and cerebral small vessel disease (cSVD), and may have 
further clinical significance in determining microvascular flow 
reserve in skeletal muscle. The effect of incretin therapies on 
these outcomes has not been well studied in humans thus far.

Type 2 diabetes is a recognised risk factor for micro-
vascular cardiac angina, which is principally considered a 
disorder of endothelial function and a subsequent impair-
ment in the control of coronary blood flow, leading to 
hypoxia and chest pain [21]. Given that GLP-1 has been 
shown in several studies to improve endothelial function 
and flow-mediated vasodilation [27, 28, 30], research 
should investigate whether incretins may be beneficial for 
the prevention or management of microvascular angina.

Similarly, cSVD is associated with type 2 diabetes as 
well as cognitive decline, dementia and lacunar stroke 
[86]. However, the pathophysiological mechanisms may 
differ to microvascular cardiac angina, as it is related to 
inflammation, blood–brain barrier disruption and vascular 
remodelling. Again, as incretin therapies are associated 
with decreased inflammation and ROS production [11, 14, 
15], these may also have a role in the prevention of cSVD.

Skeletal muscle microvascular rarefaction and subsequent 
reduction in capillary blood flow is also associated with type 
2 diabetes [87, 88]. This is likely to have important implica-
tions for cardiovascular fitness and response to exercise, both 
features of health status. It may also impair the endocrine 
function of skeletal muscle in glucose regulation in a theo-
retical negative cycle: less skeletal muscle blood flow, less 
glucose uptake in response to insulin, higher plasma glucose, 
further microvascular damage [87, 88]. In rodent studies, 
GLP-1 agonism has already been demonstrated to increase 
capillary density and improves features of insulin resist-
ance in skeletal muscle, with evidence of improved skeletal 
muscle blood flow in humans with diabetes [32]. Given the 
benefits of GLP-1 to endothelial function and angiogenesis 
[27, 28, 30], further research into skeletal muscle microvas-
cular disease and incretin therapies is warranted in humans.

Conclusion

In conclusion, incretin therapies differ in their effect on 
microvascular disease by drug type (GLP-1RA vs DPP-4i) 
and by microvascular outcome (Fig. 2). High quality evi-
dence demonstrates that GLP-1RAs reduce risk of adverse 
renal outcomes whereas DPP-4is do not. It remains unclear 
whether GLP-1RAs may cause adverse ocular events, but use 
in patients with background retinopathy, high HbA1c or the 
use of semaglutide specifically, may carry higher risk and cau-
tion is advised. Adequately powered RCTs of long duration 
are required to clarify this which should report and investigate 
known risk factors for retinopathy complications (e.g. back-
ground retinopathy, diabetes duration, beta cell function) as 
potential confounders/mediators. Clinical caution with DPP-
4is and retinopathy is similarly warranted. There is little evi-
dence that GLP-1RAs reduce the incidence of neuropathic 
pathologies (peripheral neuropathy, CAN, gastroparesis and 
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erectile dysfunction) in interventional trials, despite promising 
pre-clinical research. Similarly, the relationship with DPP-4is 
and neuropathy remains unclear, although it appears to be 
more promising for peripheral neuropathy. Again, adequately 
powered trials and real-world monitoring are needed, and 

ideally all trials should report peripheral neuropathy incidence 
(alongside less studied microvascular outcomes) to enable 
meta-analysis and improve understanding. Clearly, the mecha-
nisms by which incretins exert their protective/adverse effects 
on microvascular outcomes are likely to be multifactorial, but 

Fig. 2   A summary of the observational and trial evidence for incretin-based therapies and microvascular diseases. This figure is available as part 
of a downl​oadab​le slide​set

https://static-content.springer.com/esm/art%3A10.1007%2Fs00125-023-05988-3/MediaObjects/125_2023_5988_MOESM1_ESM.pptx
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they remain poorly understood and further mechanistic work 
is needed. 

Supplementary Information  The online version contains a slideset 
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