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Transposable elements as tissue-specific
enhancers in cancers of endodermal lineage

Konsta Karttunen1,5, Divyesh Patel 1,2,5, Jihan Xia1,2, Liangru Fei1,
Kimmo Palin 1,2, Lauri Aaltonen 1,2 & Biswajyoti Sahu 1,2,3,4

Transposable elements (TE) are repetitive genomic elements that harbor
binding sites for human transcription factors (TF). A regulatory role for TEs has
been suggested in embryonal development and diseases such as cancer but
systematic investigation of their functions has been limited by their wide-
spread silencing in the genome. Here, we utilize unbiased massively parallel
reporter assay data using a whole human genome library to identify TEs with
functional enhancer activity in two human cancer types of endodermal line-
age, colorectal and liver cancers. We show that the identified TE enhancers are
characterized by genomic features associated with active enhancers, such as
epigenetic marks and TF binding. Importantly, we identify distinct TE sub-
families that function as tissue-specific enhancers, namely MER11- and LTR12-
elements in colon and liver cancers, respectively. These elements are boundby
distinct TFs in each cell type, and they have predicted associations to differ-
entially expressed genes. In conclusion, these data demonstrate how different
cancer types can utilize distinct TEs as tissue-specific enhancers, paving the
way for comprehensive understanding of the role of TEs as bona fide enhan-
cers in the cancer genomes.

Aroundhalf of the humangenome consists of sequences that originate
from TE insertions. The advent of whole genome sequencing tech-
nologies has revealed the major contribution of TEs to the evolution,
size, and regulatory functions of eukaryotic genomes1. TEs harbor
cis-regulatory sequences for human TFs and can thus contribute to the
human gene regulatory elements such as promoters and enhancers2,3.
TEs have been shown to have regulatory functions during
development4, and their role in complex genetic diseases such as
cancer is also becoming more evident5. However, to what extent TEs
contribute to gene regulatory functions in different cancer types is still
poorly understood.

Most of the TEs in the humangenome have been immobilized due
to truncations and mutations that accumulate during evolution and
the majority of TEs remain epigenetically silenced in normal somatic
cells. However, there are ~100 copies of long interspersed nuclear
element 1 (LINE-1; L1) that are capable of retrotransposition, i.e.,

inserting themselves into new genomic loci6. Accumulating evidence
fromwhole genome sequencing studies indicates that the L1 elements
can be widely activated in cancer7–10 and different cancer types show
distinct rates for somatic retrotransposition11,12. Aberrant TE insertions
can contribute to tumorigenesis by inducing genomic rearrangements
that can lead to deletion of tumor-suppressor genes or amplification of
oncogenes12. Importantly, the retrotransposition-incapable TEs can
also play a role in tumorigenic processes by providing a large reposi-
tory of potential regulatory elements that can be repurposed for
transcriptional control of humangenes13. However, since the activation
of the retrotransposition-incapable TEs canoccur for example through
destabilization of their epigenetic silencing, their activation cannot be
detected in whole genome sequencing data and thus their functional
significance in cancer cells has remained largely elusive. Few studies
have reported activation of proto-oncogenes by derepressed long
terminal repeat (LTR)-elements at their promoters14–16, but systematic
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functional studies and epigenetic profiling are necessary for compre-
hensive understanding of the regulatory activity of TEs in the cancer
genomes.

Here, we leverage on the unbiased and genome-wide episomal
enhancer activity measurements from an ultracomplex whole human
genome library together with genome-wide epigenetic profiling to
characterize TE-derived enhancers in two distinct cancer types, col-
orectal and hepatocellular carcinomas. We show that the functional
activity is similar for a subset of TEs but, importantly, there are distinct
TE subfamilies that are activated by different TFs in a highly tissue-
specific manner, suggesting that these TEs can act as tissue-specific
enhancers resulting in differential gene regulatory activity in human
cancers.

Results
Long terminal repeats are enriched within active enhancers
identified by STARR-seq
Tomeasure the functional enhancer activity of TEs in two endodermal
origin cancers, namely colon and liver cancers, we utilized our publicly
available massively parallel reporter assay data from the genomic
STARR-seq experiments in GP5d and HepG2 cell lines, respectively17.
We then characterized the enhancer properties of the TEs by com-
bining STARR-seq with epigenetic and regulatory data from the same
cell lines, such as ATAC-seq for chromatin accessibility, ChIP-seq for
epigenetic marks and TF binding, and nuclear run-on data for detect-
ing the nascent transcripts (Fig. 1a). In the STARR-seq datasets utilized

here, thewhole human genomicDNAwas cloned into the 3’-UTR of the
reporter gene driven by a weak minimal promoter to measure
enhancer activity with a ~1.5 bp resolution17. We mapped the data to
human genome (hg38) and identified the active enhancers by peak
calling against plasmid input, resulting in 15,390 peaks for GP5d and
11,951 peaks for HepG2 (Supplementary Data 1 and 2). Over half of the
active enhancer peaks in both GP5d and HepG2 overlap with at least
one TE (Fig. 1b). As a control, we performed STARR-seq experiment
from a non-malignant ectodermal-origin retinal pigment epithelial cell
line, RPE1, resulting in 6476 called peaks against input plasmid library
(Supplementary Data 3). Analysis of different TE classes [LINE, short
interspersed nuclear elements (SINE), LTR, and DNA elements]
revealed that the LTR elements were significantly overrepresented
within the active enhancer peaks in GP5d, HepG2 and RPE1 cell lines
(p < 2.2 × 10−16; Fig. 1c, Supplementary Fig. 1a). In all three cell lines,
many LTR subfamilies were highly enriched within STARR-seq peaks
with up to 40% of their genomic copies overlapping a peak summit
(Supplementary Fig. 1b). However, different TE subfamilies were not
equally enriched between the three cell lines (Supplementary Fig. 1b),
suggesting cell type-specificity in their activity. Previously, it has been
shown that evolutionarily young LTRs are enriched within open
chromatin more frequently compared to older LTRs, suggesting that
younger LTRs are more active in the genome18. This was shown to be
independent of their sequence features, such as mappability of TE
subfamilies18. In agreement with this, we found primate-specific TEs
being overrepresentedwithin the active enhancers in all three cell lines
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Fig. 1 | Long terminal repeats are enrichedwithin activeenhancers identifiedby
STARR-seq. a Schematic representation of the analysis pipeline. b Upset plot for
overlap analysis of STARR-seq peaks with TEs in GP5d and HepG2 cells with the
number of peaks in each category indicated; total number of peaks 15,390 and
11,951 in GP5d and HepG2 cells, respectively. c Ratio of observed vs. expected
overlaps for all GP5d andHepG2 STARR-seq peak summitswith themajor classes of
TEs (DNA, LINE, LTR, and SINE) and the non-TE genome. BH-adjusted one-sided
binomial test FDR is shown for each class (Significance symbols: **** indicates

p <0.0001, ***p <0.001, **p <0.01, *p <0.05, ns = non-significant, p >0.05). GP5d
LTR p < 2.2e-16, GP5dNon-TE p = 4.331607e-04, HepG2 LTR< 2.2e-16. d Enrichment
of all STARR-seq peak summits at TEs classified by lineage significant in both GP5d
and HepG2 cells. TE subfamilies were grouped by their lineage of origin and the
observed/expected ratio of STARR-seq peak summits at the TE lineage groups was
calculated. TE lineages significant in both GP5d and HepG2 (BH-adjusted one-sided
binomial test FDR <0.01) are labeled in red, gray points are statistically insignif-
icant. Source data are provided as a Source Data file.
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(Fig. 1d, Supplementary Fig. 1c). Taken together, our results show that
we can detect enhancer activity from the LTR elements in both colon
and liver cancer cells as well as in non-malignant retinal epithelial cells
in the STARR-seq assay.

TEs are enriched for distinct epigenetic signatures and TF
binding motifs
To characterize the properties of active enhancers in GP5d cells,
unsupervised k-means clustering was performed for all genomic
STARR-seq peaks alongwith the signal for open chromatin fromATAC-
seq, ChIP-seq for histone modifications (H3K4me1, H3K9me3,
H3K27ac, H3K27me3, and H3K36me3) and p53 binding (with and
without 5-fluorouracil treatment) as well as CpG methylation called
from long-read nanopore sequencing. Five clusters resulted in optimal
clustering (Supplementary Fig. 2a), and each cluster showed distinct
enrichment for genomic regulatory features (Fig. 2a). GP5d clusters 1
and 2 with 2367 and 897 peaks harbor the classical features of
enhancers and promoters, respectively. Both show strong chromatin
accessibility and low levels of CpG methylation, H3K9me3 and
H3K27me3 signals (Fig. 2a). Peaks in cluster 1 are enriched for
H3K4me1 and H3K27ac histone modifications with a bimodal signal
around the peak center that is characteristic to active enhancers,
whereas peaks in cluster 2 show very high enrichment for promoter-
specific H3K4me3 and less prominent central distribution of H3K27ac
signal. In addition, the flanks of the cluster 2 peaks are enriched for
H3K36me3 marking the gene bodies, and peak annotation confirmed
their association to promoters in the human genome (Supplementary
Fig. 2b). Enrichment analysis for TF binding motifs revealed basic
leucine zipper (bZIP) familymotifs such as JUN/FOSwithin the peaks in
cluster 1 (Fig. 2b), supporting their canonical enhancer function,
whereas cluster 2 was enriched for KLF/SPmotifs from the bZIP family
as well as zinc finger factors from the YY family (Fig. 2b), which are
known to be promoter-specific factors19. Cluster 2 peaks had very little
overlap with TEs (Supplementary Fig. 2c), consistent with previous
findings of TE depletion in promoter regions20. Interestingly, however,
two-thirds of the peaks in cluster 1 overlap with TEs (Supplementary
Fig. 2c), speaking for their potential as functional enhancers from the
TEs in the endogenous genomic context.

GP5d cluster 3 with 10,741 peaks showed low STARR-seq signal
and little enrichment for open chromatin or active histonemarks, with
around half of the peaks overlapping a TE (Fig. 2a, Supplementary
Fig. 2c), suggesting that this cluster mostly comprises peaks that are
repressed in the endogenous chromatin context but show enhancer
activity in the episomal STARR-seq assay and resemble cryptic
enhancers described previously17. Motif analysis revealed moderate
enrichment for p53 domain as well as zinc finger factor (ZNF) motifs
that are mostly absent from other clusters (Fig. 2b), suggesting that
repression of the TEs in this cluster is possibly mediated in vivo via
known TE suppressors, p5321 and Krüppel-associated box domain zinc
fingers (KRAB-ZNFs)22. However, the strongest enrichment for p53
domain motif was observed within clusters 4 (n = 242) and 5 (n = 1143)
(Fig. 2b). These clusters also showed the strongest STARR-seq signal
indicating strong enhancer activity (Fig. 2a), and the majority of the
peaks were associated with a TE (Supplementary Fig. 2c). The enrich-
ment of active histone marks at the genomic loci corresponding to
clusters 4 and 5was relatively low, but both showed strongp53binding
(Fig. 2a). Interestingly, cluster 4 also showed relatively high enrichment
for H3K9me3 signal (Fig. 2a), a repressive epigenetic mark that is
known to be downregulated by p53 via the repression of lysine
methyltransferase SUV39H1 activity23. This suggests that some of the
peaks in cluster 4 may be p53 targets that are active in the episomal
STARR-seq assay but repressed in vivo.

To extend the analysis of the properties of active enhancers to
other cell types, similar clustering was performed for the STARR-seq
and epigenetic data from HepG2 and RPE1 cell lines, for both of which

four clusters were determined to be optimal (Supplementary Fig. 3a).
Both HepG2 and RPE1 showed relatively similar clustering patterns,
with cluster 1 in both enriched for canonical active enhancer profiles
(H3K4me1, H3K27ac) and cluster 2 for promoter-specific histone
modifications (H3K4me3, H3K27ac) (Supplementary Fig. 3a). Clusters
3 and 4 in both cell lines were predominantly silenced, but showed
somedifferences in the silencingmechanisms. InHepG2 cells, cluster 3
mostly showed CpG methylation but little enrichment of repressive
histonemarks suchasH3K9me3 andH3K27me3, whereas cluster 4was
highly enriched for H3K9me3 but low in H3K27me3 or CpG methyla-
tion. In RPE1 cells, cluster 3 showed a minor enrichment of active
epigenetic signals along with p53 occupancy, and cluster 4 was enri-
ched for H3K9me3, H3K27me3, and CpGmethylation (Supplementary
Fig. 3a). These differences could indicate different strategies for TE
silencing in different cell types, as demonstrated for example by the
higher cluster-specific enrichment of H3K9me3 in HepG2 cells com-
pared to GP5d and RPE1 cell lines.

SinceGP5dSTARR-seqpeakswithin clusters 1, 3, 4, and 5 showed a
major overlap with TEs (Supplementary Fig. 2c), we next analyzed the
cluster-specific enrichment of TEs at the subfamily level (Fig. 2c). In
GP5d cluster 4, almost all peaks overlap a TE, which is reflected in the
high relative enrichment of the subfamilies (Fig. 2c, Supplementary
Fig. 2c). Peaks in clusters 4 and 5overlapwith genomicp53binding and
we found that they are specifically enriched for TE subfamilies such as
MER61E and multiple LTR10 subfamilies (Fig. 2c) that have been pre-
viously reported to harbor near-perfect p53 binding motifs24. The
strong STARR-seq signal observed from these clusters is consistent
with the previous reports that have demonstrated strong activity in a
STARR-seq assay from p53-binding enhancers17,25.

HepG2 and RPE1 showed a very similar pattern of TE enrichment.
Compared to GP5d, HepG2, and RPE1 showed fewer TE subfamilies
enriched in cluster 1, with only five and two enriched TE subfamilies in
these cell lines, respectively (Supplementary Fig. 3b). This might sug-
gest that loss of silencing mechanisms activates TE enhancers with a
higher frequency in colorectal cancer which is known to be a cancer
type with high transpositional activity12. Similar to GP5d, cluster 1 in
HepG2 and RPE1 was enriched for the JUN motif, while cluster 2 was
enriched for promoter-specific KLF/SP as well as YY family zinc finger
factor motifs (Supplementary Fig. 3c). Remarkably, clusters 3 and 4 in
both HepG2 and RPE1 cells were enriched for p53-specific subfamilies
such as MER61 and LTR10 (Supplementary Fig. 3b), which were also
enriched inGP5dclusters 3–5. This indicates that commonp53-specific
TE subfamilies, occupiedbyp53, showconsistent STARR-seq activity in
different cell lines.

The strongest enrichment for active enhancer marks in GP5d
cells was observed from peaks within cluster 1 (Fig. 2a). Interestingly,
cluster 1 showed specific enrichment of all MER11 subfamilies,
MER11A, MER11B, MER11C, and MER11D (Fig. 2c), indicating that they
may have an active role as enhancers in GP5d cells. GP5d cluster 3, on
the other hand, harbors peaks that are mostly silenced in the endo-
genous genomic context. The TE subfamilies that were found to be
enriched within this cluster were similar to all other clusters,
including MER11, MER61, and LTR10 subfamilies (Fig. 2c), suggesting
that the members of the same subfamilies can show different levels
of enhancer activity and be under different epigenetic contexts in the
same cell. Taken together, by integrating the unbiased enhancer
activity data from episomal STARR-seq assay to epigenetic data at
corresponding genomic loci, we have identified specific TE sub-
families that are either repressed or active enhancers in human colon
and liver cancer cells.

p53 knockout reduces enrichment of specific TE subfamilies in
GP5d cells
Due to the known p53-specificity of some TE subfamilies24 that was
corroborated by our findings of high enrichment of MER61 and LTR10
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elements within GP5d clusters 4 and 5, we set out to specifically study
the role of p53 in TE-derived enhancer activity. For this, we analyzed
previously published STARR-seq data from p53-null (p53-KO) GP5d
cells, resulting in 13,349 active enhancer peaks in the absence of p5317.
We observed that depletion of p53 in GP5d cells led to a significant
decrease in enrichment for nine TE subfamilies (one-sided Fisher’s test
FDR <0.01; Fig. 2d, e), including MER61 and LTR10 subfamilies. LTR
was also the only TE class that was significantly enriched for p53
binding in ChIP-seq data (BH-adjusted one-sided binomial test FDR =
0.0094, Supplementary Fig. 4a). Overall, the enrichment of TE sub-
families within the STARR-seq peaks correlated with the proportion of

their genomic copies harboring p53 binding motifs (Supplementary
Fig. 4b), and as expected, the TE subfamilies affected by p53 depletion
were highly p53-specific: for example, 53.4% of MER61C copies harbor
a p53-response element (p53RE)24. However, not all p53-specific TE
subfamilies were affected by p53 depletion. For example, MER61E with
35.4% of its genomic copies harboring a p53 binding motif showed a
reduction from 80-fold in WT to 57-fold in p53-null, but the effect was
not statistically significant. This could be due to the redundancy of the
p53 family members, suggesting that other members can bind and
control these elements upon depletion of p53. TE subfamilies sig-
nificantly affected by depletion of p53, e.g. MER61C and MER61D,
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showed a more complete loss of STARR-seq signal, with a large pro-
portion of the TE copies losing STARR-seq signal completely com-
pared to the non-significant subfamilies, e.g. MER61E, that mostly
showed a reduction of the signal (Supplementary Fig. 4c). In conclu-
sion, our results indicate that p53 controls TEs in a highly specific
manner, and it is not associated with all TE subfamilies, as shown for
example for MER11A (Fig. 2f).

STARR-seq reveals common and cell type-specific TE enhancers
To further interrogate if TE-derived enhancers are largely similar
between cell types owing to their repetitive nature, we compared the
enriched TE subfamilies for enhancer activity between GP5d and
HepG2 cells. In GP5d cells, we identified 59 significantly enriched
subfamilies within the STARR-seq peaks overlapping TEs (minimum
of five STARR-seq summit overlaps per subfamily, BH-adjusted one-
sided binomial test FDR < 0.01) (Fig. 3a, Supplementary Data 4). Of
these, 53 were from the LTR class, four from the LINE class, and one
each from the DNA and SINE class of TEs. In HepG2 cells, the analysis
of STARR-seq peaks overlapping TEs revealed a similar pattern, with
52 TE subfamilies significantly enriched (Fig. 3a, Supplementary
Data 4), majority of which (42) belong to the LTR class, five to
the DNA class, four to the LINE class, and one to the SINE class.
Of the significantly enriched TE subfamilies, 26 were common to
both GP5d and HepG2 cells (BH-adjusted one-sided binomial test
FDR < 0.01 in both, BH-adjusted two-sided Fisher’s test FDR < 0.01)
(Fig. 3a, left panel; Supplementary Data 4). The common subfamilies
that showed the highest enrichment in both cell lines, such as
MER61C, MER61E, and LTR10B1, were highly specific for p5324. This
was confirmed by motif analysis that showed a high enrichment of
p53 motifs within the common TE subfamilies (Fig. 3b). The
observed/expected ratio of LTRs correlated in both cell lines with the
percentage of genomic copies in a subfamily containing p53REs
(Supplementary Fig. 5a; GP5d Pearson R = 0.82, p < 2.2e-16, HepG2
Pearson R = 0.76, p = 2.2e-16). In conclusion, these results indicate
that p53-bound TE enhancers are conserved in cancer cell lines with
wild-type p53.

Next, we analyzed cell type-specificity of TE enhancers and
observed 18 TE subfamilies in both GP5d and HepG2 that were differ-
entially enriched (BH-adjusted one-sided binomial test FDR <0.01 in at
least one cell line, BH-adjusted two-sided Fisher’s test FDR <0.01)
(Fig. 3a, right panel; Supplementary Data 4). On average, differentially
enriched subfamilies were evolutionarily younger than the commonly
enriched elements between the two cell lines (Supplementary Fig. 5b).
Specifically, THE1, MER44, MER52 and LTR12 subfamilies were over-
represented in HepG2 cells and LTR14, MER11 and LTR7 subfamilies in
GP5d cells (Fig. 3a, c; Supplementary Data 4). As MER11 elements have
been previously shown to be active enhancers in embryonic
development26, we analyzed the enrichment of the STARR-seq peak
summits overlapping MER11 elements in 127 Roadmap tissues27 and

discovered that the TE copies that are active in GP5d cells reside in
open chromatin regions exclusively in embryonic stem cells (ESC),
induced ESCs and induced pluripotent stem cells in Roadmap tissues
(Supplementary Fig. 5c). This suggests that cancers may utilize the
same TEs that have been exapted as enhancers in embryonic devel-
opment, possibly contributing to the dedifferentiated cell state of
cancers28.

We also compared the enrichment of TEs between GP5d and
RPE1 as well as HepG2 and RPE1 cells (Supplementary Fig. 5d).
We discovered that RPE1 had a relatively low enrichment of
differential TEs, with only one TE subfamily, LTR26, differentially
enriched vs. GP5d and two subfamilies, LTR14B and HSMAR2, dif-
ferentially enriched vs. HepG2. LTR26 was also enriched in the RPE1
cluster 1 (Supplementary Fig. 3b), suggesting that TE exaptation into
cell type-specific enhancers is relatively rare in noncancerous
ectodermal cells.

Interestingly, the differentially enriched TE subfamilies also
showed over-representation of distinct TF motifs (Fig. 3b). For exam-
ple, TFAP2motifs were enrichedwithinMER11 subfamilies in GP5d and
NFY motifs within LTR12 subfamilies in HepG2 cells, suggesting that
distinct TFs bind to TEs in a cell type-specific manner. To confirm that
the TE enhancers identified from STARR-seq are bound by the TFs
suggested by the motif analysis, we mapped the ChIP-seq data for
TFAP2A in GP5d cells, for NFYA in HepG2 cells, and for p53 in both cell
lines to the TE-overlapping STARR-seq peaks. In good agreement with
the motif enrichment analysis, we observed p53 binding mostly at the
common TE elements in both GP5d and HepG2 cells (Fig. 3d). TFAP2A
was almost exclusively bound to GP5d-unique TEs in GP5d cells
and NFYA preferentially bound to HepG2-unique TEs in HepG2 cells
(Fig. 3d). Taken together, these results indicate that TEs show cell type-
specific enhancer activity that is mediated by the binding of
distinct TFs.

To study whether cancer type-specific TE enrichment similar to
cancer cell lines can be observed in human patient tumors, we ana-
lyzed pan-cancer ATAC-seq data for tumor samples from 23 cancer
types in The Cancer Genome Atlas (TCGA) datasets29. We discovered
that LTR class TEs were predominantly enriched within open chro-
matin regions in most cancer types (Supplementary Fig. 6a, b). Pan-GI
cancers (colorectal, esophageal, and stomach adenocarcinomas) were
commonly enriched for several TE subfamilies, many of which were
also enriched in GP5d colon cancer cells, such as MER11A, LTR10C,
LTR10F, andLTR14C (Supplementary Fig. 6a, c). In total, 11 out of the 18
GP5d-specific subfamilies (c.f. Fig. 3a) were also enriched in TCGA
colorectal adenocarcinoma data, suggesting that the subfamilies
identified in GP5d are also active in human tumor samples. In general,
TE enrichment clustered remarkably well together by cancer organ
system of origin and by tumor histology (Supplementary Fig. 6a, c),
suggesting cancer type-specific TE activation and supporting our
findings from the cancer cell lines.

Fig. 2 | TEs are enriched for distinct epigenetic signatures and TF binding
motifs in colon cancer cells. a K-means clustering of all STARR-seq peaks in GP5d
with signal for open chromatin (ATAC-seq), ChIP-seq for epigenetic marks and
transcription factor binding (H3K4me1,H3K4me3,H3K9me3,H3K27ac,H3K27me3,
H3K36me3, p53, and 5-fluorouracil-treated p53), and CpG methylation (NaNOMe-
seq). Five clusters was optimal for clustering as determined by elbow plotting (see
Supplementary Fig. 2a). b TFmotif enrichment at all STARR-seq peaks cluster (n of
peaks shown inSupplementary Fig. 2b)withineachcluster froma. After performing
motif enrichment analysis for individual motifs, similar motifs were combined into
motif clusters according to ref. 108. The representative TF family and motif are
shown for each clustered motif. c Enrichment of TE subfamilies within STARR-seq
peaks in each cluster. Cluster 2 is omitted due to no significant enrichment.
Observed/expected ratio onX axis is calculated as the count of STARR-seq summits
overlapping TE subfamilies divided by the mean count of 1000 repetitions of
randomly shuffled STARR-seq peak summits overlapping TE subfamilies. Adjusted

P value on Y axis is the −log10-transformed BH-adjusted one-sided binomial test
FDR. Dashed line on Y axis represents the significance limit (FDR =0.01) and on X
axis the observed/expected ratio of 10 used as the limit of significance for STARR-
seq peak summit overlap with TE subfamilies. d, Comparison of TE subfamily
enrichment in all STARR-seq peak summits between wild-type (WT) and p53-null
GP5d cells. Coloredpointsmarkdifferentially enrichedTEsubfamilies (BH-adjusted
one-sided Fisher’s exact test FDR<0.01). Significant subfamilies with an observed/
expected ratio >10 are labeled. e, Genome browser view of an example STARR-seq
peak overlapping a MER61D element. The tracks for STARR-seq and p53 signals
from the two cell lines are shown using the same scale and overlayedon top of each
other, showing a loss of STARR-seq signal and p53 binding at the locus. f Genome
browser view of STARR-seq peak overlapping a MER11A element, showing no p53
binding and equal STARR-seq signal in bothWT and p53-null GP5d. Source data are
provided as a Source Data file.
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Distinct TFs regulate cell type-specific transcriptionally active
TE enhancers
To delineate TF binding dynamics at the TE subfamily level, we ana-
lyzed ChIP-seq signal at the specific LTR subfamilies that were over-
represented in distinct STARR-seq peak clusters in GP5d cells (c.f.
Fig. 2a, c). As seen from the clustering, subfamilies within the MER

family showed different epigenetic signals as MER11 elements were
associated with classical enhancer marks and MER61 elements with
p53 binding. Analysis of ChIP-seq data at these loci revealed distinct
TF occupancy: TFAP2A is highly enriched at MER11B (Fig. 4a) and
MER11A (Supplementary Fig. 7a) loci, whereas MER61E and MER61C
are highly specific for p53 binding (Fig. 4b; Supplementary Fig. 7b).
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Moreover, TF motif enrichment analysis suggested that HepG2-
unique LTR12C elements are controlled by NFYA (c.f. Fig. 3b), and the
analysis of NFYA ChIP-seq confirmed the binding of NFYA at these
loci in HepG2 cells (Fig. 4c). These results indicate that distinct TFs
can bind specific TE subfamilies and utilize them as enhancers in a
tissue-specific manner.

To confirm that the TEs overlapping STARR-seq peaks are func-
tionally active enhancers in vivo, we utilized the data for nascent
transcriptional activity, TT-seq from GP5d cells30 and GRO-seq from
HepG2 cells31. We observed divergent transcript initiation in GP5d cells
at loci where STARR-seq peaks overlap with MER11B elements bound
by TFAP2A (Fig. 4d). Similarly, STARR-seq peaks in HepG2 cells over-
lapping LTR12C elements and bound by NFYA were transcriptionally
active (Fig. 4d). Moreover, MER11B elements in GP5d and LTR12C ele-
ments in HepG2 cells show stronger nascent transcriptional activity as
compared to the cluster 1 enhancers of GP5d and HepG2, respectively
(Supplementary Fig. 7c, d). Next, we correlated the nascent tran-
scriptional activity to TFAP2A binding at MER11B TE-STARR-seq peaks
representing different clusters from Fig. 2a. In agreement with the
STARR-seq signal and TFAP2A occupancy, TT-seq signal was strong in
cluster 4, moderate in cluster 5 and weak in cluster 1 (Supplementary
Fig. 7e). Similarly, TT-seq signal correlated strongly with p53 binding in
three different clusters of MER61E-enriched TE-STARR-seq peaks
(Supplementary Fig. 7f). These results indicate that enhancer activity
measured from the episomal STARR-seq assay correlates well with
in vivo TF occupancy and nascent transcriptional activity around these
TE-overlapping enhancers.

Asmost copies of TEs in the genome are truncated, it is difficult to
distinguish transcriptional activity between autonomously expressed
full-length TEs and truncated TE fragments that can still function as
enhancers. To avoid this bias, we filtered unique reads fromATAC-seq,
ChIP-seq, and TT-seq/GRO-seq that mapped to annotated LTR ele-
ments and re-aligned the filtered reads to LTR consensus sequences
(Supplementary Fig. 8a, b). We observed that accessible chromatin
regions with enrichment for TFAP2A binding at MER11B and for NFYA
binding at LTR12C elements associated with signals of divergent nas-
cent transcription typical for enhancer RNAs as seen fromGP5dTT-seq
data and HepG2 GRO-seq data, respectively (Fig. 4e), further sup-
porting the role of these specific subfamilies as cell type-specific
enhancers derived from repetitive elements. Fig. 4f shows a repre-
sentative example of transcriptionally active NFYA-bound LTR12C
element located upstream of the ZFAND2B gene. NFYA is known to
bind to promoter-proximal regions and to recruit pre-initiation com-
plex to TSS32, and the active transcription of the ZFAND2B gene in
HepG2 cells is confirmed from the RNA-seq data (Fig. 4f). In conclu-
sion, the clearposition-specific enrichment ofNFYAwith respect to the
signal of divergent transcription from GRO-seq data in HepG2 cells
indicates that these repeats are functional enhancers resulting in
enhancer RNA production (Fig. 4d–f).

Since the LTR12C elements showed higher enhancer activity only
in HepG2 cells (c.f. Figs. 3a and 4d), we postulated that they might be
epigenetically repressed and thus inactive inGP5d cells. To test this, we
exposed GP5d cells to small molecule inhibitors for two epigenetic
modifier enzymes, DNA methyltransferase (DNMT) and histone dea-
cetylase (HDAC) followed by RNA-seq to specifically measure their
effect on TE expression. Interestingly, DNMT and HDAC inhibition
significantly upregulated LTR12C expression inGP5d cells at subfamily
level (Fig. 4g, left panel) as well as locus level (Fig. 4g, right panel). To
study the potential gene regulatory effect of these LTR12C-derived
enhancers, we analyzed the expression of genes in the vicinity of
LTR12C elements (±50 kb) from the RNA-seq data upon DNMT and
HDAC inhibition. Interestingly, 89 out of 264 LTR12C-adjacent genes
were differentially expressed, 70 of which were upregulated (Fig. 4h).
These results indicate that epigenetic de-repression—such as hypo-
methylation that is a general feature of human cancers—can lead to
specific activation of distinct TEs and possible transactivation of
adjacent genes, demonstrating how cancer cells can utilize TEs as de
novo enhancers resulting in altered transcriptome profiles in the
affected cells.

The effect of DNA methylation on TE enhancer activity
DNA methylation is an important mechanism that suppresses TE
activity in the genome. To study the effect of CpG methylation on TE
enhancer activity in an unbiased manner, we performed genomic
STARR-seq with in vitro-methylated libraries in HepG2 cells and com-
pared enhancer activity of TEs by using our previously published
STARR-seq data fromHepG2 cells17. In total, 6568 peakswere called for
the methylated library. Interestingly, we found that DNA methylation
significantly repressed specific TE subfamilies, such as L1PA3, THE1B,
and THE1C (Fig. 5a–c). Motif enrichment analysis within the active
THE1B and THE1C elements revealed several TF motifs harboring CG
dinucleotides, such as BANP/ZBTB33 and HOXC13 (Fig. 5d). Impor-
tantly, in the motif enrichment analysis the active THE1B and THE1C
elements that overlap with STARR-seq peaks were compared to ele-
ments of the same subfamilies that do not overlap with a STARR-seq
peak, suggesting that regulatory differences can exist between active
and silent TEs even within TE subfamilies (Fig. 5e). Some home-
odomain TFs such as HOXB13 can bind to both methylated and
unmethylated motifs with a higher affinity to methylated CG33, but
further studies have suggested more complex interaction between
HOXB13 and methylated DNA34. Interestingly, in the episomal STARR-
seq assay, the HOXC13motifs with TCG residues were enriched among
the enhancers whose activity decreased upon DNA methylation
(Fig. 5d). Moreover, out of the two TFs that can bind the CGCG
sequence enriched within the THE1 elements, ZBTB33 has been shown
to bind methylated CG35 and BANP to non-methylated CG36, high-
lighting the importance of studying the effect of DNA methylation on
TE activity in a locus and context-specific manner. Finally, to analyze

Fig. 3 | STARR-seq reveals commonandcell type-specificdifferentiallyenriched
TE subfamilies. a Enrichment of TE subfamilies within all STARR-seqpeaks in GP5d
and HepG2 cells. Left panel: the subfamilies that are significantly enriched in both
cell lines (BH-adjusted one-sided binomial test FDR <0.01 in both, STARR-seq peak
summit overlaps per subfamily≥ 5) and not significantly differentially enriched
between the cell lines (BH-adjusted two-sided Fisher’s exact test FDR >0.01). Right
panel: the differentially enriched TE subfamilies between the cell lines (BH-adjusted
two-sided Fisher’s exact test FDR <0.01, STARR-seq peak summit overlaps per
subfamily ≥ 5). TE subfamilies are labeled as one group, e.g., MER11 group contains
MER11A, MER11B, MER11C, and MER11D subfamilies. Supplementary Data 4 lists all
the enriched subfamilies. b Motif enrichment for individual TE subfamilies. All
significant common and differentially enriched TE subfamilies in GP5d and HepG2
that overlapped a STARR-seq peak (from Fig. 3a) were analyzed by taking the full
sequences of the individual TEs with an overlapping STARR-seq peak and per-
forming motif analysis for the sequences in each individual subfamily separately.

After motif analysis, the enriched motifs were grouped into clusters of similar
binding motifs26 (see Methods for details). The minimum E-value found for an
individual TF for each motif cluster was plotted in the final figure. All individual
motif hits are listed in Supplementary Data 5. c Genome browser snapshot of a
STARR-seq peak overlapping a MER11A element, showing STARR-seq and open
chromatin signals as well as ChIP-seq track for canonical histone marks of active
enhancers (H3K27ac, H3K4me1) in GP5d and HepG2 cells. The active enhancer
marks are observed specifically in GP5d cells whereas the HepG2 cells show neg-
ligible signals at this locus.dHeatmap showing signals for GP5d STARR-seq, HepG2
STARR-seq, TFAP2A and p53 ChIP-seq tracks from GP5d cells, and NFYA and p53
ChIP-seq tracks fromHepG2 cells for three groups of STARR-seqpeaks overlapping
with TEs: shared between GP5d and HepG2 (Common, n = 2202), unique to GP5d
(n = 9500), and unique to HepG2 (n = 7147). Source data are provided as a Source
Data file.
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themethylation of THE1 elements at endogenous loci we utilized long-
read single-molecule nanopore sequencing data, showing that geno-
mic regions corresponding to active THE1-enhancers in HepG2 cells
were less frequentlymethylated inHepG2 cells compared toGP5d cells
(Fig. 5f). Taken together, our results suggest that overall, the effect of
DNA methylation on STARR-seq activity is modest. However, few
specificTE subfamilies are affectedbyDNAhypomethylation, and their

enhancer activity is controlled by TFs with differential binding pre-
ferences for methylated DNA.

In silico prediction of TE enhancer-gene contacts show
widespread changes in gene expression
To analyze the effect of TE enhancers on gene expression, we utilized
the activity-by-contact (ABC) model37 for in silico prediction of
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genomic contacts between identified TE enhancers and potential tar-
get genes (seeMethods). In total, themodel predicted 29,967 contacts
inGP5d cells, 1206ofwhich overlappedwith a STARR-seqpeak summit
and were selected for further analysis (Supplementary Data 6). Of
these, 486 overlapped with a TE. As expected, most of the predicted
contacts mapped to cluster 1 (c.f. Fig. 2a) with almost half of the
STARR-seq peaks in cluster 1 showing at least one predicted
enhancer–target gene contact. This is consistent with the active epi-
genetic signals (ATAC+, H3K27ac+) enriched in cluster 1 which are also
usedby theABCmodel for contactprediction (Supplementary Fig. 9a),
speaking for the activity of these TE elements in GP5d cells.

Since the MER11 elements were strongly overrepresented and
active in several clusters in GP5d cells (c.f. Figs. 2c, 3a, 4a, 4d), we
analyzed if the genes predicted to be connected to these elements
showdifferential expression betweenGP5d andHepG2 cells.We found
that the majority of the predicted MER11 target genes were over-
expressed in GP5d cells in comparison to HepG2 (Fig. 6a). The
expression of MER11-associated genes was also higher in GP5d colon
cancer cells compared to normal colon epithelium HCoEpiC cells
(Supplementary Fig. 9b), supporting the observation that MER11 sub-
families can function as active enhancers in GP5d cells. For example, a
MER11B element in chromosome 3 with a strong STARR-seq signal,
active enhancer marks, and TFAP2A binding in GP5d cells has a pre-
dicted association with several genes that are strongly expressed in
GP5d cells (Supplementary Fig. 9d). In HepG2 cells, however, the
MER11B-enhancer is not active, and the expression of these genes is
low despite the active epigenetic marks at their promoters (Supple-
mentary Fig. 9d).

As TEs enriched within many STARR-seq peak clusters are highly
p53-specific, such as MER61 and LTR10 subfamilies, we studied the
expression of genes with a predicted contact to these TEs. For this, we
compared gene expression between wild-type GP5d and HepG2 cells
and observed that the genes with predicted association to MER61 and
LTR10 subfamilies also showed upregulation in GP5d cells (Fig. 6b),
consistent with the higher enrichment of active enhancer features
such as ATAC-seq signal and ChIP-seq signals for H3K27ac and
H3K4me1 observed in GP5d cells compared toHepG2 cells at some of
these elements (Supplementary Fig. 9e). Previously, it has been
shown that despite the presence of strong p53REs in TEs, p53 binding
rarely resulted in transactivation of genes38. We also show that rela-
tively few of the highly enriched p53-specific TEs had a predicted
contact to a gene, but some of them were associated with an over-
expressed gene and active enhancer marks in GP5d cells (Fig. 6b,
Supplementary Fig. 9e). When comparing the expression of the
genes with predicted contact to a p53-associated TE between wild-
type andp53-null GP5d cells, only fewof the genes showed significant
difference in expression (Supplementary Fig. 9c). Primary cilia for-
mation gene, PIFO, had a predicted contact to a p53RE-containing
LTR10D element and showed a significantly altered expression after

p53 depletion as well as in GP5d cells compared to HepG2 (Fig. 6b,
Supplementary Fig. 9c, e). In GP5d, the LTR10D element had an active
enhancer profile, whereas in HepG2 cells the H3K27ac signal was
lacking, suggesting a poised enhancer state39 and consequently lower
expression of the gene (Supplementary Fig. 9e). This suggests that
p53RE-containing TEs may also have a minor role in regulating gene
expression as a response to p53.

MER11-derived STARR-seq enhancers transactivates nearby
genes in GP5d cells
To establish the cis-regulatory activity ofMER11 elements in GP5d cells,
we deleted three MER11B elements with strong STARR-seq activity by
using CRISPR-Cas9 (Fig. 6c). We targeted each element using Cas9
together with specific pairs of guide RNAs for each flank of MER11B
overlapping STARR-seq peaks (Supplementary Data 9). We generated
clonal cell lines with homozygous deletions for two MER11B elements
and a heterozygous clone for third MER11B element (Supplementary
Fig. 11a–d). We used RT-qPCR to determine expression changes of
potential target genes (predicted from ABC model) for each of the
MER11B elements. In the case of MER11B element at the CARD14 and
EIF4A3 locus (Fig. 6c, left panel), two independent clonal cell lines with
homozygous TE deletion showdownregulation of the predicted target
genes upon deletion of the specific MER11B element (Fig. 6d, Supple-
mentary Fig. 11b). Similarly, deletion of MER11B element on chromo-
some 2, (Fig. 6c, middle panel), downregulated SPOPL and SPOPL-DT
but not the third nearby gene HNMT (Fig. 6d, Supplementary Fig. 11c).
However, heterozygous deletion of MER11B element on chromosome
8, (Fig. 6c, right panel), did not affect expression of NUDCD1 (Fig. 6d,
Supplementary Fig. 11d). These CRISPR deletion experiments indicate
that MER11B-derived enhancer elements contribute to the transcrip-
tional activation of nearby genes in cis.

Discussion
It is well-established that TEs are a rich source of gene regulatory
elements2,40 and have contributed to the evolution of gene regulatory
networks13. However, the role and the extent of TEs as onco-exapted
enhancers are less well understood. Here, we studied the functional
enhancer activity of TEs in two endodermal origin cancers and a non-
transformed ectodermal cell line by combining data from a quantita-
tive whole-genome enhancer assay with extensive epigenetic analyses.
The advantage of the episomal STARR-seq assay is that it enables
measuring the regulatory potential of each genomic element in an
unbiased manner, allowing the functional analysis of endogenously
silent repetitive elements, whereas the epigenome analysis reveals the
regulatory status of each element in the endogenous genomic context.
We identified specific TE subfamilies that are enriched in colon and
liver cancers with a notable specificity in active TE enhancers between
these two cancer types, suggesting that the TE enhancers can be
activated in a cell type-specific manner.

Fig. 4 | Distinct TFs regulate cell type-specific transcriptionally active TE
enhancers. a,bHeatmapof STARR-seq andChIP-seq signals for TFAP2A and p53 at
MER11B (a) and MER61E (b) elements overlapping a STARR-seq peak in GP5d cells.
c Heatmap of STARR-seq and ChIP-seq signals for NFYA at LTR12C elements
overlapping a STARR-seq peak in HepG2 cells. d Left panel: metaplots of STARR-
seq, TFAP2A ChIP-seq, and TT-seq signals at MER11B elements overlapping a
STARR-seq peak in GP5d cells. Right panel: metaplots of STARR-seq, NFYA ChIP-
seq, and GRO-seq signals at LTR12C elements overlapping a STARR-seq peak in
HepG2 cells. Allmetaplots show the average signalwith standard error.eATAC-seq,
TFAP2A ChIP-seq, and TT-seq reads in GP5d mapped to MER11B elements over-
lapping STARR-seq peaks were extracted and mapped to the MER11B consensus
sequence. Left panel showsmetaplots of the signals in a region from900to 1236 bp
of theMER11B consensus sequence. Similarly, ATAC-seq, NFYA ChIP-seq, and GRO-
seq reads in HepG2 mapped to LTR12C elements overlapping a STARR-seq peak
were extracted andmapped to the LTR12C consensus sequence. Right panel shows

metaplots of the signals in a region from 900 to 1300bp of the LTR12C consensus
sequence. fGenome browser snapshot showing STARR-seq, ATAC-seq, NFYAChIP-
seq, GRO-seq, and RNA-seq signal at a LTR12C element overlapping a STARR-seq
peak in HepG2 cells. g Changes in TE expression in GP5d cells upon DNMT and
HDAC co-inhibition on a subfamily and locus level (see Methods for details). Left
panel: the normalized RNA-seq read counts for the LTR12C subfamily with and
without the inhibitor treatment (mean± SD, individual data points for three bio-
logical replicates shown as dots; two-sided unpaired t test). Right panel: volcano
plot of differentially expressed TEs after the co-inhibition. 498 upregulated LTR12C
elements are highlighted in red. h Volcano plots representing gene expression
changes for LTR12C-associated genes upon inhibition of DNMT and HDAC in GP5d
cells. Analysis of differentially expressed genes in GP5d wild-type cells with DNMT
and HDAC inhibition revealed significant upregulation of genes in the vicinity of
LTR12C elements (±50 kb). Source data are provided as a Source Data file.
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TEs are under strict epigenetic control in normal somatic cells
through DNA methylation, repressive histone modifications, RNA-
mediated silencing, and silencing mediated through TFs such as p53
and KRAB-ZNFs21,22,41. Two opposing hypotheses have been proposed
for TE activity and exaptation based on the evolutionary age of the
elements and their epigenetic status:42 exaptation hypothesis predicts
that more conserved and older TEs are more enriched for active his-
tone marks due to their exaptation to regulatory roles during genome
evolution, and defense hypothesis predicts that young TEs will be
more enriched for repressive marks due to their potential disruptive
activity. This classification was based on histone modifications only,

whereas here we have also used nascent transcription data and
unbiased enhancer activity measurements for detailed characteriza-
tion of TE activity. In favor of the defense hypothesis, we observed
strong STARR-seq activity, more active histone modifications, and
nascent transcription at relatively young LTR subfamilies as opposed
to older TE subfamilies, and the predominant adaptation of young TEs
to novel regulatory elements in mammals has also been shown in a
recent study43. However, our results highlight the context-specificity of
TE activation, since different copies of the same subfamily can be
associated with either active or repressed chromatin state as revealed
by our detailed clustering analysis. Importantly, during tumorigenesis,

Fig. 5 | The effect of DNA methylation on TE enhancer activity. a The effect of
methylation on enhancer activity at all STARR-seq peaks for the non-methylated
(NM) and in vitro-methylated (M) genomic libraries in HepG2 cells. TE subfamilies
with significant differential enrichment (BH-adjusted two-sided Fisher’s exact test
FDR <0.01) are highlighted and labeled; gray points represent subfamilies that
were insignificant. b Comparison of STARR-seq signal between NM and M libraries
in HepG2 cells for the four significant TEs from a. STARR-seq read counts were
counted at the same elements in the two libraries and RPKM-normalized. P values
were calculated with a two-sided, paired Wilcoxon test (n = 208, 292, 284, and 168
for MER61E, L1PA3, THE1B, and THE1C, respectively). c Example genome browser
snapshot of a THE1C element showing a reduction in STARR-seq signal between the
NM and M libraries in HepG2 cells. d Motif enrichment within THE1B and THE1C
elements overlapping a STARR-seq peak summit in HepG2 cells compared to non-
STARR-overlapping THE1B and THE1C elements. The sequence logo, name of the

TF and the E-value are fromAME analysis (seeMethods for details). Only significant
human-specific motifs are shown (E value < 0.05). eMetaplot of RPKM-normalized
STARR-seq signals using the NM and M libraries at THE1B and THE1C elements in
HepG2 cells. Coverage was calculated in a ±1 kb region from the center of the
elements, log2-transformed, and a rolling mean was calculated with a 25 bp win-
dow. Solid line shows the signal at the STARR-seq-overlapping THE1B and THE1C
elements, and the dashed line shows the signal at 1000 randomly sampled non-
overlapping THE1B and THE1C elements. f Boxplots of CpG methylation at THE1B
and THE1C elements in GP5d and HepG2 cells analyzed from NaNOMe-seq data.
Average signal is shown for all the elements overlapping a STARR-seq peak summit
in HepG2. The boxplots indicate the median (center line), the third and first
quartiles (box limits) and 1.5 × IQRabove and below the box (whiskers). P-values are
from a two-sided paired Wilcoxon test (n = 248 and 156 for GP5d and HepG2,
respectively). Source data are provided as a Source Data file.
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TEs can escape their silencing for example in response to epigenetic
dysregulation, providing scope for onco-exaptation of previously
suppressed TEs. This emphasizes the need for a detailed under-
standing of their suppressing and activating mechanisms in different
cancer types, as done here for colon and liver cancers.

Majority of the enriched TE enhancers in both colon and liver
cancer cell lines represent the ERV1 family of LTRs with significantly

more STARR-seq peaks overlapping with LTR elements than expected
from a random distribution. This is consistent with earlier reports
demonstrating that LTR elements contribute to ~39% of TF binding
sites in both human and mouse genomes despite comprising only 8%
of the human genome40. Transcripts originating from ERV1 elements
have been detected in several cancer types, and a high level of ERV1
expression was associated with poor outcomes in kidney cancer44,45.

Article https://doi.org/10.1038/s41467-023-41081-4

Nature Communications |         (2023) 14:5313 11



The widespread ERV expression detected in human cancers speaks for
the global de-repression of epigenetic silencing of these elements.
Interestingly, nascent transcription from enhancers has been shown to
be more predictive of enhancer activity than enrichment of active
histone marks46. Here, we showed that the enhancer activity of TEs
measured using the episomal STARR-seq assay correlates well with
nascent transcription and active histone marks from the respective
genomic loci. Our data suggests that the same transcriptionally active
TEs that evade epigenetic suppression can also be functionally active
enhancers, warranting further studies about their significance in
tumorigenic processes.

The active enhancers detected from GP5d colon cancer cells and
HepG2 liver cancer cells using STARR-seq were enriched for distinct as
well as common TE subfamilies. The common elements, such as
primate-specificMER61 and LTR10 subfamilies, were strongly enriched
for p53 motif. p53 is functionally active in both cell lines, and the
common active TEs overlapped with p53 binding in the genome. The
common elements were among the most highly enriched subfamilies
in both cell lines and had the highest STARR-seq activity but only weak
enrichment for the active histone marks, consistent with earlier
reports from human and mouse cells17,47. The enrichment of TE sub-
families correlated with the proportion of their genomic copies har-
boringp53bindingmotifs. Previous studies have shown that active and
functional p53 enhancers are characterized by a single canonical p53
motif without binding of coregulatory TFs48, commensurate with our
findings in clusters 4 and 5 with strong enrichment of p53 motifs. A
recent study found that p53 enhancers are also likely to be indepen-
dent of interaction via Mediator49, further supporting independent
function of p53 as a transcriptional regulator.

In the context of TE regulation, both silencing and activating roles
have been suggested for p5324,50. p53 is known to be a pioneer factor51,52

that can preferentially bind to regions of high nucleosome occupancy53

and closed chromatin enhancers17. It hasbeen shownpreviously that TE-
associated p53-occupied p53REs were stronger than non-TE-associated
p53REs, especially at LTR10B and MER61 elements, but p53 binding at
TEs did not cause changes in expression of target genes38. Our findings
were in line with this, showing that the expression of in silico-predicted
target genes of MER61 and LTR10 enhancers was largely unaffected by
p53depletion. In our study, strongp53REswere foundwithin enhancers
and repressed chromatin, possibly explaining the strong STARR signal,
high H3K9me3, and low chromatin accessibility in cluster 4. In conclu-
sion, our results support both silencing and activating functions for p53,
showing that majority of the p53-enriched TEs that show enhancer
activity in the episomal STARR-seq assay are associated with repressive
histone marks at the endogenous chromatin loci consistent with a
previous report54, but that specific upregulation of TE-associated pre-
dicted p53 target gene, such as PIFO, was also detected.

Our analysis of the STARR-seq peaks also revealed active TE
enhancers specific to each cancer type. MER11 subfamilies of the LTR
class (MER11A, B, C, and D) were specifically active in GP5d colon

cancer cells showing enrichment for TFAP2A motif and overlap with
TFAP2A binding in the genome. Nascent transcriptional activity from
theMER11B elements correlatedwith TFAP2AChIP-seq and STARR-seq
signals, further speaking for the enhancer activity of MER11 elements.
Interestingly, CRISPR screen data from Cancer Dependency Map
(DepMap) collection shows that TFAP2A depletion has the strongest
growth inhibitory effect in GP5d cells across 55 colorectal cell lines (see
Supplementary Fig. 8c) (CRISPR Chronos score = −0.2586)55, suggest-
ing that TFAP2A-controlled transcriptional programs are critical for
GP5d proliferation. Further, our CRISPR-Cas9 deletion experiments
functionally validated multiple MER11 elements with STARR-seq
activity that regulates nearby genes in cis in GP5d cells.

In HepG2 liver cancer cells, we found that the LTR12 subfamilies
were specifically enrichedwithin the STARR-seqpeaks.Consistentwith
a previous report, LTR12 subfamilies were highly enriched for NFY
family motifs56–59 and our data shows nascent transcriptional activity
from NFYA-bound LTR12-enhancers. NFYA is essential for maintaining
nucleosome-depleted regions at promoters of NFYA target genes and
preventing sub-optimal transcription initiation from alternative TSSs
by directing transcriptionalmachinery to the correct TSS32. The role of
LTR12C as an alternative promoter59,60 and their transcriptional
repression by KRAB zinc fingers has been studied previously in early
embryonic development61. LTR12C and other hominoid-specific LTR
elements undergo H3K9me3-dependent heterochromatin remodeling
during early embryonic development62. LTR12 retrotransposons which
are the solitary LTRs of ERV9 endogenous retroviruses have also been
described as enhancers in oocytes and erythroblasts63,64. Interestingly,
we show that NFYA is associated with enhancer activity from the
STARR-seq-identified LTR12 elements with high enrichment of the
LTR12C within the STARR-seq peaks, raising the question of whether
LTR12C elements can also function as promoter-enhancers that were
reported earlier65.

The general mechanisms for TE silencing in somatic cells include
DNAmethylation, histonemodifications, and RNA-mediated silencing.
Interestingly, our results suggest that tissue-specific TE activation is
associated with specific de-repression of epigenetic silencing. For
example, LTR12C elements were found to be more active in HepG2
compared to GP5d cells, but inhibition of epigenetic regulatory
enzymesDNMTandHDAC resulted in strong and specific upregulation
of LTR12C elements in GP5d cells. Importantly, this also led to
increased expression of endogenous genes in the vicinity of LTR12C
elements, suggesting that cancer cells can utilize TEs for controlling
the expression of endogenous genes. Furthermore, differential CpG
methylation was observed between HepG2 and GP5d cells at THE1
elements that were shown to be more active in non-methylated con-
ditions compared to methylated DNA in HepG2 cells. Taken together,
our results demonstrate how re-activation of specific TE elements can
occur through destabilization of epigenetic repressive mechanisms.

Due to the inherent difficulties of mapping the short-read
sequences to the repetitive sequences within TEs, the results in this

Fig. 6 | In silico-predictedTEenhancer-gene contacts showwidespread changes
in gene expression validated by in vivo CRISPR genome editing. a Differential
expression of genes with predicted contacts to MER11 subfamily TEs. Log2 fold
change (Log2FC) is shown from RNA-seq data for GP5d vs. HepG2 cells. Red points
mark significantly differentially expressed (|Log2FC|> 1.2 and FDR <0.05), and blue
points are insignificant. Log2FCs of ±1.2 and 0 are marked with dashed lines. Box-
plots indicate themedian (center line), the third and first quartiles (box limits), and
1.5 × IQR above and below the box (whiskers). (n = 80 predicted contacts).
bDifferential expression of genes with predicted contacts to p53-specific TEs from
RNA-seq data between GP5dWT vs. HepG2 cells. Plot elements are like in a. (n = 32
predicted contacts). cGenomebrowser snapshots of three activeMER11B elements
with high STARR-seq signal inGP5d cells. Eachpanel shows thehighlightedTE locus
with signal tracks in GP5d and HepG2 cells for STARR-seq, ATAC-seq, ChIP-seq for
TFAP2A and histone marks, RNA-seq, and predicted enhancer-gene contacts from

the ABC analysis. CARD14 in the left panel, HNMT, SPOPL, and SPOPL-DT in the
middle panel, andNUDCD1 in the right panel were predicted as gene targets for the
MER11B elements. These MER11B elements mostly show STARR-seq activity and
canonical epigenetic marks of enhancers in GP5d, likely reflected in the low
expressionof the targetgenes inHepG2.dRT-qPCRdata showing changes inmRNA
expression for genes with predicted contacts to active MER11B elements upon
CRISPR-Cas9mediated deletion of the elements inGP5d cells (GAPDHnormalized).
Two independent clones with homozygous enhancer deletion were analyzed for
MER11B element at chromosome 17 in the vicinity of CARD14 and EIF4A3 (shown in
Fig. 6c) and one for MER11B at chromosome 2 flanked by SPOPL, SPOPL-DT and
HNMT (shown in Fig. 6c). One heterozygous deletion clone for MER11B at chro-
mosome 8 predicted to regulate NUDCD1 was also tested (shown in Fig. 6c). The
figures show mean± SD values for three technical replicates. Source data are pro-
vided as a Source Data file.
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studymayunderestimate the actual extent of the functional repertoire
of TEs. Here, weonly retaineduniquelymapping reads, butmethods to
improve read assignment to TEs66,67 and peak calling for STARR-seq
have been developed68. However, despite the lower mappability of
evolutionarily young subfamilies, we found that relatively young LTR
subfamilies were highly enriched in the STARR-seq data. Improve-
ments in both short- and long-read sequencing technologies will
benefit the future studies of TEs, reducing the limitations inherent to
short-read sequencing methods66,67 and peak calling for STARR-seq
have been developed68.

In conclusion, we studied the extent of TE enrichment in a gen-
ome-wide, unbiased functional enhancer assay together with ortho-
gonal functional genomics methods for chromatin accessibility,
histonemodifications, and transcription factor binding.We found that
specific TE subfamilies are highly overrepresented among the active
enhancers, showing remarkable tissue-specificity that is controlled by
distinct TFs. The contribution of these TE-derived enhancers to
tumorigenic processes warrants further studies, but our results pro-
vide evidence of widespread exaptation of TEs for cancer-type-specific
functional enhancer activity.

Methods
Data acquisition
All of the sequencing data and download links for annotation files used
in this study are listed in Supplementary Data 8, including the relevant
references and GEO/ENCODE accessions69–71.

NCBI genomeannotation files for GRCh38weredownloaded from
Illumina iGenomes.

A gene annotationGTFfilewas acquired fromGencodeRelease 36
for the reference chromosomes. The GTF file was transferred into a
BED file with gtfToBed.sh and TSS and gene body BED files were cre-
ated with a script adapted from ref. 72.

A repeatMasker.txt (2021-09-03) file was downloaded from the
UCSC table browser. Only transposable element-derived repeat classes
(LINE, SINE, LTR, and DNA) were retained and a file in BED format was
created from the table, totaling 4745258 annotated repeats73. MER11B
and LTR12C consensus sequences were acquired from RepBase74.

GRCh38 chromosome sizes file (2020-03-13) file was downloaded
from UCSC.

Unified GRCh38 blacklist BED file (“ENCFF356LFX”, release 2020-
05-05) was downloaded from the ENCODE project.

A genome index was created with bowtie2-build, with chr1-22, X,
Y, and M fasta files. Alternative, unlocalized, and unplaced alternative
loci scaffolds were discarded in indexing.

Transcription factor motifs were acquired from JASPAR 2022
CORE non-redundant vertebrate annotations75. The position weight
matrices in MEME format were used for downstream motif analyses.

Predicted LTR p53 binding site percentages were downloaded
from ref. 24. TE age estimation data were downloaded from the TEa-
nalysis pipeline76.

Cell culture
GP5d cells (Sigma, 95090715) were cultured in DMEM (Gibco, 11960-
085) supplemented with 10% FBS, 2mM L-glutamine (Gibco,
25030024) and 1% penicillin-streptomycin (Gibco, 15140122). HepG2
(ATCC, HB-8065) was cultured in MEM (Gibco, 11544456) supple-
mented with 10% FBS, 2mM L-glutamine, and 1% penicillin-
streptomycin. HCoEpiC (ScienCell, 2950) was cultured in Colonic
Epithelial Cell Medium (ScienCell, 2951) as per vendor’s guidelines.
RPE1 cells (ATCC, CRL-4000) were cultured in DMEM F12 (Gibco,
11330-032) supplementedwith 10% FBS and 1% penicillin-streptomycin
(Gibco, 15140122).

All cell lines were directly obtained from trusted vendors (Sigma,
ATCC, andSciencCell) and low-passage cellswere used in experiments.
Vendors such as ATCC perform authentication and quality-control

tests on all distribution lots, so the cell lines were not re-authenticated
by the user. All cell lines tested negative for mycoplasma contamina-
tion upon purchase and were routinely checked as per standard good
laboratory practice.

Genomic STARR-seq
Genomic STARR-seq experiment was performed in HepG2 and
RPE1 cells as previously described17 by using methylated and non-
methylated input DNA library from ref. 17, respectively (two technical
replicates, 170 million cells per replicate). One µg of input library DNA
was transfected per million cells. In brief, 10 million cells were seeded
per 15-cm plate in media without antibiotic a day before transfection.
Plasmid DNA was mixed with transfection reagent (Transfectin (Bio-
Rad, 170-3351) was used for HepG2 at a 1:3 ratio and TransfeX™ (ATCC,
ACS-4005) was used for RPE at a 1:2 ratio) in Opti-MEM medium
(Gibco, 11524456), incubated for 15minutes at room temperature and
added dropwise to the cells. Cells were harvested after 24 hours after
transfection and total RNA isolated using the RNeasy Maxi kit (Qiagen,
75162) with on-column DNase I digestion. Dynabeads mRNA DIRECT
Purification kit (Invitrogen, 61012) was used to purify poly(A) + RNA.
poly(A) + RNA was treated with DNase by using TurboDNase (Ambion,
AM2238) followed by purification by using RNeasy Minelute kit (Qia-
gen, 74204). STARR-seq reporter library was prepared by following
protocol as described in ref. 17. and paired-end sequenced. No spike-in
strategies for the RNA-seq data were used in this study.

ChIP-seq, ATAC-seq, NaNoMe-seq and Hi-ChIP
ChIP-seq was performed as previously described17 by using the fol-
lowing antibodies for: H3K4me3 (Sigma-Aldrich, 07-473), H3K36me3
(Diagenode, C1541092-10), TFAP2A (Abcam, AB52222), mouse IgG
(Santa Cruz Biotechnology, sc‐2027) and rabbit IgG (Santa Cruz Bio-
technology, sc‐2025). ChIP-seq was performed by using 2μg of anti-
body per reaction. In brief, GP5d cells were formaldehyde cross-linked
for 10minutes at room temperature. Sonicated chromatin was cen-
trifuged, and the supernatant was used to immunoprecipitate DNA
using Dynal-bead coupled antibodies. Immunoprecipitated DNA was
purified and used for ChIP-seq library for Illumina sequencing. The
libraries were single-read sequenced on NovaSeq6000. H3K36me2
ChIP-seq replicate 2 was deeper sequenced on MiSeq.

ATAC-seq library was prepared by using 50000 GP5d cells by
using protocol described earlier77. GP5d cells were washed with ice-
cold PBS and cells were resuspended in 50 µl lysis buffer. Cells were
incubated for 10minutes on ice. The pellet was resuspended in 2×
tagmentation buffer (Illumina kit) and incubated at 37 °C for 30min-
utes. DNA was purified by using MinElute purification kit and eluted in
nuclease free water. Optimal number of amplification cycles was
determined by qPCR. Samples were amplified by using Nextera library
preparation kit (Illumina) and sequenced paired-end.

NaNoMe-seq was performed to profile CpG methylation and
chromatin accessibility (GpC methylation) in GP5d cells as described
earlier70. GP5d cell nuclei were isolated and treated with GCmethylase
M.CviPI (New England Biolabs, M0227) as described70. Following GC
methylation, DNA was isolated from nuclei by using phenol-
chloroform extraction protocol, and sequencing library was pre-
pared using the 1D genomic DNA by ligation kit (SQKLSK109)
according to manufacturer’s protocol and 50 fmol of adaptor-ligated
genomic DNA was loaded to the flow cell for sequencing.

H3K27ac Hi-ChIP was performed as previously described in ref. 78.
In brief, GP5d cells were formaldehyde cross-linked for 10minutes at
room temperature, and nuclei were isolated from cross-linked cells by
30minutes of lysis at 4 °C. Isolated nuclei from 15 million cells were
permeabilized in 0.5% SDS for 10minutes at 62 °C and SDS was quen-
ched by using Triton X-100 for 15minutes at 37 °C. Chromatin was
digestedwithMboI restriction enzyme (New England Biolabs, R0147) at
37 °C for 2 hours and then heat-inactivated at 62 °C for 20minutes.
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Chromatin was incubated with a DNA ligase (New England Biolabs,
M0202) for 4 hours at room temperature for proximity ligated contact
formation followed by centrifugation. Proximity ligated chromatin
pellet was sonicated and immunoprecipitated using 5μg of H3K27ac
antibodies (Diagenode, C15410196). Immunoprecipitated fragments
were Biotin-labeled (Invitrogen, 19524016) and captured by Dynabeads
MyOne Streptavidin C1 beads (Invitrogen, 65001). Immunoprecipitated
DNA was adaptor-labeled by using Tn5 transposase (Illumina) and PCR
amplified. The libraries were paired-end sequenced on NovaSeq 6000.

DNMT and HDAC inhibitor treatment and RNA-seq
DNMTandHDAC inhibition in GP5d cells wereperformed asdescribed
earlier56. GP5d cells were seeded in 6 well plates and treated with
500 nM/L 5-aza-2’-deoxycytidine (MedChemExpress, HY-A0004) or
DMSO (Fisher, BP231). 5-aza-2’-deoxycytidine containing media were
replaced each day for three days. SB939 was added at a concentration
of 500 nmol/L (MedChemExpress, HY-13322) and cells were harvested
after 18 hours. Total RNAwas extracted using RNeasyMini kit (Qiagen)
according to the manufacturer’s instructions in three biological repli-
cates. RNA-seq libraries were prepared using 1μg of total RNA input
using KAPA stranded mRNA-seq kit for Illumina (Roche) as per man-
ufacturer’s instruction and paired-end sequenced on NovaSeq 6000
(Illumina).

CRISPR-mediated knockout of MER11 elements
For CRISPR-mediated knockout of MER11 elements, two gRNAs (one
specific to each flank of the MER11 element) were designed using
CRISPOR v.5.0179 and synthesized as crRNAs by Integrated DNA
Technologies (IDT) (Supplementary Data 9). Early passage GP5d cells
were transfected with ribonucleoprotein (RNP) complex. Equimolar
ratios of target-specific crRNAs and ATTO550-tracrRNA (IDT, 1075928)
were annealed. RNP complex were constituted from Alt-R S.p. HiFi
Cas9 Nuclease V3 (IDT, 1081060; 1000ng per 200,000 cells) and
target-specific sgRNA (250 ng per 200,000 cells) and transfected
to cells by using CRISPRMAX (Life Technologies, CMAX000003)
according to manufacturer’s protocol. For generating clonal cell lines
from transfected cells, GP5d cells transfected with RNP complex tar-
geting MER11 elements along with a non-transfected control were
trypsinized 24 hours after transfection,washedonce, and resuspended
in cold PBS. ATTO550-positive transfected cells were separated from
non-transfected and dead cells using flow cytometry analysis at the
HiLife Flow Cytometry Unit, University of Helsinki, Finland, using BD
Influx System (USB) and BD FACS software (version 1.2.0.142). Gate for
sorting was set so that all non-transfected GP5d cells remained nega-
tive for ATTO550 (at 561–581 nm) and the same gate was used for
sorting transfected GP5d cells so that cells positive for ATTO550 were
seeded to 96 well plates (one cell per well) (Supplementary Fig. 10).
After two-three-week culture, the established single cell clones were
screened for homozygous deletion by rapid DNA lysis (Lucigen,
QE0905T) and PCR using flanking primer pairs at the expected dele-
tion site (Supplementary Data 9).

For analyzing the expression of potential target genes using qRT-
PCR, RNAwas isolated from clones with homozygous or heterozygous
deletion using RNeasy Mini kit (Qiagen). cDNA synthesis was per-
formed using the PrimeScript™ RT Master Mix (Takara, RR036A) and
real-time PCR was performed using SYBR Green I Master (Roche,
04707516001) in triplicates. The primers used for each transcript are
listed in Supplementary Data 9. The transcript levels of the target
genes were normalized to GAPDH mRNA levels.

Genomic STARR-seq analysis
FastQC v.0.11.9 was used for quality control and determination of read
lengths of raw data80. For GP5d, the input plasmid control reads were
trimmed with Trimmomatic v.0.39 from ~76bp to 36bp, matching the
read length of reporter cDNA to avoid biases in mappability81. For

HepG2, the two technical replicates were combined before alignment.
Bowtie2 v.2.4.1 was used to map the paired-end STARR-seq reads
uniquely to the reference human genome (hg38/GRCh38) with the
(bowtie2 --maxins 1000)82. Duplicates were marked with Picard v.2.23.4
(MarkDuplicates -REMOVE_DUPLICATES false -ASSUME_SORTED true)
and quality metrics were determined with picard CollectMultiple-
Metrics (http://broadinstitute.github.io/picard/). Samtools v.1.7 was
used tofilter non-concordant reads and readswith aMAPQ smaller than
20 (samtools view -h -F 1024 -q 20)83.MACS2v2.2.7.1wasused for calling
peaks with options –f BAMPE –g hs and the STARR input as a control84.
Peaks overlapping with ENCODE blacklisted regions were removed
from the narrowPeak and summit files with bedtools v.2.29.2 (bedtools
subtract -A)85. Genome read coverage was calculated with bedtools
v.2.29.2 (bedtools coverage –pc -bg) and bedGraphToBigWig v.377 was
used to create a bigwig file86. A RPKM-normalized bigwig file was cre-
ated with deepTools v.3.5.0 (bamCoverage—binSize 50 --normal-
izeUsing RPKM—effectiveGenomeSize 2913022398)87. Final mapped
read statistics are listed in Supplementary Data 7. Pearson correlation
analysis between the technical replicates for RPE1 non-methylated and
HepG2 methylated STARR-seq is shown in Supplementary Fig. 12a.

ATAC-seq analysis
The raw reads were mapped with bowtie2 v.2.4.1 (bowtie2 --very-sen-
sitive) to the referencehumangenome (hg38/GRCh38). Readsmapped
to the mitochondrial genome were removed with removeChrom.py
script (https://github.com/jsh58/harvard/blob/master/removeChrom.
py). Picard v.2.23.4 was used to remove duplicates (MarkDuplicates
-REMOVE_DUPLICATES false -ASSUME_SORT_ORDER coordinate) and
analyze insert sizes with CollectInsertSizeMetrics. Samtools v.1.7 was
used to filter reads with MAPQ smaller than 10 and remove marked
duplicates (samtools view -F 1024 -b -q 10). Peaks were called with
MACS2 v.2.2.7.1 (macs2 callpeak -f BAMPE -g hs—keep-dup all).
Removal of blacklisted regions, coverage calculation, conversion to
bigwig and normalized coverage file creation was performed as in
STARR-seq data processing. Pearson correlation between GP5d ATAC-
seq biological replicates is shown in Supplementary Fig. 12a.

ChIP-seq analysis
ChIP-seq data processing was performed as in ATAC-seq except for
removing the reads mapping to the mitochondrial genome and read
filtering, where reads with a MAPQ smaller than 20 were removed.
Pearson correlation between TFAP2A and H3K36me3 ChIP-seq biolo-
gical replicates is shown in Supplementary Fig. 12a. Representative IGV
screenshots for ChIP-seq and ATAC-seq replicates are shown in Sup-
plementary Fig. 12b, c.

Nanopore-seq analysis
The nanopore data was processedwithONT_hg_pipe v.0.1.0 (Palin 2018,
unpublished, https://github.com/kpalin/). The GP5d nanopore data was
basecalled with Guppy v.5.0.17 with the super-accurate basecalling
model andaminimumq-scoreof 10.The referencegenomewas indexed
and the basecalled reads were aligned to the reference genome with
minimap2 v.2.16 (minimap2 –x map-ont)88. Quality controls were per-
formed with nanoplot v.1.20.089 and Samtools v.1.971. After alignment,
methylation was called with nanopolish v.0.11.190. The cpggpc_new_train
branch in GitHub (https://github.com/jts/nanopolish/tree/cpggpc_new_
train) was used to call both CpG and GpC methylation (nanopolish call-
methylation -q cpggpc). The resulting table was processed to a BED
format (mtsv2bedGraph.py -q cpggpc—nome) and to methylation
frequency table formats for CpG and GpC methylation (parse-
Methylbed.py frequency -v -m cpg and parseMethylbed.py frequency -v
-m gpc), using previously published scripts72. The resulting methylation
tables were converted to bedGraph and bigwig formats with a custom
script (mfreq_to_bw.R), utilizing bedGraphToBigWig v.37786. The CpG
methylation frequency tables were loaded into R and smoothed with
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bsseq v.1.28.0 (BSmooth ns = 50, h = 1000, maxGap= 100000)91. The
GpCmethylation callingwas performed for another project andwas not
used in this study.

RNA-seq analysis
FastQC v.0.11.9 was used for quality control. Pseudoalignment and
countingwasperformedwith Salmon v.1.8.092. Readswere also aligned
with STAR v.2.5.3a93 by using the SQuIRE pipeline v.0.9.9.9294. Read
counts were calculated with featureCounts v.2.0.195. Differential
expression analysis was performed with DESeq2 v.1.32.096.

Hi-ChIP-seq analysis
Hi-ChIP data for GP5d H3K27ac was processed with HiC-Pro v.3.1.097

with default parameters and hg38 MboI restriction sites.bed file as
input. allValidPairs output fromHiC-Prowas converted to a.hicfilewith
the hicpro2juicebox.sh script from HiC-Pro, with juicer tools v.1.2298.
KR-normalized matrices were extracted from the.hic file with juice-
box_dump.py from ABC v.0.2.237 and powerlaw fit was calculated with
the compute_powerlaw_fit_from_hic.py script.

GP5d TT-seq and HepG2 GRO-seq
GP5d TT-seq data (“GSM4610669”) was acquired under GEO accession
“GSE15229130”. HepG2 GRO-seq raw data were downloaded under GEO
accession “GSM2428726” (“SRR5109940”)31. GRO-seq reads were
trimmed to remove A-stretches originating from the library prepara-
tion by using the Trim Galore v.0.6.7. Sequence reads shorter than
25 bp and quality score <10 were discarded. GRO-seq reads were
aligned to thehg38genomeassembly using bowtie2 v.2.2.5 and strand-
specific bigwig files were created with Samtools v.1.9. Both intergenic
as well as intragenic STARR-seq peakswere used to plot strand-specific
TT-seq or GRO-seq signals.

TEtranscripts and Telescope RNA-seq analysis
FastQC v.0.11.9 was used for quality control. Reads were also aligned
with STAR v.2.5.3a93 by using the SQuIRE pipeline v.0.9.9.9294. TEt-
ranscripts v.2.2.1 was run on the SQuIRE alignment output with the
following flags: –mode multi-stranded reverse. The log2 fold change
values output by DESeq2 v.1.32.0 were used for TE subfamily expres-
sion analysis. Telescope v.1.0.3.1 analysis was performed on SQuIRE
alignment output. The “telescope assign” command was used to
quantify TE expression. The log2 fold change values output by DESeq2
v.1.32.0 were used in subsequent analysis. Nearby genes were asso-
ciated with TEs with GREAT v.4.0.499.

TE enrichment analysis
STARR-seq peak summits for GP5d and HepG2 were overlapped with
repeatMasker annotations with GenomicRanges R package v.1.44.0100

and the count of overlaps for each subfamily of TEs was summed. Only
TE subfamilies with five or more overlaps in total were retained for
further analysis.

The expected frequency of overlaps was calculated by shuffling
the STARR-seq peak summits 1000 times with R package bedtoolsr
v.2.29.0-3101, excluding masked regions in from the BSgenome.Hsa-
piens.UCSC.hg38.masked v.1.3.993 package and keeping the shuffled
features in the same chromosomes (-chrom). The mean frequency of
shuffled overlaps for each TE subfamily was calculated, giving the
expected frequency of overlaps. The observed/expected ratio was
calculated by dividing the overlapof STARR-seq peaks by the expected
overlaps for each subfamily.

Statistical significance for each TE subfamily enrichment was
calculated with a one-sided binomial test with binom_test from the
rstatix package v.0.7.0102. The number of overlaps of STARR-seq peaks
was set as the number of successes, the count of all STARR-seq peaks
as the number of trials, and the fraction of shuffled overlaps for a
subfamily from all the shuffled overlaps was the probability of success.

P-values were adjusted with Benjamini-Hochberg correction103. Sig-
nificance was determined as FDR <0.01.

The differential enrichment for TE subfamilies was calculatedwith
a two-sided Fisher’s exact test with the count of overlaps for a TE
subfamily as observed and the sum of 1000 shuffled overlaps as the
expected frequency. P-values were adjusted with Benjamini-Hochberg
correction and significance was determined as FDR <0.01.

STARR enrichment by TE class and lineage was calculated by
grouping the overlaps by class or lineage of the TE that the peak
summit overlapped and calculating the enrichment against the ran-
domly shuffled peak summits as described above. TE lineage of origin
data was obtained from ref. 76.

TCGA ATAC-seq analysis
Cancer type-specific peak sets for all 23 TCGA ATAC-seq cancer types
were acquired from ref. 29. The centers of the peakswere defined as the
summits and for each cancer type the TE enrichment was calculated as
described above. The organ systemof origin annotationswere acquired
from ref. 104. and the tumor histology data were acquired from ref. 105.

Roadmap chromatin state analysis
25-state chromatin state annotations for 127 Roadmap tissue types
were acquired from ref. 27. GP5d STARR-seq peak summits over-
lapping MER11 elements were filtered and the enrichment analysis of
the chromatin states in the summit loci was performed as described in
the “TE enrichment analysis”.

ATAC-seq, ChIP-seq, TT-seq/GRO-seq read alignment to
MER11B/LTR12C consensus sequences
For GP5d, ATAC-seq, TFAP2A ChIP-seq, and TT-seq data were first
aligned to the reference genome. Unique reads mapped to 92 MER11B
elements that overlapped with STARR-seq peaks were extracted and
mapped to theMER11B consensus sequence to obtain compiled reads.

For HepG2, ATAC-seq, NFYA ChIP-seq, and GRO-seq data were
first aligned to the reference genome. Unique reads mapped to 597
LTR12C elements that overlapped with HepG2 STARR-seq peaks were
extracted and mapped to LTR12C consensus sequence to obtain
compiled reads. Bwtools v.1.0 (bwtools aggregate) was used to plot
compiled signal for ATAC-seq, ChIP-seq, and TT-seq/GRO-seq at LTR
consensus sequences106.

DepMap TFAP2A dependency analysis
DepMap CRISPRi screening data for TFAP2A was downloaded for
colorectal and liver cell lines. CRISPR Chronos score (TFAP2A gene
effect) and TFAP2A expression (Log2 (TPM+ 1)) for colorectal and liver
cells were plotted by using GraphPad Prism 955.

Motif analyses
All motif enrichments for each TE subfamily or STARR cluster were
analyzed with AME from the MEME suite v.5.0.2 with shuffled
sequences as thebackground (ame—control—shuffle--)107. JASPAR2022
CORE non-redundant vertebrate motif annotations were used as the
motif file input. Motif-clustering data was downloaded from ref. 108.
Output from AME was read into R and the E-values were –log10-
transformed. Each motif hit from AME analysis was assigned to a cor-
responding cluster. For each cluster, the minimum E-value from all
individual motif hits was selected, the columns were scaled with the R
scale function (center = F) and plotted.

Cluster analysis
In GP5d, RPKM-normalized bigwig files for STARR-seq, ATAC-seq,
ChIP-seq for H3K4me1, H3K4me3, H3K9me3, H3K27ac, H3K27me3,
H3K36me3, p53 and 5-fluorouracil treated p53 and unnormalized CpG
methylation bigwig fromNaNoMe-seq were used to create amatrix file
with deepTools v.3.5.087 with a region of 3 kb in both directions around
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STARR-seq peak summits as the center reference point. (compute-
Matrix reference-point—referencePoint center—missingDataAsZero -a
3000 -b 3000). The resulting deepTools matrix was loaded into R and
columns were centered with the R scale function. R k-means function
was then used to cluster the matrix with centers from two to nine and
options nstart = 50, iter.max = 15. The resulting outputwas analyzed by
elbow plotting and five clusters were determined to be the optimal
number of clusters. Similar to GP5d, HepG2, and RPE1 STARR-seq
peaks were clustered.

Activity-by-contact model analysis
Candidate regions for the ABCmodel37 were created using GP5d ATAC-
seq data (see “ATAC-seq analysis” for processing details) with the
makeCandidateRegions.py with the ENCODE blacklist as excluded
regions, 250bp peak extension and 150000 selected peaks
(---regions_blocklist ENCFF356LFX.bed, --peakExtendFromSummit 250,
--nStrongestPeaks 150000). Enhancer activity was quantified using the
run.neighborhoods.py script with ATAC-seq and H3K27ac ChIP-seq
(see “ChIP-seq analysis” for processing details) and the expression table
of TPM counts from Salmon analysis (see “RNA sequencing”) and
GENCODE v36 gene annotations as inputs.

Contacts were predicted with the predict.py script with the out-
put from theprevious stepswith threshold set as .02, hic-resolution set
at 5000, powerlaw scaling and GP5d H3K27ac Hi-ChIP data set as the
contact mapping input (see “Hi-ChIP analysis” for processing details)
(--scale_hic_using_powerlaw, --threshold .02, --hic_resolution 5000).

Statistical analysis and plots
All statistical and downstream analyses were performed in R v.4.1.2109.
Profile plotswere created fromthebigwigfileswith theRpackage soGGi
v.1.24.1 using the regionPlot function with the option normalize = T110.
The signal was smoothed with rollmean from Zoo package v.1.8-10111.
Genomic annotation for STARR-seq peaks was performed with
ChIPseeker112. All plotting was performed in ggplot2 v.3.3.6 from the
Tidyverse suite v.1.3.1113 except for the motif enrichments that were
plotted with ComplexHeatmap v.2.8.0114 and enrichment heatmaps that
were plotted with EnrichedHeatmap v.1.22.0115, with code adapted
from47. Correlation analyses between biological and technical replicates
were performed by using multiBigwigSummary v.3.1.3 and plotted with
plotCorrelation v.3.1.387. Illustrations were created with BioRender.com.
Heatmaps in Figs. 3 and 4 were plotted by using deepTools87.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data generated in this study has been deposited in the GEO database
under accession “GSE221053”. The publicly available data was accessed
as follows: GP5d and HepG2 STARR-seq data used in this study are
available in GEO database under accession “GSE180158”17. For GP5d,
genomic and p53-null STARR-seq data from “GSM5454433”17 and
“GSM5454435”17, and for HepG2 genomic STARR replicates 1 and 2 from
“GSM5454437”17 and “GSM5454438”17, respectively. GP5d ChIP-seq data
forH3K27ac (“GSM5454417”17), H3K9me3 (“GSM5454420”17), H3K27me3
(“GSM5454428”17), 5-FU treated mIgG (“GSM5454414”17), untreated p53
(“GSM5454412”17) and 5-FU treated p53 (“GSM5454413”17) were acquired
from the same study. GP5d H3K4me1 (“GSM1240814”71) was obtained
with theGEO accession “GSE51234”71. HepG2ChIP-seq data forH3K27ac,
H3K27me3, H3K36me3, H3K4me1, H3K4me3, H3K9me3, p53, and NFYA
were downloaded from “ENCODE [https://www.encodeproject.org/]”69

with fastq file accessions “ENCFF000BFD”69, “ENCFF001FLQ”69,
“ENCFF001FMA”69, “ENCFF000BEX”69, “ENCFF901NZE”69,
“ENCFF000BFK”69, “ENCFF257UIJ”69, and “ENCFF081VHA”69, respec-
tively. Replicate 1 for HepG2ATAC-seqwas downloadedwith accessions

“ENCFF664UPL”69 and “ENCFF289UIB”69 for read file 1 and 2, respec-
tively. GP5d TT-seq data was downloaded from GEO database under
accession code “GSM4610669”30. HepG2 GRO-seq raw data were
downloaded fromGEOdatabase under accession code “GSM2428726”31.
RPE1 ATAC-seq (“GSM5366618”116) and ChIP-seq data for H3K27ac
(“GSM5345550”116), H3K27me3 (“GSM5345534”116), H3K36me3
(“GSM5345454”116), H3K4me1 (“GSM5345374”116), H3K4me3
(“GSM5345406”116), H3K9me3 (“GSM5345502”116), were acquired from
“GSE175752”116 and p53 (“GSM2677386”117) ChIP-seq was acquired from
“GSE100292117”. WGBS (“GSM3394824”118) data for RPE1 was acquired
from “GSE120140”118. NCBI genome annotation files for GRCh38 were
downloaded from Illumina iGenomes [http://igenomes.illumina.com.s3-
website-us-east-1.amazonaws.com/Homo_sapiens/NCBI/GRCh38/
Homo_sapiens_NCBI_GRCh38.tar.gz]. A gene annotation GTF file was
acquired from Gencode Release 36 for the reference chromosomes
[https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_
36/gencode.v36.annotation.gtf.gz]. A repeatMasker.txt (2021-09-03) file
was downloaded from the UCSC table browser [https://genome.ucsc.
edu/cgi-bin/hgTables]. MER11B and LTR12C consensus sequences were
acquired from RepBase [https://www.girinst.org/repbase/update/index.
html]. GRCh38 chromosome sizes file (2020-03-13) file was downloaded
from UCSC [https://hgdownload-test.gi.ucsc.edu/goldenPath/hg38/
bigZips/latest/]. Unified GRCh38 blacklist BED file (“ENCFF356LFX”69,
release 2020-05-05) was downloaded from “ENCODE [https://www.
encodeproject.org/]”. Transcription factor motifs were acquired from
JASPAR 2022 CORE non-redundant vertebrate annotations [https://
jaspar.genereg.net/download/data/2022/CORE]. The position weight
matrices in MEME format were used for downstream motif analyses.
Motif-clustering data was downloaded from [https://resources.altius.
org/~jvierstra/projects/motif-clustering-v2.0beta/]. TCGA cancer type-
specific ATAC-seq peak sets were acquired from [https://gdc.cancer.
gov/about-data/publications/ATACseq-AWG]. Roadmap 25-state chro-
matin model bed files for 127 cell types were acquired from [https://
egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/
ChmmModels/imputed12marks/jointModel/final/]. Source data are
provided with this paper.

Code availability
The R scripts used in the analysis are publicly available in https://
github.com/Karttune/Karttunen_Patel_et_al.
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