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Summary
Background Although Deep Neural Networks (DDNs) have been successful in predicting the efficacy of cancer drugs,
the lack of explainability in their decision-making process is a significant challenge. Previous research proposed
mimicking the Gene Ontology structure to allow for interpretation of each neuron in the network. However, these
previous approaches require huge amount of GPU resources and hinder its extension to genome-wide models.

Methods We developed SparseGO, a sparse and interpretable neural network, for predicting drug response in cancer
cell lines and their Mechanism of Action (MoA). To ensure model generalization, we trained it on multiple datasets
and evaluated its performance using three cross-validation schemes. Its efficiency allows it to be used with gene
expression. In addition, SparseGO integrates an eXplainable Artificial Intelligence (XAI) technique, DeepLIFT,
with Support Vector Machines to computationally discover the MoA of drugs.

Findings SparseGO’s sparse implementation significantly reduced GPU memory usage and training speed compared
to other methods, allowing it to process gene expression instead of mutations as input data. SparseGO using
expression improved the accuracy and enabled its use on drug repositioning. Furthermore, gene expression allows
the prediction of MoA using 265 drugs to train it. It was validated on understudied drugs such as parbendazole and
PD153035.

Interpretation SparseGO is an effective XAI method for predicting, but more importantly, understanding drug
response.
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Introduction
The rise of -omics and clinical data, coupled with the
urgency to find unambiguous solutions for patients, has
boosted the use of deep learning algorithms in the
biomedical world. The problem now is not finding “the
cure” for cancer, but the optimal treatment for a patient
given their genome and clinical history. Deep learning
(DL) algorithms collect these huge amounts of clinical
data and provide very accurate solutions by establishing
relationships between the neurons in a network. How-
ever, in a clinical context, an excellent prediction is not
enough. Understanding a drug’s mechanism of action
(MoA) is essential for several reasons, such as deter-
mining the adequacy of dose and latency of response,
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identifying which patients are most likely to respond to
it, and understanding its side effects.1–3 Knowing the
MoA can even lead to the development of drugs and
strategies for combination therapies.1–3

Current MoA studies involve high-dimensional
profiling techniques.2,4 These methods generally
involve the preparation of treated and untreated sample
sets, profiling or screening of the samples, filtering of
pertinent information, and comparison of information
between states, making them time-consuming and
requiring high-throughput technologies.2,5 Although
these techniques are now being combined with AI
methods to interpret the results, researchers still need to
devote a lot of resources to developing the right assay
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Research in context

Evidence before this study
Drug response requires a thorough understanding of its
mechanism of action (MoA). Current studies of MoA involve
high-dimensional profiling techniques, and there are limited
approaches that use computational prediction. Deep neural
networks have demonstrated their potential in predicting drug
response. Some of them (DrugCell) use the Gene Ontology
hierarchy to understand the roles of the inner nodes of the
neural network. Using this information, the MoA of some
drugs is predicted and is concordant with previous knowledge.
Unfortunately, these networks require large amounts of GPU
memory that limits its use in genome-wide -omics.

Added value of this study
The first added value of this study is methodological:
SparseGO makes very efficient use of GPU resources (both in
terms of memory and computing power). It drastically
reduces the time to train the network and, more importantly,
permits the use of full-genome information without
exhausting the GPU memory. With the ability to use a very
large number of omics variables as input, SparseGO
demonstrates remarkable flexibility in mimicking any
ontology, enabling it to accurately predict drug response and

MoA. In addition, the use of an explainable artificial
intelligence technique, DeepLIFT, improves the discovery of
the MoA and provides insights into the contributions of
individual features and neurons to the model’s output. Its
performance regarding the prediction of drug efficacy is
demonstrated through testing on diverse datasets and using
different cross-validation techniques. Its performance in the
prediction of MoA is also systematically computed using a
cross-validation scheme. The accessibility and promising
performance make it a valuable tool for researchers and
clinicians alike.

Implications of all the available evidence
SparseGO can predict drug response and MoA, helping to
accelerate the development of effective treatments and
improve patient outcomes. The structure can be modified to
suit researchers’ needs and, using expression data, our model
can even be used for drug repositioning. The results also show
that it is still difficult to model the efficacy of a drug using
only their chemical characteristics. As we continue refining
and improving it, we believe it has the potential to replace
traditional drug sensitivity tests or even lead to the
development of drugs.
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conditions, avoiding technical errors, and identifying
key readouts.2 Efforts should be made to develop
methods based mainly on computation to provide the
MoA of a drug with fewer resources.

With this aim, the Ideker Lab introduced the concept
of visible neural networks6 (VNNs). VNNs are algo-
rithms that structure deep neural networks using
knowledge of human cell biology. They later built
DrugCell,7 a VNN structured according to the Gene
Ontology (GO) hierarchy that simulates the response of
human cancer cells to drugs and reveals the most
important biological processes involved in the response
to a particular drug. The model can estimate with good
precision the efficacy of a compound using as input the
mutational status of a cell line (using 3008 genes) and
the Morgan fingerprint8 of the drug. In the model, each
subsystem (GO term) of the hierarchy is represented by
a layer of the VNN that includes its child subsystems
and its directly annotated genes.7 The model can accu-
rately predict drug response. However, the imple-
mentation limits its computational efficiency.
Improving the economy of computational resources
would allow larger numbers of features and samples
which, in turn, result in more descriptive models.

Additionally, DrugCell’s customized method for
interpreting the network -Relative Local Improvement in
Predictive Power (RLIPP)- has been validated only in
some drugs. The model used the RLIPP score to predict
the MoA of drugs with the computed weights of the
VNN. The RLIPP compares the performance of two
L2-penalized linear regression models for predicting the
drug response: one uses the weights of a GO term as
parameters and the other uses the weights of its chil-
dren. The method indicates if the weights of a term are
more important than those of their children.6 If this is
the case, the origin of the improvement is the nonline-
arity of the transfer function of a neuron in the network.
RLIPP only considers the node weights of the parent
and its children, and not the relationships between all
nodes. Furthermore, although the method is well
described, its readily implementation is not publicly
available.

Intending to obtain a more efficient and descriptive
model, Huang et al. developed ParsVNN.9 This method
prunes redundant components of the DrugCell model
and builds highly parsimonious and interpretable sparse
models. The pruning is guided by cell line specific
training data, resulting in cancer-specific models that
require low storage memory and low prediction time.
The models, however, can only be used to study one type
of cancer, and the pruning process is computationally
expensive. In addition, as it occurs for DrugCell, the
incorporation of more genomic data (such as more
mutations, gene or even isoform expressions) is not
straightforward since it is limited by current specifica-
tions of hardware.

The goal of this work is to build a competent and
biologically interpretable neural network that 1) provides
accurate drug response predictions for any cancer cell
line, 2) uses any chosen set of mutations or expression
www.thelancet.com Vol 95 September, 2023
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data, 3) optimizes GPU memory requirements, 4) opti-
mizes training and testing time, and 5) provides accu-
rate explanations of the network decisions.

To accomplish the last objective, we explored
eXplainable Artificial Intelligence (XAI), a branch of
machine learning (ML) that attempts to explain why
algorithms make their decisions.10 Attribution
methods11–13 are algorithms that rank the importance of
the nodes in a network to get a specific result and thus
open the “black box.” In addition, since networks are
interpretable, their behaviour can be validated by
humans which, in turn, increases confidence in the
results.14 In this case, to predict the MoA of drugs, we
propose to use the DeepLIFT11 attribution method, an
XAI approach to identify which neurons in the network
are critical for making a prediction.

SparseGO meets all these objectives. Using sparse
layers, it reduces the amount of computational re-
sources needed. As a result, the input layer can be much
larger: we have tested it using both mutations (3008
genes) and expression (around 15,000 genes). The re-
sults using mutations demonstrate remarkable similar-
ity (with a favourable advantage for SparseGO) to those
of a state-of-the-art model (DrugCell) when using an
identical input layer and require only a fraction of the
time to train the network. To improve generalization
and accuracy, we trained another model with an addi-
tional dataset and tested it on a separate dataset. Addi-
tionally, the use of expression data increases the
performance of the model and enables it to be used for
drug repositioning. We also developed a method named
DeepMoA that accurately predicts a drug’s MoA using
DeepLIFT findings and MoA annotations collected from
the ‘ChEMBL protein target slim’15 and the Cancer
Therapeutics Response Portal v2 (CTRPv2).16 The accu-
racy of the MoA prediction method was computationally
tested on 265 drugs (using a train-validation-test
scheme). To confirm that our algorithm can infer how
drugs exert their therapeutic effects, we also examined
the results for some non-annotated drugs and found
that they agree with those obtained from in vivo tests or
other studies in the literature.
Methods
SparseGO’s architecture
SparseGO was designed based on DrugCell’s two-
branch structure, which includes a VNN that captures
the hierarchical relationships of the GO graph, and an
Artificial Neural Network (ANN) that integrates the
Morgan fingerprint8 of the compounds (Fig. 1). It is
important to note that while the ANN architecture in
SparseGO is comparable to DrugCell, the layers of our
VNN differ significantly.

To generate a response for a specific drug, the output
of both branches is combined and integrated into
another fully connected network. The predicted
www.thelancet.com Vol 95 September, 2023
continuous value represents the area under the dose-
response curve (AUDRC) normalized such that
AUDRC = 0 represents complete cell death, AUDRC = 1
represents no effect, and AUDRC > 1 represents that the
treatment favours cell growth.7

SparseGO uses a sparse matrix representation to
depict the connections of the GO hierarchy. A matrix is
sparse if most of its entries are null. There are different
methods to store sparse matrices. All of them (if the
proportion of null entries is large) require less memory
to store and are more efficient when performing com-
putations (since zeros can be skipped in many opera-
tions). This matrix representation was used to create a
neural network of sparse linear layers.

Using this architecture, we developed three models.
The first model closely resembles DrugCell, utilizing
mutations as the input. The other two models incorpo-
rate either mutations or gene expression as inputs, with
some modifications implemented to enhance the pre-
diction of drug response.

The VNN branch
The structure of the VNN shown in Fig. 1, is created by
known parent-child relationships drawn from a domain
of the GO hierarchy. The lowest level of the hierarchy
contains the genes, and the higher levels contain the GO
terms, starting from the most specialized terms to the
most general (or root term). Genes are linked only to the
terms in which they are annotated. To maintain a
reasonable size of the hierarchy, we imposed that each
term be annotated to a minimum number of genes (to
avoid overly specific terms) and that a minimum num-
ber of those genes be different from those of their
children (to avoid parents with genes annotated nearly
identical to those of their children). Additionally, the
network can only have a limited number of parent-child
relations above the bottom layer subsystems. These
three parameters are user-defined. If a term does not
meet the criteria, it is deleted, and its children terms and
annotated genes are assigned to their parent terms.

To ensure a fair comparison, we adopted the
ontology used in DrugCell for the two mutation models,
which was created similarly. For the expression model,
terms were retained if they had at least 5 annotated
genes and at least 10 genes different from those of their
children (if they have any). Finally, the hierarchy was
restricted to a maximal depth of 8 subsystems.
Furthermore, as depicted in Fig. 1, each GO term is
represented by a set of k neurons, enabling it to
encompass a diverse range of values. In all models, we
employed six neurons (chosen using hyperparameter
tuning) to define each GO term.

Given that the GO is structured as a directed acyclic
graph, it is important to consider that a GO term can
have relationships with parent terms that are not directly
above it. SparseGO uses sparse matrices that represent
layer-layer connections. To overcome the constraint of
3
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Fig. 1: SparseGO architecture. The network has two branches: an artificial neural network that takes the Morgan fingerprint of a drug as input,
and a sparse VNN that takes the gene expression or mutations of a cell line as input. In the VNN, each GO term is represented by “k” nodes,
where the hyperparameter “k” is set to 6 (in all cases). The connections between the layers of the hierarchy are represented using sparse
matrices. The output of the network corresponds to the cell line’s viability, measured by the area under the dose-response curve. To assess the
significance of the VNN nodes, we employed the DeepLIFT method.
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terms being connected only to adjacent layers, we
introduced virtual nodes as needed to establish con-
nections between terms that are not directly adjacent.
Fig. 2a is a subset of the GO hierarchy and Fig. 2b
shows the same network including some virtual terms
to represent the same ontology using only connections
between adjacent layers.

The output of each layer of the VNN is represented
by the vector O(s):

O(s) = f (W(s)I(s) + b(s))

For the bottom connected levels (first layer), W(s)

represents the sparse weight matrix of dimensions (k*p)
x g, k is the number of neurons assigned to each sub-
system, p is the number of terms on the parent level,
and g the total number of genes. The weight vector b(s)

has dimension (k*p). For this layer, the input vector I(s)

is the mutational state or gene expression vector. The
function f is a non-linear transformation based on the
hyperbolic tangent.

For all the other layers, W(s) represents the sparse
weight matrix of dimensions (k*p) x (k*c) and b(s) the
weight vector of dimension (k*p), where p is also the
number of terms on the parent level and c the number of
terms on the child level. The input vector I(s) represents
the output of the previous layer. There are additional
batch normalization layers that standardize the inputs
making the training process faster and more stable.

In one of the mutation models, the batch normali-
zation layers are positioned after the activation layers
(Fig. 3a), to resemble DrugCell. However, experimental
results indicated that incorporating the Independent-
component (IC) layer developed by Chen et al.17 led to
improved performance by reducing overfitting. This IC
layer combines Batch Normalization and Dropout and is
placed before the weights layer (Fig. 3b). The purpose of
this layer is to enhance the stability of the training
process, accelerate convergence speed, and improve
generalization performance.17

The drug’s branch
The ANN architecture of the mutation models consists
of three fully connected hidden layers, comprising 100,
50, and 6 neurons, respectively. In contrast, as the gene
expression models have a larger input in the VNN, the
size of the VNN output branch is set to 30 instead of
the 6 neurons used in the mutation models. Conse-
quently, the size of the ANN is increased to 200, 100,
and 50 neurons. As illustrated in Fig. 1, the last neurons
of the final layer in the ANN are concatenated with the
last neurons of the final layer in the VNN. These
www.thelancet.com Vol 95 September, 2023
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Fig. 2: Example of hierarchy. (a) Example of part of a hierarchy structured as in GO. (b) Hierarchy “a” with the addition of “virtual nodes”, dashed
lines represent virtual connections and dashed terms represent “virtual nodes”. In the network, connections between layers are represented with
sparse matrices. No connection are allowed between non-adjacent layers.
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concatenated neurons are then connected to an addi-
tional layer of neurons, which ultimately feed into a final
layer consisting of a single neuron. The activation
function used in these layers is the hyperbolic tangent,
and depending on the approach, batch normalization
layers or IC layers are also included.

Table 1 summarizes the dimensional characteristics
of the layers in the models.

Data acquisition and processing
The model presented relies on two input vectors: the
mutations or expression data of the cell line and the
Morgan fingerprint of the drug. With these inputs,
the model predicts the drug response, which is mea-
sured as the AUDRC. The AUDRC values are calculated
from raw data obtained through screening experiments.
The process of data acquisition is described below.
Fig. 3: (a) Layer order similar to the DrugCell model, the batch
normalization layer is placed after the activation layer. (b) Layer order
as suggested by Chen et al. the IC layer is placed before the weight
layer.

www.thelancet.com Vol 95 September, 2023
Drug sensitivity datasets
Traditionally, many machine learning algorithms
employed for personalized cancer treatment rely on CV
within a single study to assess the accuracy of their
models. However, as studied in,18 it has been well-
documented that there are inconsistencies in genomic
and response profiling across different studies. Conse-
quently, relying solely on training with a single study
may lead to an overestimation of the prediction
performance.18

To address this issue, the DrugCell model was
trained using 509,294 cell line-drug pairs from two
publicly available datasets: CTRPv2 and Genomics of
Drug Sensitivity in Cancer 1 (GDSC1). To make a fair
comparison, we trained one of the mutation models
using the same data. However, in the rest of the study,
we took a different approach. We developed joint
models by incorporating three publicly available data-
sets: CTRPv2, GDSC1, and Genomics of Drug Sensi-
tivity in Cancer 2 (GDSC2). In addition to conducting
CV tests, we evaluated the generalization ability of our
models by predicting on an independent dataset known
as Profiling Relative Inhibition Simultaneously in Mix-
tures (PRISM).19 This dataset contains non-oncological
drugs tested on cancer cell lines. This evaluation
enabled us to assess the performance of our models on
an entirely disparate dataset, thereby gauging their
effectiveness in handling unseen data.

The characteristics of the drug response datasets
used is shown in Table 2. We included only the cells and
drugs for which we were able to obtain their corre-
sponding genomic data from the Cancer Cell Line
Encyclopedia (CCLE)20 and their Simplified Molecular
Input Line Entry System (SMILES) representations,
5
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VNN input size GO terms Neurons per GO term Drug branch layer sizes Output neurons
(final VNN layer)

Output neurons after concatenation
(before the output)

Mutation models 3008 2048 6 100, 50, 6 6 6
Expression model 14,457 4840 6 200, 100, 50 30 40

VNN input size specifies the total number of features that represent the cell lines. GO terms represents the number of GO terms used to create the ontology. Neurons per
GO term represents the number of neurons associated with each GO term. Drug branch layer size denotes the sizes of the layers in the drug branch. Output neurons (final
VNN layer) indicates the number of output neurons in the final VNN layer, and Output neurons after concatenation (before the output) specifies the number of output
neurons in the layer obtained by concatenating both the drug and VNN branches of the model.

Table 1: Characteristics of the model layers depending on the input data.
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respectively. We also excluded dose response samples
that had missing concentrations or viability values for a
given dose.

Morgan fingerprint encoding
To represent the chemical structure of drugs, we ob-
tained the SMILES notation for each compound from
PharmacoGX21 and PubChem,22 if no initial matches
were found we manually annotated them. Then, we
calculated the Morgan fingerprint (radius = 2) using
RDKit (http://www.rdkit.org/), which was then hashed
into a bit vector of length 2048 for model training. The
same methodology was employed for training
DrugCell.7

Genomic data processing
For the mutation models, we used the same genomic
data as DrugCell. They obtained non-synonymous cod-
ing mutations previously annotated by the CCLE and
filtered the dataset to represent only the top 15% most
frequently mutated genes (n = 3008). They represented
each cell-line genotype as a bit vector indicating the
mutational status of each gene in that cell line (0 = wild
type; 1 = mutated).7

To obtain the gene expression data, we used the
Transcript Per Million (TPM) 22Q2 RNAseq gene
expression dataset (TPM_22Q2) also created by the
CCLE. This dataset includes data from 19,221 genes,
1406 cell lines, 33 primary diseases and 30 lineages.
Expression is represented as the numerical protein
coding gene expression change at scale (log2 (TPM + 1)).
We only used the expression values of genes that had
Gene Ontology annotations so that we could incorporate
them into the sparse VNN. In total 14,457 genes were
used for each cell-line.
Study Cells with available CCLE genomic data Drugs with ava

CTRPv2 793 544

GDSC1 620 294

GDSC2 539 172

PRISM 453 1437

Table 2: Characteristics of drug response studies used.
Drug response integration
During drug screening experiments, raw data is
collected to measure the survival or viability of cells at
different drug concentrations. This serves as the basis
for calculating various metrics such as IC50, AUDRC, or
AADRC (area above the drug response curve), which
provide insights into the drug’s efficacy and potential
toxicity.

In the mutation model created for comparison with
DrugCell, we employed the same AUDRC calculation
method as DrugCell, referred to as AUDRC1. This
method involved applying the trapezoidal rule to inte-
grate the dose-response curve. The minimum and
maximum concentrations considered for each experi-
ment were determined based on the specific experi-
ment’s range.

However, we encountered a limitation when
comparing data from different experiments that tested
the same drug at varying doses. The former approach led
to counterintuitive results, where experiments with
identical outcomes for overlapping concentrations yielded
different AUDRC1 values simply due to differences in
their maximum and minimum concentration ranges.

To address this limitation and facilitate comparison
across the different datasets used, we slightly modified it.
We standardized the minimum and maximum concen-
trations for all drugs to 100 pM and 100 μM, respectively.
Instead of relying on the trapezoidal rule, we employed a
four-parameter logistic regression model using the dr4pl
package.23 This allowed us to accurately model the dose-
response curve and numerically integrate the fitted curve
to calculate the AUDRC. This alternative approach
(AUDRC2) demonstrated a slight improvement in the
correlation between datasets compared to the trapezoidal
rule (these results are not presented here).
ilable SMILES Dose response pairs Viability assay

351,922 CellTitreGlo

191,585 Resazurin or Syto60

135,993 CellTitreGlo

690,995 PRISM Repurposing assay

www.thelancet.com Vol 95 September, 2023
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Table 3 presents the key characteristics of the data-
sets used for training and testing the models.

Models training and evaluation
Cross-validation schemes
To ensure model generalization and robustness, we
employed a five-fold cross-validation approach. Four
groups were used for training, while the remaining
group was reserved for testing. Additionally, from the
training data, a subset of samples was extracted for
validation purposes. We adopted three different
methods of separating the data for the CV folds. Two of
these approaches focus on evaluating the model’s ability
to predict drug sensitivity data for previously unseen cell
lines and compounds. These tests are particularly chal-
lenging as they assess the model’s performance on
completely different data.

The dose response pairs from CTRPv2, GDSC1, and
GDSC2 were merged to create a unified dataset, which
was used for the CV. For further testing, we evaluated
the generalization performance of our models by using
the PRISM dataset.

1) Standard approach: The standard approach involves
randomly splitting the dose response pairs in K
groups. One is removed from the training set and
used for prediction (Fig. 4a). This approach predicts
the performance of drugs (within the training set)
when used on cells (also within the training set),
even if the specific combination of drug-cell line is
not included in the training set. This approach was
employed by DrugCell.

To perform a similar test using the independent
dataset (PRISM), we selected drugs and cell lines that
were common to both the training dataset and PRISM.
We then predicted the AUDRC2 for these drugs in
PRISM using our fully trained model (trained with all
the available samples).

2) LEave-Lines-Out (LELO): Here, cell lines are split
into K groups. In this case, the model is trained
with some cell lines and predicts the effect of drugs
Dataset Studies included T

DrugCell CTRPv2, GDSC1 5

SparseGO (mutations) CTRPv2, GDSC1, GDSC2 6

SparseGO independent test (mutations) PRISM 6

SparseGO (expression) CTRPv2, GDSC1, GDSC2 6

SparseGO independent test (expression) PRISM 6

Studies included lists the studies that were incorporated. Total dose response pairs indic
pairs if present. Drug response metric specifies the metric used to measure the drug re
unique cell lines included in the dataset. Features describes the type of features associa

Table 3: Overview of the characteristics of the datasets created for training
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in cell lines excluded from the training set (Fig. 4b).
This scenario is designed to mimic situations where
the model is employed to extrapolate the data to
unseen cell lines, making it particularly suitable for
drug repositioning purposes.

As we could not find data from different cell lines for
PRISM, we did not perform a test with the independent
dataset.

3) LEave-Compounds-Out (LECO): In this approach,
drugs are split into K groups. The model is trained
with some drugs and predicts the drug response in
the cell lines for drugs not used in the training set
(Fig. 4c). This approach is ideal for in-silico drug
sensitivity testing. However, as compounds have
very different response patterns and chemical
characteristics, this scenario is more challenging
compared to the previous ones.18

In the case of the independent dataset test, we
selected drugs from the PRISM dataset that were not
included in our training dataset (1144 drugs). Then, we
used our fully trained model to predict the AUDRC2
values for these selected drugs.

Parameters of the model
The cost function used for SparseGO training is the
mean squared error between the measured and pre-
dicted AUDRC, with the standard gradient descent
optimization procedure using a momentum of 0.9. The
models were trained with a decay rate of 2e-3 and a
learning rate of 0.1. In the models that included dropout
layers, a dropout rate of 15% was applied, which
randomly deactivated 15% of the neurons. The perfor-
mance of the models was measured using Pearson’s
correlation between the actual and predicted drug re-
sponses in the test data. All training runs used 400
epochs and a batch size of 20,000 samples. We per-
formed hyperparameter tunning to choose the best
model parameters. Training was performed with a
maximum of 15 GB of RAM and an NVIDIA GeForce
RTX 3090.
otal dose response pairs Drug response metric Drugs Cell lines Features

09,294 AUDRC1 684 1125 Mutations

95,501 AUDRC2 790 885 Mutations

88,446 AUDRC2 1432 459 Mutations

79,500 AUDRC2 790 852 Expression

90,995 AUDRC2 1432 461 Expression

ates the total number of sets of dose-response samples obtained from the combined studies, including duplicate
sponse. Drugs represents the number of unique drugs included in the dataset. Cell lines indicates the number of
ted with the cell lines in that particular dataset.

and testing the different models.

7
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Fig. 4: Cross-validation approaches. Examples of the different approaches to estimating model performance. (a) In the standard approach, cell
line-drug pairs are randomly selected. (b) In the LELO approach, some cell lines are chosen for training and the rest for testing. This method
simulates a drug repositioning experiment. (c) In the LECO approach, some compounds are chosen for training and the rest for testing. This
approach provides unbiased estimates of the predicted AUC when predicting the effect of an unseen drug on a cell line.

Articles

8

Identification of drug-specific mechanism of action
The primary aim of SparseGO is to ensure interpret-
ability by understanding the MoA of drugs. To achieve
this, we devised a methodology that uses SVMs models
generated from the output of the XAI algorithm,
DeepLIFT. For training the models, we leveraged MoA
labels for some compounds extracted from the
‘ChEMBL protein target slim’ and CTRPv2 datasets.

DeepLIFT (Deep Learning Important FeaTures) is a
method that compares the activation of each neuron
with a reference activation and assigns contribution
scores according to the difference.11 In this case, the
reference activation chosen was the median of the
expression data and the fingerprint of glucose. We chose
glucose because we wanted to contrast the drug’s effect
with that of a cellular-beneficial substance. DeepLIFT
backpropagates “the contributions of all neurons in the
network to every feature of the input”.11 Both the input
layer and the internal layers are given an attribution
score. DeepLIFT addresses the saturation problems that
appear on other perturbation-based and gradient-based
approaches.6 We used DeepLIFT to compute scores for
all neurons of SparseGO’s VNN branch by introducing
the gene expression of all cell lines and the drugs to the
trained SparseGO model.

First, to assess whether the DeepLIFT scores were
informative for MoA identification, we followed the
visualization approach used by Jang et al.5 that mapped
drug scores in a low-dimensional vector space. To
visualize the DeepLIFT, we used the T-SNE algorithm.24

This technique allowed us to reduce the dimensionality
of the DeepLIFT scores and represent them in a visually
interpretable format. We retrieved known classifications
for certain drugs, such as inhibitor types, from clue.io
(https://clue.io/). Then, we selected and plotted those
drugs whose classification was shared by 2 or more
drugs. To identify clusters within the vector space and
gain insights into the relationships between drugs, we
employed mclust,25 an R package that facilitates model-
based clustering using finite Gaussian mixture models.
By applying this clustering algorithm, we were able to
detect meaningful patterns and groupings in the visu-
alized DeepLIFT score data.

After ensuring that the DeepLIFT scores could
provide relevant insights, we developed the DeepMoA
method. The framework of the method is depicted in
Fig. 5. First, the trained SparseGO model is fed with
the fingerprint of a drug as well as the gene expression
of all cell lines (section 1 of Fig. 5). Next, the VNN
branch is subjected to the DeepLIFT algorithm, which
calculates the significance of the GO terms for each
cell line. This procedure is repeated for each of the six
neurons representing each GO term. In the end, each
cell line has six importance scores per each GO term.
The process is performed for all drugs by varying the
Morgan footprint of the input vector. The resulting 3D
tensors include the GO term attribution for each cell
line-drug pair (section 2 of Fig. 5). As noted, each GO
www.thelancet.com Vol 95 September, 2023
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Fig. 5: DeepMoA framework with a toy example of how a model is created. 1) The trained SparseGO model is fed a drug’s Morgan fingerprint
and gene expression data from all cell lines. DeepLIFT determines the significance of the n-th neuron of each GO term for each cell line for a
particular drug (the one corresponding to its Morgan fingerprint). This process is repeated for each drug changing the Morgan fingerprint
accordingly. The purple array corresponds to the attribution of the 6th GO:XXXXX neuron of all cell lines for a given drug. 2) The resulting 3D
tensors include the GO term attribution for each cell line-drug pair. Each GO term is represented by six neurons, resulting in six 3D tensors. The
colored matrices represent the attribution of GO:XXXXX. 3) The scores for each drug are aggregated by adding the scores of all cell lines. Then,
the attribution of each of the neurons of a term is divided by its standard deviation. The colored arrays after normalization are the features that
will be used to predict whether GO:XXXXX is one of the MoAs of a drug. 4) The MoA labels are extracted from ChEMBL and CTRPv2. Some
drugs are not annotated (unknown MoA labels). 5) MoA labels are extended upward, i.e., if a drug is annotated to a GO, it will also be an-
notated to all its ancestors. 6) Finally, for each GO term, an SVM model is created using the features and labels for drugs with known MoA. The
two-dimensional representation of the SVM decision boundary of GO:XXXXX is shown.
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term is represented by six neurons, resulting in six 3D
tensors.

We then added the cell line scores to maintain a
global view of the importance of neurons, which results
in six attribution scores per GO term for each drug
(section 3 of Fig. 5). Then, the attribution of each of the
neurons of a term is divided by its standard deviation.
These scores were used as input parameters (indepen-
dent variables) of the SVM models.

On the other hand, we obtained the MoAs to be
predicted (dependent variables) of the models from
‘ChEMBL protein target slim’ and CTRPv2. ‘ChEMBL
protein target slim’ is a GO-based tool that collects
www.thelancet.com Vol 95 September, 2023
biological information about drug target proteins from
ChEMBL.26 First, from all the drugs, we selected those
that were annotated in ChEMBL and extracted their
target proteins (if known). The tool provides the GO
terms annotated to those proteins.15 Not all target
proteins have GO terms associated with them. In
contrast, the CTRPv2 database already contains GO
annotations for some drugs, so we simply extracted
them. Then, we extended all the annotations upward,
i.e., if a drug is annotated to a GO, it will also be an-
notated to all its ancestors. As a result, we obtained a
matrix containing the annotated GO terms (MoA la-
bels) of some drugs.
9
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Finally, we tested whether DeepLIFT attribution
scores could predict the MoA labels using RBF Kernel
SVM models. Fig. 5 describes a simplified example of
how the SVM decision boundary is built for a GO
term, in which the scores of the six GO:XXXXX
neurons are used as parameters to determine whether
a drug has GO:XXXXX as its MoA. We set the RBF
kernel parameters C and γ to 1 and the inverse of the
number of features times the variance of the features
(suggested values by scikit-learn27), respectively. Us-
ing different values did not improve the performance.
To address class imbalance, we added weights to the
regression inversely proportional to the class fre-
quencies (again, as suggested by scikit-learn). We
scaled the output of SVM models to probability values
via Platt scaling. When using Platt scaling, SVM out-
puts are transformed into probabilities by tuning the
parameters of a sigmoid function.28 The adoption of
Platt scaling was essential as we required probabilities
to compare the performance across different drugs.

Using this information, we built SVM models for
all GO terms that were annotated in at least 16 drugs
(fewer annotations do not allow the creation of accu-
rate models). To properly evaluate the models’ per-
formance, we used a 4-fold cross-validation method.
We divided the drugs into 4 groups, 3 for training and
1 for testing at each fold. Then we computed the
AUROC for each SVM model to compare the true
MoA labels of a GO term with the predicted proba-
bilities of the same GO term (performance by GO
terms) and the AUROC to compare the true MoA la-
bels with the predicted probabilities of each drug
(performance by drugs).

Feature importance
The DeepLIFT method assigns an attribution score to all
neurons including the input data. In our study, it is
challenging to interpret how the individual elements of
the Morgan fingerprint relate to specific substructures
of the molecule, thereby limiting the informativeness of
the scores derived from it. In contrast, for the cell lines,
each feature directly corresponds to a gene, which
makes it easier to comprehend their significance. By
applying DeepLIFT, we extracted the scores associated
with each gene and analysed their importance in pre-
dicting the AUDRC2.

As before, the trained SparseGO model takes as
input the drug’s fingerprint and the gene expression of
all cell lines. By adding the cell line scores, we obtained
a score for each gene associated with each drug. This
analysis allowed us to investigate the significance of
individual genes in predicting the AUDRC2 for a spe-
cific drug.

Role of funders
Funding sources were not involved in the development
of this work.
Results
In this section, we present the findings of our study
using SparseGO. First, we demonstrate the superior
computational performance of SparseGO. Additionally,
we compare the results of SparseGO using mutations
and gene expression as input under the three CV
schemes. Lastly, we showcase the interpretability of the
model achieved through the application of XAI
techniques.

SparseGO outperforms DrugCell in computational
resource efficiency
For the sake of comparability, we first trained SparseGO
with the data used to train DrugCell. We trained and
cross-validated both models using very similar training
conditions and by structuring them with the same GO
hierarchy (3008 gene mutations and 2086 GO terms).
We also used the same characteristics in the ANN
branch. As shown in Fig. 6a, SparseGO’s and Drug-
Cell’s predictions were similar: the overall accuracy of
Spearman’s correlation between predicted and actual
AUDRC1 values increased slightly in SparseGO (Drug-
Cell’s correlation was 0.777 and SparseGO’s was 0.784).
These results are very similar to the one reported by the
authors of DrugCell (ρ = 0.8). Since the structure of the
neural network is equivalent, the difference in perfor-
mance is very small. Moreover, it is particularly note-
worthy that, when compared to DrugCell, SparseGO
uses 80% less training time, 96% less testing time, 94%
less GPU memory, and 96% less storage memory
(Fig. 6b).

Then, to ascertain how many of the drugs in the
dataset have high prediction accuracy (ρ > 0.5), we
calculated each drug’s individual performance. As
shown in Fig. 6c, for DrugCell, the calculated proportion
of drugs with high confidence in the predictions was
32%, and it was 35% for SparseGO. Results are, in this
case, also slightly better using fewer resources.
Vincristine, a common anti-microtubule agent, has the
best predictive performance in both algorithms, with a
correlation larger than 0.8. ML-030, KX2-391, and the
combination of tanespimycin with docetaxel are also
among the drugs whose effects are best predicted by
both networks, highlighting once more the similarity of
the models.

There is a striking difference between the overall
correlation (around 0.8) and the average correlation for
each drug (around 0.4) for both DrugCell and Spar-
seGO. The meaning of this result is that, despite both
methods can recall the overall effectiveness of a drug, it
is much more difficult to find out the specific cell-lines
that are more sensitive or resistant to each drug.

Thorough analysis of the quality of predictions
After obtaining favourable results when comparing
SparseGO with a state-of-the-art model, we proceeded to
further enhance our model’s generalizability. To achieve
www.thelancet.com Vol 95 September, 2023
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Fig. 6: Comparison of SparseGO and DrugCell models. (a) Density plots showing predicted response (AUDRC1) versus actual response (AUDRC1)
for the SparseGO and DrugCell models. Yellow/red areas represent the highest density of points. (b) Resources comparison of SparseGO versus
DrugCell. (c) Waterfall plots of predicted performance of the AUDRC1 for each drug in the dataset, ranked from highest to lowest. High
confidence drugs (correlation > 0.5) are highlighted in green for SparseGO and blue for DrugCell. The insets show the performance of the 10
drugs with the highest correlations.
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this, we trained the model using the combined dataset
that incorporated the three studies and used the
AUDRC2 as the target variable. In addition, taking
advantage of the resource efficiency of our algorithm,
we incorporated gene expression. We performed a
comparative analysis between the use of mutation and
expression data by training with AUDRC2, employing
the three CV schemes that are adapted to different drug
experimentation scenarios.

Table 4 displays the Pearson correlation coefficients
between the measured and predicted AUDRC2 for both
the SparseGO CV (overall correlation across the five
folds) and the independent dataset test using either
mutation or expression data as input.

Standard approach
In the standard CV scheme, the overall Pearson corre-
lation between the measured and predicted AUDRC2
values by SparseGO using mutations was 0.814.
www.thelancet.com Vol 95 September, 2023
However, when using gene expression data, the corre-
lation increased to 0.84. The percentage of high-
confidence drug predictions was 20% when using
mutations. In contrast, when predicting using gene
expression, this value increased to 29% (Fig. 7). This
finding is significant, as it demonstrates that the use of
the expression model expands the range of more reliable
drug predictions. When compared to Fig. 6c, these
percentages are smaller, primarily because we used
AUDRC2 instead of AUDRC1 and trained the model
using three different studies, each employing diverse
screening assays.

For the independent dataset test, we first calculated
the Pearson correlation between the measured
AUDRC2 values in PRISM and the studies that were
part of the training datasets. This provided us with an
approximation of the highest correlation value that
could be achieved when predicting using the model. The
Pearson correlations between PRISM and CTRPv2,
11
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Model Type of validation Standard LELO LECO

SparseGO mutations Cross-validation 0.814 0.742 0.320

SparseGO mutations PRISM independent test 0.713 – 0.206

SparseGO expression Cross-validation 0.840 0.833 0.337

SparseGO expression PRISM independent test 0.710 – 0.193

Table 4: CV and independent test Pearson correlations for the different models.
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GDSC1, and GDSC2 were found to be 0.68 (n = 98,147),
0.653 (n = 75,652), and 0.667 (n = 83,320), respectively.
As presented in Table 4, the correlation between the
measured and predicted AUDRC2 values by SparseGO
in PRISM was 0.71, irrespective of whether mutations
or gene expression data were used. This demonstrates
that SparseGO constructs an ensemble model that has
improved extrapolation capabilities compared to any of
the previous datasets.

Drug-reposition approach: LELO
As evidenced by the metrics in Table 4, LELO and LECO
approaches are far more challenging than the standard
method. The LELO approach simulates a scenario where
the model is used for drug repositioning, involving the
evaluation of a drug’s efficacy on an unseen cell line.
When using the 3008 mutations as input, the overall
Pearson correlation achieved was 0.742, which further
improved to 0.833 when incorporating expression data.
This outcome emphasizes the importance of integrating
Fig. 7: Waterfall plots of predicted performance of the AUDRC2 for each
drugs (correlation > 0.5) are highlighted in green. (a) Waterfall plot using
expression data to enhance prediction accuracy in such
contexts. Notably, the performance using expression
data is comparable to that of the standard CV, indicating
that our model can effectively handle unseen cell lines.
However, it is important to note that the genomic data
used in our study was sourced from the same database
(CCLE), which reduces inconsistencies and streamlines
the training process.

In-silico drug sensitivity test approach: LECO
The LECO approach represents the most demanding
scenario. When using expression data, the correlation
between the measured and predicted AUDRC2 values is
only 0.337. Furthermore, when testing the model on the
PRISM dataset, which consists of 1144 different drugs,
the correlation drops even further to 0.193. Similar re-
sults were observed in the mutations model. This
outcome highlights that, at least using this approach, we
are still far from achieving a comprehensive in silico
simulation of the effects of drugs.
drug in the dataset, ranked from highest to lowest. High confidence
the mutation model. (b) Waterfall plot using the expression model.
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DeepMoA: predicting the mechanism of action
(MoA) using XAI
As stated, physicians need not only good predictions,
but also an understanding of why. The primary goal of
SparseGO is to be explainable, which is accomplished by
providing accurate predictions of the response to a drug
and the processes through which the drug produces its
effect. After the former was demonstrated, we imple-
mented DeepMoA, a method capable of predicting the
MoA of drugs using the trained SparseGO model.

Assessing the XAI approach
DeepLIFT is a XAI algorithm that identifies key neurons,
which in our case represent GO terms, that affect the
predicted values. As shown in Fig. 5, we used DeepLIFT
to compute scores for all neurons of SparseGO’s VNN
branch by introducing the gene expression of all cell
lines and the drugs to the trained SparseGO model. Each
cell line-drug pair is given a score, which we added to
maintain a global view of the importance of the neurons.
At the end of the computations, each drug has 6 scores
per GO term that are used as inputs to the SVMs.

First, we assessed whether these scores were infor-
mative for MoA identification. Using T-SNE(25) we
visualized DeepLIFT scores in a low-dimensional vector
space. A known classification for some drugs was
retrieved from clue.io.29 We selected and plotted those
drugs whose classification was shared by 2 or more
drugs (214 drugs). Each point in the figure represents a
two-dimensional representation of all scores for a drug.
We then used mclust30 to find clusters in that vector
space. Fig. 8 shows that several compounds sharing the
MoA are in the same cluster. For example, the pro-
jections of the scores between MEK inhibitors, between
EGFR inhibitors and between BCL inhibitors are
similar. After confirming that the DeepLIFT scores were
related to the MoA, we proceeded to create the Deep-
MoA method.

DeepMoA accurately predicts the MoA of any drug
To validate the DeepMoA method, we first determined
the AUROC for each SVM model to compare the true
MoA labels of a GO term with the predicted probabili-
ties of the same GO term (Fig. 9a). We found that more
than 48% of the SVMmodels have an AUROC higher or
equal to 0.70 (Fig. 9b). As shown, regulation of mito-
chondrial outer membrane permeabilization involved in
apoptotic signaling pathway, negative regulation of
execution phase of apoptosis and intracellular pH
reduction are among the best predicted MoAs. In
addition, when we examined performance by GO hier-
archy level (Fig. 9c), we discovered that the Area Under
the Precision-Recall curve (AUPR) is bigger for general
terms -i.e. it is easier to predict a general term than a
specific term. However, the AUROC -where the relative
size of the classes does not affect-shows that the
www.thelancet.com Vol 95 September, 2023
AUROC is slightly better for more specific terms
(Fig. 9c).

Then, we computed the AUROC to compare the
true MoA labels with the predicted probabilities of
each drug (Fig. 9a). In this case, almost all drugs had
an AUROC higher than 0.7 (Fig. 9d). This suggests
that when all models are used to predict for a certain
drug, most of the predictions are correct. For example,
Fig. 9d shows the confusion matrix obtained for a
given drug (selumetinib); there are 116 true positives
and 850 true negatives, versus 157 false positives and
only 1 false negative. The results obtained from
DeepMoA using mutations as input (shown in
Supplementary Fig. S1) are not sufficiently satisfactory
in terms of accuracy.

Findings on the top DeepMoA models
Despite the accuracy of the method being confirmed by
the AUROCs, we wanted to demonstrate the method’s
applicability by examining in depth three interesting GO
terms. We will examine three columns of the MoA
matrix, i.e., we will focus on GO terms with very accu-
rate predictions - according to cross-validation - and test
whether it is possible to predict these MoAs for unla-
beled drugs.

Regulation of ERK1 and ERK2 cascade (GO:0070372). The
ERK1/ERK2 cascade, known as the MAPK pathway,
plays a pivotal role in various cellular processes,
including cell proliferation, differentiation, survival, and
apoptosis. Dysregulation of this cascade has been
implicated in the development and progression of
multiple cancer types. Consequently, targeting the
ERK1/ERK2 pathway has emerged as a significant
strategy in cancer drug development.31 Among the an-
notated drugs, 22 of them are associated with
GO:0070372. As expected, these include kinase in-
hibitors like EGFR and HER2 inhibitors (e.g. lapatinib,
erlotinib), as well as EGFR and VEGFR2 inhibitors (e.g.
vandetanib, pelitinib). Fig. 10a demonstrates the suc-
cessful distinction of annotated drugs by the final SVM
model (test AUROC = 0.81), while also suggesting the
possibility of other unannotated drugs having the same
MoA. Notably, WZ4002, an EGFR inhibitor, has been
found to inhibit ERK1/2 in lung cancer32,33 and lung
adenocarcinoma cell lines.34 This information taken
from literature was not used during model training but
it was accurately predicted to exhibit this mechanism.
Similarly, literature shows CP-724714 partially inhibit
ERK1/2 phosphorylation in BT-47435 and SKBr3 breast
carcinoma cells.36 PD153035 has been identified as a
blocker of ERK1/2 signaling in a non-oncological
study.37 As shown in Fig. 10a, these drugs were pre-
dicted to have this MoA. Furthermore, a MET kinase
inhibitor (specific name not provided) was also pre-
dicted to have this MoA. Previous studies have shown
13
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Fig. 8: T-SNE projection of DeepLIFT scores for each drug. Each dot in the figure is a two-dimensional representation of all the DeepLIFT scores
of a drug. The color of the dots symbolizes the drug’s classification. The circles are clusters generated by mclust.
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that inhibitors of this type have demonstrated efficacy in
modulating the ERK1/ERK2 signaling pathway.38

Intrinsic apoptotic signaling pathway in response to endo-
plasmic reticulum stress (GO:0070059). Induction of
apoptosis through endoplasmic reticulum (ER) stress is
a commonly observed mode of action for cancer drugs.
ER stress sensors play a significant role in tumor
growth, metastasis, and response to various treatment
modalities such as chemotherapy, targeted therapies,
and immunotherapy.39,40 Fig. 10b presents our devel-
oped model with a test AUROC of 0.9. Among the an-
notated terms, BCL-2 inhibitors like venetoclax and
navitoclax, along with 21 other drugs, are included. Our
predictions highlight the potential of the BCL-2 inhibi-
tor ABT-737 to induce ER stress. This aligns with pre-
vious research demonstrating ABT-737’s ability to
induce ER stress in human melanoma cells41 and hu-
man hepatocellular carcinoma.42 Notably, apicidin, a
fungal metabolite, has been found to induce ER stress in
neuroblastoma cells43 and nasopharyngeal carcinoma,44

despite not being currently associated with the GO
term. Moreover, camptothecin has been reported to
trigger ER stress-mediated autophagy in human prostate
cancer cells45; evidence for this MoA was also found in a
study on Alzheimer’s disease.46 Camptothecin was also
identified as having the GO term.
Spindle organization (GO:0007051). Spindle organiza-
tion is a critical process for accurate chromosome
segregation during cell division. Disruptions in spindle
organization can lead to chromosomal instability and
contribute to the heterogeneity and evolution of cancer
cells.47 Targeting spindle-related processes is an impor-
tant strategy in cancer treatment. The final SVM model
(test AUROC = 0.93) identifies several drugs with
known effects on spindle organization, including aurora
kinase inhibitors (barasertib and ispinesib), taxanes
(such as paclitaxel), and vinca alkaloids (like vincristine).
Under the predicted terms we have SB-743921, which is
actually a kinesin spindle protein inhibitor, and its as-
sociation with spindle organization is supported by
experimental evidence.48 For instance, studies have
shown that treatment with SB-743921 leads to mitotic
spindle dysfunction in cells with TP53 mutations.49

Furthermore, GW843682x, a polo-like kinase 1 inhibi-
tor, has been found to disrupt spindle formation and
induce abnormal mitotic processes in lung cancer
cells.50,51 Two other drugs predicted by the model,
namely thapsigargin and triptolide, have been shown to
interfere with spindle activities in mouse oocytes52–54

(Fig. 10c).
As demonstrated, the DeepMoA method has proven

to be a reliable, comprehensible and interesting
approach for classifying drugs based on their MoA.
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Fig. 9: DeepMoA Validation (a) The binary matrix of labels is created using the annotations extracted from ChEMBL and CTRPv2. The probability
matrix contains the Platt scaling values of the test sets resulting from the 4-fold cross-validation of the models. The performance by GO terms
is measured by computing the AUROC to compare the true MoA labels of a GO term with the predicted probabilities of the same GO term. The
performance by drugs is measured by computing the AUROC to compare the true MoA labels of a drug with the predicted probabilities of that
drug. (b) Waterfall plot of AUROC for each SVM model (GO term), ranked from highest to lowest. Models with AUROC equal to or higher than
0.7 are highlighted in blue. The insets show the performance of the 10 models with the highest AUROC. (c) Boxplots of the AUPRs and AUROCs
are shown, with GO terms grouped based on their level in the GO hierarchy. The color of the boxplot indicates the level, ranging from
0 (representing the most specific terms) to 7 (representing the most general terms). (d) Waterfall plot of AUROC for each drug, ranked from
highest to lowest. Models with AUROC equal to or higher than 0.7 are highlighted in purple. The inset shows the performance of 10 drugs with
high AUROC. The confusion matrix and AUROC curve of the drug with the highest AUROC is also shown.
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Examining in depth the MoA of other unlabeled drugs
Next, we will study some drugs with accurate pre-
dictions, i.e., some rows of the predicted MoA matrix.
Our objective is to showcase examples of drugs whose
www.thelancet.com Vol 95 September, 2023
MoA was not used during the model training process but
yield predictions consistent with prior research findings.
To refine the list of Gene Ontology (GO) terms and attain
greater specificity, we employed a sorting method based
15
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Fig. 10: Examples of SVM models represented in two dimensions using nearest neighbors. Red dots represent drugs annotated to the term,
while blue dots represent the opposite; black dots represent drugs for which no annotations were found in ChEMBL or CTRPv2 (unlabeled
drugs). (a) Representation of the SVM model of regulation of ERK1 and ERK2 cascade. CP-724,714, MET kinase inhibitor, PD 153035 and
WZ4002 are unlabeled drugs. (b) Representation of the SVM model of intrinsic apoptotic signaling pathway in response to endoplasmic re-
ticulum stress. ABT-737, apidicin and camptothecin are unlabeled drugs. (c) Representation of the SVM model of spindle organization.
Thapsigargin, triptolide, SB-743921 and GW84368X are unlabeled drugs.

Articles

16
on the logit difference. This difference represents the
drug’s logit score for a predicted as annotated GO term
(calculated using the corresponding SVM model) minus
the actual logit score for the same GO term (derived
from the MoA labels matrix). Subsequently, we scruti-
nized the top 30 GO terms to gain insights into the
predicted MoA of the drugs under investigation.

Parbendazole, a potent inhibitor of microtubule as-
sembly, has demonstrated its ability to depolymerize
cytoplasmic microtubules, resulting in the presence of
only one or two microtubules associated with a
centriole.55,56 This disruption significantly impairs the
formation and function of the mitotic spindle, leading to
notable defects in chromosome segregation and orga-
nization.57 Our method, as depicted in Fig. 11a, provides
compelling evidence of the close association between
parbendazole treatment and these critical biological
processes. Specifically, our predictions indicate a strong
relation with terms such as chromosome segregation
(GO:0007059), nuclear chromosome segregation
(GO:0098813), centrosome cycle (GO:0007098), nega-
tive regulation of mitotic cell cycle (GO:0045930), and
notably, spindle organization (GO:0007051), organelle
transport along microtubule (GO:0072384) and micro-
tubule organizing center organization (GO:0031023). In
the context of pancreatic cancer (PC), a study revealed
that parbendazole, besides affecting microtubule orga-
nization, inhibits cell cycle progression by inducing
G2/M arrest, promoting apoptosis, and causing DNA
damage. Furthermore, it was discovered that p53 status
in cells treated with this drug influenced the appearance
of polyploid cells.58 Our predictions support these find-
ings by suggesting the involvement of parbendazole in
different cell cycle and apoptosis-related terms and in
the negative regulation of intrinsic apoptotic signaling
pathway in response to DNA damage by p53 class
mediator (GO:1902166). Furthermore, recent research
on mitochondrial toxicity demonstrated that
parbendazole-treated cells display nuclear alterations,
including endoplasmic reticulum vacuolization, mito-
chondrial redistribution, and cytoskeleton destabiliza-
tion.59 These processes are associated with Golgi
organization (GO:0007030), organelle assembly
(GO:0070925), cytoskeleton-dependent intracellular
transport (GO:0030705) and endoplasmic reticulum
calcium ion homeostasis (GO:0032469), which were
also predicted by DeepMoA.

PD153035 is a tyrosine kinase inhibitor known for its
specific and potent inhibition of the epidermal growth
factor receptor (EGFR) tyrosine kinase, which is part of
the ErbB receptor family.60 Our predictions, as shown in
Fig. 11b, support this definition by including terms such
as ErbB signaling pathway (GO:0038127) and cellular
response to epidermal growth factor stimulus
(GO:0071364). In cervical cancer experiments,
PD153035 treatment led to a significant suppression of
www.thelancet.com Vol 95 September, 2023
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Fig. 11: MoA predictions examples. GO terms are ordered by logit differences, only the 30 GO terms with the largest difference are shown. (a)
Parbendazole’s top predictions. (b) PD153035’s top predictions.
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EGFR expression, as well as the phosphorylation of
PI3K and AKT.61 Results indicate the relationship of the
drug with terms associated to protein serine/threonine
kinases and protein kinase B. In chronic myeloid leu-
kemia studies, altered expression levels of key signaling
molecules in the EGFR/MAPK pathway were observed
in PD153035-treated mouse groups.62 As stated before,
PD153035 was found to block ERK1/2 signaling.37

DeepMoA predictions include positive regulation of
MAP kinase activity (GO:0043406) and Regulation of
ERK1 and ERK2 cascade (GO:0070372). Interestingly,
predictions also includes a term associated with hair:
hair follicle development (GO:0001942). It is known that
EGFR signaling plays a role in the normal hair cycle,
and inhibiting EGFR signaling can disrupt the pro-
gression from the anagen to telogen phase, leading to
the formation of disorganized hair follicles.63

In addition to the study of GO terms, we applied
DeepLIFT to the input layer of cell lines. By examining
the value of the resulting DeepLIFT scores, it is possible
to identify the genes that contribute to predicting the
response of each drug. Supplementary Fig. S2 shows a
heat map of the 50 genes with the highest variance for
the drugs shown in Fig. 8 in the case of the mutation
study. In the Supplementary material we also include an
Excel file with the attribution score for each gene/cell
line pair when using mutations as input, as well as two
Excel files (one using mutations as input and one using
expression) with the 50 genes with the highest absolute
value of attribution for each treatment.
Discussion
We have described SparseGO, a neural network
designed to predict drug efficacy in cancer cell lines.
SparseGO uses a VNN architecture incorporating the
www.thelancet.com Vol 95 September, 2023
Gene Ontology hierarchy in order to address the inter-
pretability challenges often associated with machine
learning approaches.

We conducted an extensive comparison between
SparseGO and DrugCell, a state-of-the-art model with a
similar structure. Notably, our approach demonstrated
significantly improved efficiency in the use of
computing resources by using sparse matrices. Specif-
ically, SparseGO required 94% less GPU memory, 80%
less training time, and 96% less testing time compared
to DrugCell under very similar training conditions. This
finding highlights the advantage of employing sparse
matrix layers to represent ontologies, as opposed to
meticulously connecting each neuron to its corre-
sponding parents. This efficient resource utilization
enabled us to extend the model’s capabilities by incor-
porating gene expression data. In contrast, the DrugCell
model exhausted GPU memory and could not be tested
with gene expression data. Since DrugCell and Spar-
seGO (using mutations as input) have a similar archi-
tecture, their results are also similar. Any minor
differences observed in favour of SparseGO may be
attributed to the different parameter tuning approaches
employed.

In the context of genomic and response profiling
studies, the presence of inconsistencies arising from
variations in data acquisition poses a significant chal-
lenge. As studied in,18 this challenge highlights the
likelihood that machine learning models trained on a
specific data source may encounter difficulties when
applied to alternative datasets. To confront this issue
head-on and foster the development of more reliable
and generalized models, after comparing our model to
the state-of-art-model, we adopted a multifaceted
approach. By harnessing a dataset encompassing infor-
mation from three distinct studies (CTRPv2, GDSC1
17
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and GDSC2), we curated a comprehensive and diverse
training dataset using a comparable drug-response
metric. Additionally, we evaluated the model’s perfor-
mance on an independent dataset (PRISM) to test its
effectiveness on previously unseen data. Furthermore,
we incorporated different CV schemes to test the model
on different scenarios.

In addition to the standard K-fold CV, we incorpo-
rated two additional CV schemes. The LELO approach
was specifically designed for drug repositioning sce-
narios, where cell lines that have not been previously
tested with any drug are involved. On the other hand,
LECO approach was implemented for in silico sensi-
tivity analysis, where unseen drug’s effectiveness is
estimated. Our findings demonstrate that these two
scenarios, particularly the latter, pose greater challenges
compared to the initial approach. Despite their
demanding nature, the predictions achieved using gene
expression as input in the LELO approach remained
accurate, with a correlation of approximately 0.83 be-
tween the predicted and real AUDRC2. The observed
results can be in part attributed to the utilization of
genomic data from a single source. To improve the
model’s robustness, it is important to consider training
models using more diverse data in future studies.

In the LECO cross-validation scheme, results were
far from perfect. Previous studies, such as the work
conducted by Zagidullin et al., have compared various
methods for parameterizing a drug’s structure. Among
these methods, the Morgan fingerprint, which was used
in our study, is considered one of the best “standard”
approaches.64 However, the research suggests that
alternative drug parameterization techniques, such as
convolutional autoencoders, exhibit superior perfor-
mance compared to the Morgan fingerprint. The adop-
tion of these alternative methods holds promise for
enhancing the quality of predictions, particularly within
the LECO cross-validation scheme. Incorporating
autoencoder-generated data represents an intriguing
avenue for future exploration, offering potential im-
provements in prediction accuracy.

The primary objective of this study is to address the
challenge of interpretability in ML by not only predicting
drug response but also providing explanations for the
predictions. To achieve this, we used an XAI algorithm
to explore the network structure and establish a ground
truth for the MoA of a subset of drugs.

DeepLIFT assigns an attribution score to each
neuron in the network. DeepLIFT represents a fast and
innovative extension of sensitivity-based methods since
it can address saturation issues that may arise in other
perturbation-based and gradient-based approaches. To
establish the ground truth for MoA of the drugs in our
study, we adopted a simple approach. For drugs with a
known protein target, we considered all the GO terms
associated with that target as potential MoAs for the
drug. Additionally, if the CTRPv2 dataset provided
specific GO terms related to the MoA of certain drugs,
we included those terms and their parent terms within
the ontology.

We confirmed the accuracy of DeepMoA by measuring
the performance using the AUROC by GO terms and by
drugs. Then, by analysing the biological processes:
GO:0070372, GO:0070059, and GO:0007051, we showed
its applicability. The method correctly classified some un-
labeled drugs. Finally, by predicting and studying par-
bendazole and PD153035, we exemplified how the method
can be used and, again, its accuracy. While wet lab ex-
periments were not within the scope of our current work,
we acknowledge the need for experimental validation to
validate predictions. In future studies, conducting wet lab
experiments would be valuable, particularly for drugs
without established state-of-the-art MoA or those that may
involve unstudied effects.

Although nothing impedes testing DeepLIFT on the
characteristics of the molecule, the challenges in inter-
preting the individual elements of the Morgan finger-
print and their relationship to specific substructures of
the molecule, prevents us computing the DeepLIFT
score for that particular part of the input. Exploring the
application of XAI to extract information of compounds,
such as pharmacophore fragments, based on network
output is a promising direction for future research. If the
fingerprint were to incorporate substructure patterns of
the drugs, the DeepLIFT algorithm could potentially
uncover the key structures responsible for the drug’s
effectiveness. Additionally, leveraging ontologies like
ChEBI,65 which contain annotated compounds, may
facilitate the identification of fragments within the
molecule that exhibit high attribution scores (using the
DeepLIFT method). These ideas could lead to a more
comprehensive understanding of the MoA of drugs.

SparseGO narrows the gap between developers and
clinicians. It offers flexibility in selecting the input data
that best suits their needs, ensuring adaptability and
applicability in diverse scenarios. The training and
testing process of the model is designed to accommo-
date the availability of easily accessible computational
resources. Moreover, SparseGO takes into consideration
the inherent challenges associated with generalization,
enhancing its ability to provide reliable predictions.
Additionally, by using DeepMoA, the network not only
offers drug alternatives but also uncovers the underlying
factors driving these predictions, empowering clinicians
with deeper insights and decision-making support.
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Raw data from screening experiments for the four datasets
(CTRPv2, GDSC1, GDSC2, and PRISM) can be obtained through the
PharmacoGX platform.

The pairs used to train the mutation models are available for
retrieval on DrugCell’s web portal at http://drugcell.ucsd.edu/
downloads.

The CCLE expression data used in this study, specifically the 22Q2
dataset, can be downloaded from the depmap portal (https://depmap.
org/portal/download/all/).

These resources and datasets are made available to facilitate further
research and support reproducibility.
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