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A B S T R A C T   

Significant efforts are continuously exerted by the scientific community to explore new strategies 
to design materials with high nonlinear optical responses. An effective approach is to design 
alkalides based on Janus molecules. Herein, we present a new approach to remarkably boost the 
NLO response of alkalides by stacking the Janus molecules. Alkalides based on stacked Janus 
molecule, M-n-M’ (where n = 2 & 3 while M and M′ are Li/Na/K) are studied for structural, 
energetic, electrical, and nonlinear optical properties. The thermodynamic stability of the 
designed complexes is confirmed by the energetic stabilities, which range between -14.07 and 
-28.77 kcal/mol. The alkalide character of alkali metals-doped complexes is confirmed by the 
NBO charge transfer and HOMO(s) densities. The HOMO densities are located on the doped alkali 
metal atoms, indicating their alkalide character. The absorptions in UV–Vis and near IR region 
confirm the deep ultraviolet transparency of the designed complexes. The maximum first static 
and dynamic hyperpolarizabilities of 5.13 × 107 and 6.6 × 106 au (at 1339 nm) confirm their 
high NLO response, especially for K-2-M′ complexes. The NLO response of alkalides based on 
stacked Janus molecules is 1–2 orders of magnitude higher than the alkalide based on Janus 
monomer. The high values of dc-Kerr and electric field-induced response e.g., max ~107 and 108 

au, respectively have been obtained. These findings suggest that our designed complexes envision 
a new insight into the rational design of stable high NLO performance materials.   
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1. Introduction 

In recent decades, the design and synthesis of materials with higher Nonlinear Optical (NLO) response, has been an area of intensive 
research due to applications of NLO materials in optical communication/computing, switching, dynamic image processing, and/or 
laser devices [1]. For this purpose, a series of inorganic materials are being utilized in NLO devices due to their asymmetric electron 
densities [2]. In comparison to inorganic materials, organic materials with NLO activity have gained more popularity due to their high 
electron delocalization [3]. Such materials exhibit small dielectric (constant) values, ultrafast response, huge laser threshold damage 
along with higher hyperpolarizability. Previously, notable attempts have been made to explore the nonlinear optical activity of these 
organic materials. Many new approaches have been developed such as bond length alternation (BLA), bond distances fluctuation, 
design of octupolar-molecules [3], the push-pull mechanism by introducing electron-donating or withdrawing groups [4], introducing 
diradical character and diffuse excess electron strategy etc [5–7]. 

A vast number of organic excess-electron systems with enhanced NLO responses have widely been designed by doping metals in 
organic molecules, including cyclic pyrroles [8], polyamines [9], fluorocarbons [6], conducting polymers [10–12], graphene quantum 
dots [13], resulting in alkalide [14–19], alkaline earthide [20–23], and electrides [5,24,25], with outstanding NLO activity. Alkalides 
are ionic salt containing alkali metals (such as, Li/Na/K) as anion. Alkaline earthide are complexes with negative charge on doped 
alkaline earth metals [26]. Electrides are a class of complexes in which electrons in space serve as anion [27,28]. These materials have 
much high NLO activity than those of alkalides. Normally, an alkalide is made by doping two alkali metals in organic system, where 
one acts as an electron source/donor and the other as an acceptor. The larger oscillator strength and small transition energies of excited 
states of alkali metals make alkalides better option for NLO material [29,30]. 

Choosing a suitable complexant is also the key to constructing alkalides with good NLO activity. O’Hagan et al. [31] recently 
synthesized a stable (facially) polarized organic molecule, called cis-1,2,3,4,5,6-hexafluorocyclohexane (C6H6F6) which exhibits 
outstanding properties such as remarkable dipole moment e.g., 6.2 Debyes. The highest among all the aliphatic hydrocarbons [31]. 
C6H6F6 has unsymmetric electron distribution because one face is composed of hydrogen atoms while the other face contains fluorine 
atoms [4]. This property provides outstanding tendencies to bind with both positive and negative ions simultaneously. In addition, the 
alkalide nature with remarkable NLO response of C6H6F6 has been reported by doping with two alkali metals [7]. Sun et al. 1 theo
retically reported an alkalide based C6H6F6 via doping the system with alkali metals (Li to K) as a source of electrons, where, the ns1 
valence electrons of alkali metal was pushed from the fluorine side toward the hydrogen side forming an excess electron system. 

In 2016, Ziegler et al. [5], synthesized the complexant of cis-hexafluorocyclohexane with Na+ and reported their remarkable 
anionic and cationic interaction in the gas phase. Moreover, the alkaline earthide nature of M–C6H6F6–M′, has also been demonstrated 
by Ayub and coworkers by doping with alkali metals at fluorine face and alkaline earth metal atoms on hydrogen face [29]. A step 
further, the NLO properties of transition metal doped C6H6F6 complexant have also been studied by Zhang et al. [32], and Ayub et al., 
[33]. Literature reveals that the stacked orientations of C6H6F6, such as dimer; (C6H6F6)2, and trimer; (C6H6F6)3, have been reported by 
Pratik et al., [4] found that parallel-stacked C6H6F6 are most stable because of the strong hydrogen bonding (C–H⋯F). The alkaline 
earthide based dimer and trimer of C6H6F6 (M− C6H6F6-M′, where M is alkali metal and M’ is alkaline earth metal) exhibited largest 
hyperpolarizability (1.5 × 107 au), which was 20 fold larger than M-C6H6F6 (7 × 105 au), This is, because, the charge density is 
increased significantly upon adding stacked units [32]. Therefore, the stacked system of C6H6F6 are the best candidates to design 
alkalides type nonlinear optical material. Considering the facts it is expected that the stacked dimer and trimer of all C6H6F6 can be 
used to make alkalides with remarkable nonlinear optical response [31]. 

Gilani and co-workers recently studied the NLO activity of a single unit of C6H6F6 molecule upon doping with superalkali on a 
fluorine site and alkaline-earth metal on H-site [6]. The authors computed NBO charge transfer, molecular orbital density, and static 
first hyperpolarizability of designed M3O-1-M′ complexes. Their reported complexes showed remarkable first static hyperpolarizability 
(5.2 × 106 au) with a maximum NBO charge of -0.275 e- on the K3O–C6H6F6–Ca complex. Similarly, Duan et al. [34], studied the NLO 
responses of alkaline earth metal doped (Be, Mg, Ca) complexes of Li–C6H6F6 monomer. The first hyperpolarizability of these designed 
complexes was extremely large ~3.51 × 106 au along with a sufficient negative electron density on doped metal (-0.40), computed via 
NBO analysis. Mahmood et al., [35] reported the electride nature of super alkalis doped C6H6F6 based on the highest occupied mo
lecular orbitals electronic densities (laid on free spaces between super alkalis and complexant). Moreover, these novel electrides 
exhibited high NLO activity with the first hyperpolarizability of 1.68 × 106 au. Subsequently, Zhang and co-authors reported the 
earthide nature of AM-(C6H6F6)n-AEM (AM = alkali metal, AEM = alkaline earth metal and n = 1-3) complexes based on the shape of 
HOMO electron densities [32]. It was also found that the NLO activity of these complexes enhances upon increasing stacked units. The 
first hyperpolarizability of AM–(C6H6F6)3–AEM (AM = Li & AEM = Be) was 1.46 × 107 au with an NBO charge of -0.290 e- on MAE 
doped atom. Next, Zhang et al., [36] investigated the NLO activity of AM–C6H6F6–MH (MH = Zn, Cd), which was remarkably high (1.0 
× 106 au). Another similar study was undertaken by Sun et al. [37], with Cu, Ag, and Au metals doping on AM-C6H6F6. In these and 
many other studies based on C6H6F6 and other related [38–42], material geometric optimization, thermodynamic stability, NBO 
charge densities, HOMO-LUMO orbitals, absorption studies, and static first hyperpolarizability are well-known parameters for 
investigating the leading applications of such materials in optoelectronic properties using DFT calculations [5,7,33–36,43,44].Other 
than the doped C6H6F6 complexes, the reported energies of HOMO, LUMO and their energy gaps of isolated C6H6F6 monomer are 
-11.19, -0.52 and 10.68 eV, respectively [6]. The UV–Vis absorption of isolated C6H6F6 molecule take place at 127 nm [6] Herein, we 
report the design of alkalide by placing alkali metal (Li, Na and K) on both the faces of the dimer (2) and trimer (3) units of C6H6F6 to 
find out the geometric stability, electronic behaviour and NLO properties of designed stacked Janus complexes within the framework 
of density functional theory (DFT) simulations. For this purpose, we investigated the ground state structural geometries their electronic 
behaviour via NBO charge transfer & FMO analysis, and NLO properties of newly designed complexes through static first and dynamic 
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hyperpolarizability calculations. 

2. Computational details 

All the DFT calculations are implemented by using Gaussian09 [45] software and all the geometries and structures are visualized by 
using GaussView 5.0 [46]. Structures of pure stacked dimer (C6H6F6)2 and trimer (C6H6F6)3 and their dual metal doped complexes 
M-2-M′ (dimer) and M-3-M′ (trimer) (where, M= Li, Na and K) were optimized by using DFT functional at M06-2X/6-31+G (d, p) level 
of theory [47,48]. In metal-doped NLO materials, DFT has a significant role in accurately explaining their NLO activity, based on the 
Hartree-Fock exchange involved. Currently, long-range DFT hybrid functionals especially M06-2X is extensively been used for esti
mating the hyperpolarizability of NLO systems [11]. In the context of C6H6F6 compounds, M06-2X functional, a hybrid functional, 
containing 54% of HF exchange, performs exceptionally well and has been proven as a suitable DFT functional for exploring NLO 
properties of C6H6F6 [32,34,49]. 

The interaction energies (Eint.) of studied all-cis hexafluorocyclohexane complexes will be determined using equation 1: 

Eint=EM− n− M′ – (EM+EM′+En) (1) 

Fig. 1a. Optimized geometries of A) Li-2-M′, B) Na-2-M′, and C) K-2-M′ complexes.  
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Where EM-n-M′ represents the energy of dimer and trimer complexes. EM and EM′ are the energies of alkali metals (Li, Na and K) and En 
denote the energies of (C6H6F6)n. Also, for the accuracy in the calculations of interaction energies, basis set superposition method is 
employed, that is calculated by the following equation (Eq. 2): 

Eint.CP =Eint + EBSSE (2)  

where Eint.CP represents counterpoised interaction energy, Eint, is the non-corrected interaction energies and EBSSE is the energy of BSSE 
error. Vibration frequency analysis calculations are also performed on all the designed complexes in order to confirm that the designed 
complexes are optimized at the global minimum with no imaginary frequency. 

For the evaluation of electronic properties like frontier molecular orbital (FMO) analysis, vertical ionization energies (VIE), dipole 
moment (μ), and energy gap (Eg), M06-2X/6-31+G (d, p) level of DFT is used. Also, for NLO properties including, polarizability (α0), 

Fig. 1b. Optimized geometries of A) Li-3-M′, B) Na-3-M′, and C) K-3-M′ complexes.  
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static first hyperpolarizability (βo), dynamic and second order hyperpolarizabilities, same method is used. For frequency dependent 
hyperpolarizabilities, we used three wavelengths i-e 1340 nm and 1906 nm. Frequency dependent hyperpolarizabilities were studied 
using Multiwfn code [50]. 

The static polarizability (α0) and first hyperpolarizability (βo) parameters were calculated by equations 3 and 4, respectively. 

α0 = 1
/

3
(
αxx +αyy +αzz

)
(3)  

βo=
[(

βxxx + βxyy + βxzz
)2

+
(
βyyy + βyzz + βyxx

)2
+
(
βzzz + βzxx + βzyy

)2
]1/2

(4) 

HOMO LUMO gaps are calculated by using equation 5. 

Eg =EL – EH (5)  

In above equation EH denotes the energy of HOMO, while LUMO energy is shown by EL. Finally, the UV–Vis absorption, oscillator 
strength (f˳) and crucial excited state energy are computed at time-dependent (TD)-M06-2X DFT functional. 

3. Results and discussion 

3.1. Optimized geometries and their stabilities 

Alkali metals (Li, Na, and K) doping with all possible combinations, onto both sides e.g., fluorine and hydrogen of stacked dimer and 
trimer of C6H6F6 is studied. Upon doping, the total of eighteen complexes are designed, nine each with dimer (Fig. 1a) and trimer units 
(Fig. 1b). The geometric parameters e.g., doping distances (M − F and M′-H) and interaction energies (Eint) are computed in Table 1. 
The average doping distances shows that alkali metals doped more closely to the fluorine site than the hydrogen site. The M − F 
distances on the fluorine site range between 1.85 and 2.56 Å, while, on the hydrogen site the average M’-H distances are greater than 
3.00 Å. The smallest doping distances are noticed in the case of Li metals doped complexes, which is due to their smallest atomic size. In 
Li-2-M′ complexes, the M′-H distances are 3.03, 3.15 and 3.63 Å, respectively. Complexes such as Na+-2-AM and K+-2-AM are also 
showing the similar results, like as the atomic sizes of the alkali metals increased their doping distances are also increased in similar 
fashion. 

Owing to the closest interaction, the Li-2-M′ complexes possessed the highest stability. For example, the interaction energies of Li-2- 
Li, Li-2-Na, and Li-2-K are -28.30, -28.77, and -24.89 kcal/mol, respectively. Among them, a complex containing Li at F-site and Na at 
H-site exhibits the highest stability. By examining the M′-H distances in K-2-M′ complexes, it can be shown that the K-doped complexes 
are more robust than the Li-doped complexes. Moreover, the highest charge density on K in K-2-M′ complexes is probably an important 
factor of their stability (vide infra) Other than this, the significant charge transfer (vide infra) in K-2-M′ complexes might be another 
reason for the highest stability of K+-2-M′ complexes. The Eint(s) of K-2-Li, K-2-Na, and K-2-K are -23.67, -24.18, and -20.50 kcal/mol, 
respectively. The interaction energies for Na-2-M′ complexes, are -16.90, -17.37, and -14.07 kcal/mol for Na-2-Li, Na-2-Na, and Na-2-K 
complexes, respectively which are the least among all. Similarly, the highest BSSE corrected energies are -27.14, -27.63, and -23.88 
kcal/mol for Li-2-Li, Li-2-Na, and Li-2-K, respectively (Table 1). The BSSE corrected energies for K-2-Li, K-2-Na, and K-2-K are -22.90, 

Table 1 
Geometric parameters including bond distances M-X (X = F and H), distances between doped metals at both ends (M-M′), their interaction energies 
(Eint) and counterpoise corrected energies in designed M-n-M′ complexes.  

M-n-M′ Symmetry M-F 
Å 

M’-H 
Å 

M-M′ 
Å 

Eint 

kcal/mol 
Eint, CP kcal/mol 

Dimer (2) 
Li-2-Li- C1 1.85 3.03 11.04 -28.30 -27.14 
Li-2-Na- C1 1.85 3.15 11.17 -28.77 -27.63 
Li-2-K- C1 1.86 3.63 11.72 -24.89 -23.88 
Na-2-Li C1 2.19 3.08 11.63 -16.90 -15.31 
Na-2-Na- C1 2.19 3.19 11.75 -17.37 -15.83 
Na-2-K C1 2.21 3.67 12.32 -14.07 -12.62 
K-2-Li C1 2.55 3.06 12.08 -23.67 -22.90 
K-2-Na C1 2.55 3.18 12.21 -24.18 -23.49 
K-2-K C1 2.56 3.66 12.76 -20.50 -19.86 
Trimer (3) 
Li-3-Li C1 1.87 3.09 15.60 -28.49 — 
Li-3-Na C1 1.86 3.20 15.72 -28.87 — 
Li-3-K C1 1.87 3.67 16.29 -25.33 — 
Na-3-Li C1 2.21 3.11 16.18 -15.33 — 
Na-3-Na C1 2.21 3.23 16.32 -18.41 — 
Na-3-K C1 2.22 3.67 16.88 -17.90 — 
K-3-Li C1 2.56 3.10 16.64 -24.69 — 
K-3-Na C1 2.56 3.21 16.74 -25.20 — 
K-3-K C1 2.57 3.69 17.32 -21.84 —  
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-23.49, and -19.86 kcal/mol, respectively. Moreover, the least values of BSSE corrected energies are for the Na series (see Table 1). 
Overall, the trend of the BSSE corrected energies is almost similar to that interaction energy results. Both interaction energies and BSSE 
corrected energies show the high thermodynamic stability of the designed complexants. In comparison between the Li, Na, and K 
doping on fluorine sites, the stability sequence is as follows Li-2-M′ > K-2-M′ > Na-2-M′, the following trend is in consistent with the 
trend reported in literature [11,51]. 

Quite similar to the dimer systems (M-2-M′), the alkali metal doping distances on the trimer units (M-3-M′) increase with increasing 
atomic radii of alkali atoms e.g., Li < Na < K. For M-3-M′, the M − F and M − H interaction distances range between 1.87 to 2.57 and 
3.09 to 3.69, respectively. Moreover, the interaction energy trend in M-3-M′ complexes is similar to M-2-M’ complexes. For example, 
the Li-doped complexes (Li-3-M′) on the fluorine site are highly stable with the interaction energy of -28.49, -28.87, and -25.33 kcal/ 
mol, which is followed by the K-doped complexes (K-3-M′), with the energy >24.00 kcal/mol. The Na-3-M’ complexes show the least 
interaction energy <19.00 kcal/mol. 

3.2. Electronic properties 

3.2.1. Natural bond orbital (NBO) charges 
The charge transfer between doped alkali metals and (C6H6F6)2 is confirmed via NBO analysis. The resulting charges on the alkali 

atoms doped on fluorine face (QM-F) and hydrogen face (QM′-H) are listed in Table 2 and Table 3 for M-2-M′ and M-3-M′, respectively. In 
the designed complexes, alkali metals on the fluoro-face bear a positive charge while those on the hydrogen face carry a negative 
charge. In these complexes, the charge transportation takes place based on the excess electron push and pull mechanism, where the 
excess electrons are pulled by fluorine atoms from doped alkali, which creates a positive charge on doped AM. Whilst, on the other side, 
the electrons are pushed by hydrogen, which generates a negative charge on the second doped alkali metals. 

Results of NBO listed in Table 2 show that there is a significant amount of charge transferred at both doping sites of designed 
complexes. In Li-2-M′, QM′-H are ranging from -0.632 to -0.703 eV, while in Na-2-M’, the QM′-H charges range between -0.569 and 
-0.657 eV. In K-2-M’ complexes, the QM′-H are found between -0.639 and -0.677 eV. Correspondingly, the positive charges (QAM-H) of 
Li-series lies in the range 0.902 eV–0.940 eV, the range is 0.824 eV–0.891 eV for Na-series while for K-series it lies in the range 0.894 
eV–0.942 eV. The sequence of charge transfer is like the stability trend such as Li-2-AM ≈ K-2-AM > Na-2-AM. The highest charge 
(negative) is transferred in the Li-2-Na- complex (-0.703 eV), consistent with the highest stability of the complex. The significant net 
charge on alkali metals indicates their alkalide nature. 

Expectedly, values of charges transferred in M-3-M′ complexes are not significantly changed by increasing the repeating units of 
C6H6F6, however, a little decrease is observed in the negative charge density of alkali metals doped on hydrogen sites, which may affect 
the alkalide character of these complexes. 

3.2.2. Frontier molecular orbitals (FMO) 
In order to further predict the electronic properties of newly designed complexes, the frontier molecular orbitals (FMOs) are 

examined. The HOMO, LUMO and the energy gaps (Eg) of M-2-M′ and M-3-M′ have been calculated and given in Tables 2 and 3 and 
Fig. 2a,b. The Eg of stacked structure-1 is 9.41 eV, however, the gaps of all the complexes are remarkably reduced below 0.80 eV. This 
reduction in gaps of M-2-M′ complexes is the evidence of a remarkable change in electronic properties of stacked (C6H6F6)2 upon 
doping with two alkali metal atoms, which is probably due to the generation of new HOMO(s) close to the Fermi energy level. The 
excess electrons are mainly responsible for the new HOMO(s) generation [52]. The new HOMO(s) energy levels are generated in the 
range of -2.53 to -2.69, -2.57 to -2.71, and -2.39 to -2.54 eV for Li-2-M′, Na-2-M′, and K-2-M′, respectively. As a result of new HOMO(s) 
generation, the energy gaps are significantly reduced. For example, for K-2-M′ complexes Eg ranges between 0.63 and 0.66 eV, followed 
by 0.65–0.67 eV in Na-2-M′ and 0.75–0.79 eV in Li-2-M′ complexes. Similarly, the Eg of bare dimer (9.41 eV) is reduced to 8.81 eV upon 
increasing the C6H6F6 repeating units to trimer (Table 3). Similarly, M-3-M′ complexes show lower Eg values as compared to M-3-M′ 
counterparts, indicating the higher charge conductivity of M-3-M′ complexes. The Eg values of Li-3-M′, Na-3-M′, and K-3-M′ complexes 
are 0.50, 0.47 and 0.44 eV respectively. In this study, it is found that the Eg of complexes is decreased with increasing atomic number of 
adsorbed alkali metal atoms, which is well consistent with the literature [53]. The amount of excess electrons increases as a function of 

Table 2 
NBO charge transfer at fluorine site (QM-F) and hydrogen site (QM′-H), vertical ionization energy (VIE), HOMO, LUMO energy & gaps (Eg), and UV–Vis 
results, such as transition energies (ΔE), and maximum absorbance (λmax) of M-2-M′ complexes.  

M-2-M′ QM′-H (e-) QM-F (e-) VIE (eV) HOMO (eV) LUMO (eV) Eg (eV) ΔE (eV) λmax (nm) 

(C6H6F6)2 — — — -10.47 -1.06 9.41 8.52 145 
Li-2-Li -0.671 0.940 3.54 -2.68 -1.90 0.79 1.73 713 
Li-2-Na -0.703 0.939 3.53 -2.69 -1.92 0.78 1.78 696 
Li-2-K -0.632 0.902 3.22 -2.53 -1.78 0.75 1.61 765 
Na-2-Li -0.629 0.89 3.42 -2.70 -2.03 0.67 1.75 706 
Na-2-Na -0.657 0.891 3.42 -2.71 -2.05 0.66 1.74 711 
Na-2-K -0.569 0.824 3.15 -2.57 -1.92 0.65 1.63 760 
K-2-Li -0.677 0.942 3.33 -2.53 -1.87 0.66 1.67 739 
K-2-Na -0.696 0.942 3.33 -2.54 -1.89 0.65 1.71 722 
K-2-K -0.639 0.894 3.05 -2.39 -1.75 0.63 1.54 805  
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atomic number, which ultimately reduces the Eg from Li to K [54,55]. 

3.2.3. Alkalide character 
The pictorial depiction of HOMO(s) densities of M-2-M’ (Fig. 2a) and M-3-M’ (Fig. 2b) complexes illustrates that the HOMO 

Table 3 
NBO charge transfer at fluorine site (QM-F) and hydrogen site (QM′-H), HOMO, LUMO energy & gaps (Eg), of M-3-M′ complexes.  

M-2-M′ QM′-H (e-) QM-F (e-) HOMO (eV) LUMO (eV) Eg (eV) 

(C6H6F6)3 — — -10.10 -1.33 8.81 
Li-3-Li -0.675 0.900 -2.49 -1.98 0.50 
Li-3-Na -0.694 0.901 -2.50 -2.00 0.50 
Li-3-K -0.627 0.845 -2.38 -1.89 0.49 
Na-3-Li -0.608 0.849 -2.58 -2.10 0.47 
Na-3-Na -0.635 0.852 -2.59 -2.12 0.47 
Na-3-K -0.564 0.790 -2.46 -2.00 0.46 
K-3-Li -0.679 0.918 -2.39 -1.93 0.46 
K-3-Na -0.699 0.922 -2.40 -1.94 0.46 
K-3-K -0.62 0.848 -2.31 -1.88 0.44  

Fig. 2a. HOMOs and LUMO iso-densities of optimized A) Li-2-M′, B) Na-2-M′, and C) Li-2-M′ complexes.  
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densities are located on the alkali metal atoms doped on hydrogen site while the LUMO densities lie on the alkali metals doped on 
fluorine site, manifesting the negative and positive nature of these metal atoms on both ends, respectively. Furthermore, the HOMOs 
densities reside on the anionic alkali metal attributing the alkalide nature of all the designed complexes [52,56–58]. The alkalide 
character of M-n-M′ complexes originate because of the excess electron push-pull mechanism. Generally, in our designed complexes, 
the fluorine atoms of C6H6F6 first pull the valence one electron from the s-orbital of doped alkali metal atoms which is then pushed 
towards other doped alkali metal doped on the hydrogen side to create alkali metal anions. 

In alkalides(s), the stability of loosely bonded electron density respectively on anionic alkali atom or in space is crucial, which has a 
direct relation to the vertical ionization energies (VIEs). All the designed M-2-M′ complexes acquire high VIEs i.e., 3.05–3.54 eV, 
indicating higher electron stability [59]. 

3.2.4. Absorption analysis 
Absorption analysis has been carried out by using TD-DFT approach to investigate the laser applications of studied complexes. It is 

expected that NLO materials must show sufficient transparency in UV region. For this purpose, the UV–Vis spectra have been generated 
for pure and doped complexes. The pure C6H6F6 shows absorbance in UV region i.e., λmax appeared at 145 nm. After doping with alkali 
metals, the resultant complexes show significant transparency in UV region. The highest red shift is obtained for K-2-M′ complexes, the 
λmax values for K-2-Li, K-2-Na and K-2-K are 739, 722, and 805 nm, respectively. The λmax of K-2-M’ complexes are followed by Li-2-M’ 
complexes, the values range between 696 and 765 nm. The λmax of Na containing complexes are exceptionally low. Thus, the lowest 
λmax values are observed for Na-2-M’ complexes, ranging between 706 and 760 nm. Except for Na doped complexes, the UV–Vis 

Fig. 2b. HOMOs and LUMO iso-densities of optimized A) Li-3-M′, B) Na-3-M′, and C) Li-3-M′ complexes.  
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absorption wavelength increases monotonically as the atomic number of doped alkali metals increases. The results of UV–Vis spec
trums clearly indicates that the designed materials are highly efficient, due to which they can be used in many practical applications 
such as laser devices. So, the studied complexes can be used as an effective NLO materials. The UV–Vis absorption spectra are given in 
Fig. 3, while values of λmax, transition energy (ΔE) and oscillator strength (f˳) are displayed in Table 2. 

3.3. NLO properties 

3.3.1. Static hyperpolarizability 
The essential parameters regarding NLO responses are listed in Table 4. The dipole moment (μo) of pure 1 is high i.e., 14.84 D due to 

the stacking nature of the C6H6F6 moreover, the alkali metal doping results in a significant charge transfer which further increases the 
charge separation, which in-turns increases the dipole moment. Therefore, the designed M-2-M′ complexes exhibit high μo. The μo 
values of Li-2-M′, Na-2-M′, and K-2-M′ complexes are ranging between 17.72 and 20.45 D, 16.21–20.25 D, and 22.87–25.70 D, 
respectively. For assessment of the linear response of designed complexes, the polarizabilities (αo) of M-2-M′ complexes are investi
gated. αo values of all the M-2-M′ complexes lies in the range of 694–2599 au, which is higher than to other designed complexes of 
C6H6F6 reported in the literature [60]. The values of αo increase in all three series as the size of the alkali metals at the hydrogen face of 
1 increase. The highest αo is observed for the K-2-K complex (2599 au), due to the soft nature of K-2-K complex. The smallest value of 

Fig. 3. The UV–vis absorption spectra of A) Li-2-M′, B) Na-2- M′, and C) K-2- M′ complexes.  
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softness (S) is observed for K doped complexes, reflecting the highest reactivity of these complexes. The softness is calculated using 
equation 6. 

S=
η
2

(6)  

Where, H represent hardness, which can be calculated by equation 7. 

η=LUMO − HOMO
2

(7) 

Furthermore, the NLO responses of complexes are confirmed by computing their static first hyperpolarizability (βo). Overall, the 
βo(s) of our designed (C6H6F6)2 alkalides are higher than the other similar complexes in the literature [32]. There is a non-monotonous 
behavior seen in the βo of M-2-M′ complexes with respect to the atomic size or atomic number of doped alkali metal atoms. The highest 
values of hyperpolarizability are observed for K-2-M′ complexes. The βo for K-2-Li, K-2-Na, and K-2-K complexes are 1.45 × 106, 1.51 ×
106 and 5.13 × 107 au, respectively. The βo values are decreased to 1.30 × 106, 1.51 × 106, and 1.00 × 106 au for Li-2-Li, Li-2-Na, and 
Li-2-K complexes, respectively. The Na-2-M’ complexes show least βo values, which are 5.17 × 105 and 3.91 × 105, 1.49 × 106 au 
respectively for Na-2-Li, Na-2-Na, and Na-2-K. According to the literature, the βo depends inversely on VIE [61,62]. The K-2-K has the 
lowest VIE (3.05 eV), and thus exhibits the highest hyperpolarizability. To further analyse the factors affecting the βo, two level models 
have been implemented [63]. The two-level model explains the inverse relation of the crucial excitation energy (ΔE3) and direct 
relation of change in μo and fo with hyperpolarizability (βo) that can be stated as. 

βo∝Δμ f o

ΔE3 (8) 

Based on the two-level model, the lowest value of ΔE3 (1.45 eV), high values of fo (0.28), and Δμ (2.48 D) are mainly responsible for 
the highest βo value (~107 au) of K-2-K complex. In summary, the two-level model explains the appreciable contribution of various 
factors in the NLO activity of designed complexes. 

In comparison, the NLO activity of designed complexes has significantly changed upon increasing the repeating C6H6F6 unit to 
trimer. For example, the Li-3-M′ complexes especially, when M’ = Na and K, show a significant rise in the hyperpolarizability values. 
The βo values of Li-3-Na and Li-3-K complexes are 3.81 × 107 and 2.67 × 107 au, respectively. Moreover, these values decrease 

Table 4 
NLO parameters, including the dipole moment (μo), the polarizability (αo), the hyperpolarizability (βo), chemical softness (S), chemical hardness (η) 
variation in dipole moment (Δμ), oscillator strength (fo) and variation in excitation energy (ΔE) of M-2-M′ complexes.  

M-2-M′ μo αo βo S η Δμ fo ΔE 

(C6H6F6)2 14.84 137 478 4.71 2.35 — — — 
Li-2-Li 19.62 694 1.30 × 106 0.39 0.20 1.82 0.27 1.66 
Li-2-Na 20.45 725 1.51 × 106 0.39 0.19 1.95 0.25 2.68 
Li-2-K 17.72 1379 1.00 × 106 0.38 0.19 2.61 0.31 1.53 
Na-2-Li 19.44 1257 5.17 × 105 0.34 0.17 2.44 0.26 1.75 
Na-2-Na 20.25 1289 3.91 × 105 0.33 0.17 2.32 0.23 1.74 
Na-2-K 16.21 1709 1.49 × 106 0.33 0.16 2.98 0.35 1.63 
K-2-Li 24.84 918 1.45 × 106 0.33 0.17 1.72 0.24 2.62 
K-2-Na 25.70 940 1.51 × 106 0.33 0.16 1.80 0.21 2.72 
K-2-K 22.87 2599 5.13 × 107 0.32 0.16 2.48 0.28 1.45  

Fig. 4. NLO performances, polarizability and hyperpolarizability values of A) M-2-M′ (dimer) and B) M-3-M′ (trimer) complexes.  
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gradually on increasing number atomic number of M’-doped complexes. The non-monotonous NLO behaviour of dimer and trimer is 
well-comparable with those of similar complexes reported by Hou et al. 32 The polarizability and hyperpolarizability of M-2-M′ and M- 
3-M′ complexes are graphically compared in Fig. 4. 

3.3.2. Frequency-dependent/dynamic hyperpolarizability analysis 
To obtain further information regarding the NLO responses of the designed alkalides, the frequency-dependent hyperpolarizability 

has been computed. The values including the electro-optic Pockel’s effect (EOPE) and SHG of hyperpolarizability with β(− ω; ω,0) and 
β(− 2ω; ω,ω), respectively, at two routinely used laser wavelengths (e.g., 1339 and 1906 nm) are listed in Table 5. The dynamic first- 
order hyperpolarizability depends on the applied wavelengths. At 1339 nm, the values of EOPE range from 2.5 × 104 to 6.6 × 106 au 
and at 1906 nm these values range from 2.3 × 104 to 3.7 × 105 au. The dynamic responses of the designed complexes increase with 
increasing applied frequencies from 1339 nm to 1906 nm with an exception in K-doped complexes. Among all the complexes, the K-2-K 
complex exhibits the highest EOPE value, 6.6 × 106 at 1339 nm of wavelengths. The EOPE of K-2-K complex is decreased to 2.3 × 104 

at 1906 nm. The maximum SHG response is shown at 1339 nm i.e., 6.6 × 106 au. The highest SHG response is computed for K-2-K at 
both the wavelengths such as, 2.0 × 106 and 3.8 × 105 au at 1339 and 1906 au, respectively. Unlike static hyperpolarizability, the 
trend in dynamic hyperpolarizability is non-monotonous, however, the K-doped complexes show the highest static as well as dynamic 
NLO responses. 

3.3.3. Third-order nonlinear optical response 
The third-order NLO responses, dc-Kerr effect γ(-ω; ω,0), and electric field-induced ESHG γ(2- ω; ω, ω), of designed alkalides, have 

also been calculated at, 1339 nm, and 1906 nm. The monotonous behaviors in the third-order responses of all the complexes are 
noticed. For example, the γ(-ω; ω,0) values are the highest in K-2-M′ complexes, followed by the Na-2-M′ complexes, such as ~108 au, 
whereas, ~107 au for Li-2-AM complexes at 1339 nm. Similar trends are observed at higher applied wavelengths. However, these 
third-order responses including γ(-ω; ω,0) and γ(2- ω; ω, ω) are significantly higher, which reveals the remarkable NLO activity of the 
designed alkalides (Table 6). 

4. Conclusion 

Herein, the geometric, thermodynamic, electronic, NLO of alkalides based on Janus dimer (C6H6F6)2 and trimer (C6H6F6)3 with 
alkali metal as a source of diffuse excess electrons have been presented. These reported complexes contain significant involvement of 
alkali atoms as excess electron sources when doped on fluorine site, while second doped alkali atoms on hydrogen site carry negative 
charge by accepting these excess electrons. The interaction energies range from -14.07 to -27.63 kcal/mol for dimer complexes, whilst 
the energetic stability of timer complexes is increased to -28.87 kcal/mol. The small vertical ionization potentials, ranging between 
3.05 and 3.54 eV, illustrate the presence of loosely bonded electrons in the designed complexes. The NBO charge analysis illustrates the 
negative charges on H-site doped alkali metal atoms and positive charges in F-site dopants. The HOMO densities of all the complexes 
reside on anionic alkali atoms, which indicate the alkalide nature of designed complexes. The UV–Vis analysis reveals that the designed 
complexes are transparent in deep UV-region with maximum absorption in visible and near-IR regions. The NLO responses of these 
complexes are investigated via first-static, dynamic and second order hyperpolarizability calculations. Overall, the significant NLO 
responses are illustrated for all the alklaides based on the generated results but the K-2-K complex shows the highest value of the first 
hyperpolarizability (5.13 × 107 au) and β(-ω; ω,0) (2.2 × 106 au) along with the third-order activity (γtot) of 6.1 × 108 au. However, the 
trend of NLO activity is completely changed to Li-doped complexant in trimer complexes. From these findings, we believe that our 
newly designed alkalides can be effectively used in optical and nonlinear optical devices with excellent response. 
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