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A B S T R A C T   

Fatigue is a highly prevalent and disabling symptom of many disorders and syndromes, resulting from different 
pathomechanisms. However, whether and how different mechanisms converge and result in similar symptom-
atology is only partially understood, and transdiagnostic biomarkers that could further the diagnosis and 
treatment of fatigue are lacking. We, therefore, performed a transdiagnostic systematic review (PROSPERO: 
CRD42022330113) of quantitative resting-state electroencephalography (EEG) and magnetoencephalography 
(MEG) studies in adult patients suffering from pathological fatigue in different disorders. Studies investigating 
fatigue in healthy participants were excluded. The risk of bias was assessed using a modified Newcastle-Ottawa 
Scale. Semi-quantitative data synthesis was conducted using modified albatross plots. After searching MEDLINE, 
Web of Science Core Collection, and EMBASE, 26 studies were included. Cross-sectional studies revealed 
increased brain activity at theta frequencies and decreased activity at alpha frequencies as potential diagnostic 
biomarkers. However, the risk of bias was high in many studies and domains. Together, this transdiagnostic 
systematic review synthesizes evidence on how resting-state M/EEG might serve as a diagnostic biomarker of 
pathological fatigue. Beyond, this review might help to guide future M/EEG studies on the development of fa-
tigue biomarkers.   

1. Introduction 

Fatigue, i.e., the feeling of overwhelming mental or physical tired-
ness and exhaustion, is a frequent symptom of many disorders. It is 
highly prevalent in neuropsychiatric disorders (Penner and Paul, 2017), 
inflammatory-rheumatic diseases (Davies et al., 2021), cancer (Bower, 
2014), and post-infectious syndromes including long COVID (Campos 
et al., 2022; Davis et al., 2023). Moreover, it is a core feature of Myalgic 
Encephalomyelitis/Chronic Fatigue Syndrome (CFS) (Marshall-Gra-
disnik and Eaton-Fitch, 2022) and Fibromyalgia Syndrome (FMS) (Sal-
affi et al., 2020). In these disorders, fatigue is highly disabling, strongly 
interferes with quality of life, and is a significant cause of early retire-
ment (Penner and Paul, 2017; Davies et al., 2021). Treatment of this 
burdensome symptom is often unsatisfactory (Davies et al., 2021). 
Pharmacological treatments mainly comprise psychostimulants, and 
non-pharmacological treatments include cognitive-behavioral ap-
proaches, relaxation techniques, and graded exercise, with modest 

overall effects (Penner and Paul, 2017). 
The pathomechanisms underlying pathological fatigue are only 

partially understood (Bower, 2014; Penner and Paul, 2017; Davies et al., 
2021; Campos et al., 2022; Marshall-Gradisnik and Eaton-Fitch, 2022; 
Davis et al., 2023). A role of inflammatory processes, stress, and related 
disturbances in the hypothalamic–pituitary–adrenal axis has been dis-
cussed (Bower, 2014; Penner and Paul, 2017; Davies et al., 2021; 
Campos et al., 2022; Marshall-Gradisnik and Eaton-Fitch, 2022; Davis 
et al., 2023). In addition, (immune-mediated) dopaminergic and sero-
tonergic signaling changes have been related to fatigue (Dantzer et al., 
2014; Heitmann et al., 2022). How these mechanisms differentially 
contribute to fatigue in different disorders is unclear so far. However, 
since the symptomatology of fatigue is similar at the behavioral level, 
different mechanisms likely converge and translate into brain network 
dysfunction, ultimately resulting in neuropsychiatric symptoms, 
including fatigue (Dantzer et al., 2014; Penner and Paul, 2017; Heit-
mann et al., 2022; Scangos et al., 2023). Beyond, the term fatigue is also 
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used in healthy persons undergoing mentally or physically strenuous 
tasks. However, these transient states and the underlying pathology 
likely differ from pathological fatigue as a symptom of the above-
mentioned disorders. 

A better understanding of the underlying pathophysiology at the 
brain network level will aid the development of reliable and valid bio-
markers to improve the diagnosis and treatment of fatigue (Davies et al., 
2021). Biomarkers can serve different functions. For instance, they can 
support the diagnosis and monitoring of symptoms and the prediction of 
treatment outcomes (BEST, 2016). Diagnostic biomarkers of fatigue 
might be particularly valuable as patients often face claims of malin-
gering (McInnis et al., 2014). Moreover, such biomarkers might help to 
define new treatment targets. Since fatigue occurs in different disorders, 
a common transdiagnostic biomarker would be particularly appealing 
(Davies et al., 2021). 

Electroencephalography (EEG) is particularly promising for devel-
oping a transdiagnostic biomarker of fatigue since it is broadly available, 
non-invasive, cost-effective, and potentially mobile. Moreover, EEG- 
based biomarkers might serve as treatment targets for (non-invasive) 
neuromodulation techniques that have already shown first promising 
results in fatigue (Krawinkel et al., 2015; Lefaucheur et al., 2017). Next 
to EEG, magnetoencephalography (MEG) is a technique that measures 
brain signals and can also be used to investigate neural function in 
pathological fatigue. Yet, the potential of M/EEG biomarkers for fatigue 
has not been assessed systematically. One systematic review assessed 
abnormalities in patients suffering from CFS assessed by different neu-
roimaging modalities, including EEG. The review reported largely 
inconsistent results from 11 EEG studies in sleeping and awake patients, 
and no synopsis for the various EEG measures has been provided 
(Maksoud et al., 2020). Another systematic review and meta-analysis 
assessed EEG correlates of mental fatigue in healthy participants un-
dergoing cognitively demanding tasks. The results indicated increased 
theta and alpha band activity, predominantly in frontal and central 
brain regions (Tran et al., 2020). However, how these findings in healthy 
participants relate to pathological fatigue in patients remains unclear. 

We, therefore, performed a systematic review of M/EEG recordings 
during the resting state in awake patients suffering from fatigue due to 
different disorders. This systematic review is intended to provide in-
sights into brain function in fatigue. Beyond it can advance the devel-
opment of transdiagnostic biomarkers of fatigue to eventually improve 
the assessment and treatment of this frequent and burdensome 
symptom. 

2. Methods 

The present review was performed and reported according to the 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
Guidelines (PRISMA) (Page et al., 2021). The protocol was preregis-
tered on PROSPERO on the 3rd of May 2022 (CRD42022330113). Re-
cord deduplication, title and abstract screening, full-text review, and 
data extraction were performed using the software Covidence (Veritas 
Health Innovation 2021, Melbourne, Australia). 

2.1. Search strategy 

The databases MEDLINE (via PubMed), Web of Science Core 
Collection (via Web of Science), and EMBASE (via Ovid) were searched 
on the 3rd of May 2022 and again before the final analysis on the 9th of 
September 2022. No time limit was applied. For EMBASE and Web of 
Science Core Collection, the search was limited to Articles. Moreover, 
we screened reference lists of included studies for further relevant 
publications. 

The search string used a combination of the term “fatigue” and 
related terms with “electroencephalography” or “magnetoencephalog-
raphy” and associated terms. The entire search strategy can be found in 
the supplementary material. 

2.2. Study selection 

The inclusion and exclusion criteria for the study can be found in 
Table 1. In summary, peer-reviewed studies using quantitative resting- 
state M/EEG to analyze brain activity in relation to pathological fa-
tigue were included. 

2.3. Record screening, full-text review, and data extraction 

Two authors (H.H., V.D.H., P.T.Z., or M.P.) screened titles and ab-
stracts, and performed the full-text review blinded to the other authors’ 
decision. A third author was consulted in case of disagreement, and 
conflicts were discussed. Data extraction was performed by one author 
(H.H.) and checked by another author (V.D.H. or P.T.Z.). Data extraction 
comprised study characteristics (sample size, sex, age, diagnostic entity, 
and clinical assessment tools), quantitative M/EEG measures (peak 
alpha frequency, frequency-specific power, frequency-specific connec-
tivity), and study design according to Grimes and Schulz (Grimes and 
Schulz, 2002). 

2.4. Data synthesis strategy 

For data synthesis, studies were grouped concerning study design. A 
formal meta-analysis was not feasible due to the heterogeneity of re-
ported outcome measures and study designs. Therefore, semi-
quantitative data synthesis was performed using modified albatross 
plots (Harrison et al., 2017). Albatross plots allow graphically esti-
mating effect sizes for studies with similar research questions by plotting 
p-values against sample sizes for different directions of effects. Due to 
the heterogeneous statistical methods applied in the included studies, 
effect size estimation contours could not be superimposed on the plots. 
Modified albatross plots were used to present the results of cross- 
sectional studies comparing peak alpha frequency (PAF), frequency- 
specific power at delta, theta, alpha, beta, and gamma frequencies, as 
well as frequency-specific connectivity at theta, alpha, beta, and gamma 
frequencies in patients versus healthy participants. If a single study re-
ported multiple p-values for different brain regions of interest, the 
lowest p-value was extracted. P-values were depicted on the x-axis and 
reported as in the primary studies, independently of possible multiple 
comparison adjustments. In case of imprecise p-value reporting (e.g., p 
< 0.05), modified albatross plots show the nearest decimal (e.g., p =
0.049). The modified albatross plots used in the present study (see 
Figs. 4, 5, and 6) depict higher values for the variable of interest in 
patients compared to healthy participants on the right-hand side, non- 
significant results in the middle, and lower values on the left-hand 
side of each panel. The total sample size of each study was depicted 
on the y-axis. Narrative data synthesis was applied for cross-sectional 
studies reporting quantitative M/EEG measures other than the vari-
ables mentioned above (e.g., classification approaches, graph-theory- 
based measures, microstates) and descriptive and longitudinal studies. 
This was due to the low number of studies and the high heterogeneity of 
methods and outcome measures. 

2.5. Risk of bias and quality assessment 

Risk of bias and quality assessment of included studies was 

Table 1 
Inclusion and exclusion criteria.  

Inclusion (included, if all apply) Exclusion (excluded, if any applies) 

Published, peer-reviewed study Review article or case report 
Humans >= 18 years old Animal studies 
Pathological fatigue as a symptom of 

disease or syndrome 
Task-related fatigue/fatigability in 
healthy participants 

Quantitative wake resting-state M/EEG M/EEG during sleep  
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performed using a modified version of the Newcastle-Ottawa Scale (Lo 
et al., 2014) as previously reported (Zebhauser et al., 2022). Domains 
used to assess the risk of bias and quality of studies comprised “selection 
of study participants” (4 items), “comparability/confounders” (2 items), 
and “outcome data” (3 items). Items were rated as “high” risk of bias 
(negative for study quality) or “low” risk of bias (positive for study 
quality) to allow for a more straightforward interpretation of scoring 
results. Sum scores for single studies were not calculated because single 
items frequently had to be scored “n/a” (not applicable) and thus would 
have led to a misleading comparison of sum scores across studies. The 
assessment of the risk of bias and study quality was performed by one 
author (H.H.) and checked by another author (V.D.H. or P.T.Z.). 

3. Results 

3.1. Study selection 

Two thousand six hundred five records were identified after dedu-
plication. Title and abstract screening identified 52 records for full-text 
review. After full-text review, 26 studies were included in the final an-
alyses (Bruno et al., 1998; Kravitz et al., 2006; Sherlin et al., 2007; Flor- 
Henry et al., 2010; Kayıran et al., 2010; Duffy et al., 2011; Loganovsky, 
2011; Neu et al., 2011; Moore et al., 2014; Cogliati Dezza et al., 2015; 
Navarro Lopez et al., 2015; Gschwind et al., 2016; Wu et al., 2016; Zinn 
et al., 2016; Buyukturkoglu et al., 2017; Vecchio et al., 2017; Zinn et al., 
2017; Fallon et al., 2018; Jensen et al., 2018; Zinn et al., 2018; Golonka 
et al., 2019; Park et al., 2019; Porcaro et al., 2019; Sjogard et al., 2021; 
Zinn and Jason, 2021; Zinn et al., 2021). For details on the study se-
lection process and reasons for exclusion in the different stages, see the 

Fig. 1. PRISMA Flowchart of study selection. PRISMA, preferred reporting items for systematic reviews and meta-analyses; RCT, randomized controlled trial.  

H. Heitmann et al.                                                                                                                                                                                                                              



NeuroImage: Clinical 39 (2023) 103500

4

PRISMA flow diagram in Fig. 1. 

3.2. Study characteristics 

Study characteristics are depicted in Fig. 2 and summarized in 
Table 2. Twenty-one studies had a cross-sectional or descriptive study 
design, and five had a longitudinal or RCT design. Eleven studies were 
conducted in patients with Chronic Fatigue Syndrome (CFS), seven in 
patients with Multiple Sclerosis (MS), four studies in patients with Fi-
bromyalgia Syndrome (FMS), two studies in patients with Cancer- 
related Fatigue (CRF), one study in patients with Post-viral Fatigue 
Syndrome (PVFS), and one study in other conditions (Burnout Syn-
drome). Twenty-five studies used EEG, whereas only one study used 
MEG. M/EEG power was assessed in 16 studies, peak frequency in three 
studies, connectivity in eight studies, and other measures, including 
graph-theory-based brain network properties and classification ap-
proaches in another eight studies. Sample sizes ranged from 13 to 460 
(median 36). Studies were published between 1998 and 2021. 

3.3. Risk of bias assessment 

Results from the risk of bias assessment are presented in Fig. 3. In-
dividual study scores are shown in the supplementary Table S1. In the 
domain “selection of study participants,” case definitions were clearly 
specified in most studies. The most significant bias was “case repre-
sentativeness” due to lacking a specific sampling/recruiting strategy. 
Additionally, the selection and definition of healthy participants were 
partially not clearly described. In the “comparability” domain, many 
studies assessed depression/anxiety and other closely related symptoms. 
However, the majority did not control for these parameters or formally 
include them in their analysis, leading to a particularly “high” risk of 
bias in this domain. In the “outcome” domain, the most significant risk 
of bias arose for the “assessment of M/EEG outcomes” due to manual 
data processing with insufficient information regarding blinding pro-
cedures, e.g., for condition and clinical data. Furthermore, nearly half of 
the studies did not describe the statistical tests in detail and did not 
include statements on corrections for multiple comparisons. 

3.4. Data synthesis 

Modified albatross plots were used for semiquantitative data analysis 
from cross-sectional studies reporting power, connectivity, or peak fre-
quency results. Narrative data synthesis was used for all other cross- 
sectional studies using less common analysis techniques and outcome 
measures (e.g., graph-theory-based measures, classification approaches, 
and microstate analysis) as well as descriptive and longitudinal studies. 

3.4.1. Semiquantitative data analysis of cross-sectional studies reporting 
power, peak frequency, or connectivity results 

Eleven cross-sectional studies with a sample size between 13 and 137 
(median 37) assessed power; of those 11, three studies (sample size 
26–137) also reported peak frequencies. Three additional studies 
(sample size 18–146) assessed connectivity measures. 

3.4.1.1. Power. Power results are shown in Fig. 4. Delta power was 
assessed in nine studies. Four studies (all in patients with CFS), depicted 
on the right-hand side of the panel for delta power, showed higher 
power in patients compared to healthy participants (Sherlin et al., 2007; 
Loganovsky, 2011; Wu et al., 2016; Zinn et al., 2018). Four studies, 
depicted in the middle of the delta power panel, yielded non-significant 
results (Zinn et al., 2016; Fallon et al., 2018; Golonka et al., 2019; Zinn 
et al., 2021). One study in patients with FMS, depicted on the left-hand 
side of the panel, reported lower delta power (Navarro Lopez et al., 
2015). Theta power was tested in ten studies. Five studies (four CFS, one 
FMS) reported higher power in patients compared to healthy partici-
pants (Sherlin et al., 2007; Loganovsky, 2011; Neu et al., 2011; Wu et al., 
2016; Fallon et al., 2018); four studies showed non-significant results 
(Zinn et al., 2016; Zinn et al., 2018; Golonka et al., 2019; Zinn et al., 
2021) and one study in patients with FMS reported lower power (Nav-
arro Lopez et al., 2015). Alpha power was assessed in ten studies. Six 
studies reported lower power in patients compared to healthy partici-
pants (four CFS, one FMS, one Other) (Flor-Henry et al., 2010; Loga-
novsky, 2011; Navarro Lopez et al., 2015; Zinn et al., 2016; Golonka 
et al., 2019; Zinn et al., 2021), three studies showed non-significant 
results (Sherlin et al., 2007; Fallon et al., 2018; Zinn et al., 2018) one 
study in patients with CFS showed higher power (Wu et al., 2016). Beta 
power was tested in all eleven studies, with three studies (all in patients 
with CFS) reporting lower power (Flor-Henry et al., 2010; Zinn et al., 

Fig. 2. Conditions and M/EEG parameters. The figure shows counts for the conditions studied in records included (Panel A) and M/EEG parameters assessed 
(Panel B). CFS, chronic fatigue syndrome; CRF, cancer-related fatigue; FMS, fibromyalgia syndrome; MS, multiple sclerosis; PVFS, post-viral fatigue syndrome; M/ 
EEG, magneto-/electroencephalography. 
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Table 2 
Summary of study characteristics.  

Author and year Study design Inter-vention M/ 
EEG 

Entity Total 
sample 
size 

Assess- 
ment tool 

M/EEG Analysis Main result (M/EEG) 

Bruno 1998 (Bruno 
et al., 1998) 

Descriptive – EEG PVFS 33 PFQ Power Power equal between hemispheres 
across all frequency bands 
EEG slow wave power in the right 
hemisphere significantly correlated 
with daily fatigue scores 

Buyukturkoglu 
2017 ( 
Buyukturkoglu 
et al., 2017) 

Cross-sectional 
observational 

– EEG MS 29 mFIS Connectivity FC (Coherence) differing in various 
frequency bands and brain regions 
between fatigued MS patients and 
healthy participants 
Coherence in the theta and beta band 
in the fronto-frontal region as well as 
in the beta band in the temporo- 
parietal region positively correlated 
with fatigue scores 

Cogliati Dezza 2015 
(Cogliati Dezza 
et al., 2015) 

Cross-sectinal 
observational 

– EEG MS 35 mFIS Power Lower right hemisphere power in 
patients with high but not low fatigue 
compared to healthy participantsInter- 
hemispheric total power  
(L > R) of homologous sensorimotor 
(SM1) areas positively correlated with 
fatigue scores 

Duffy 2011 (Duffy 
et al., 2011) 

Cross-sectional 
observational 

– EEG CFS 460 – Other 
(Classification) 

Highly significant group 
discrimination in unmedicated 
females (86.8% patients and 89.8% HC 
accuracy) and males (88.9% patients 
and 82.4% healthy participants 
accuracy)Less accurate discrimination 
in patients taking psychoactive 
medications  
(females 77.8%, males 60.0%) 
Bilateral temporal lobe involvement in 
9/10 discrimination factors 

Fallon 2018 (Fallon 
et al., 2018) 

Cross-sectional 
observational 

– EEG FMS 37 – Power Higher theta power in prefrontal and 
anterior cingulate cortices in patients 
compared to healthy participants 
Positive correlation of theta changes 
with tiredness, tenderness and pain 
scores 

Flor-Henry 2010 ( 
Flor-Henry et al., 
2010) 

Cross-sectional 
observational 

– EEG CFS 137 – Power/PF/Other 
(Classification) 

Lower alpha power in the parieto- 
occipital region and lower beta power 
in the fronto-temporal region in 
patients compared to healthy 
participants 
No significant PF differences 
Classification approach using spectral 
current density in the alpha and beta 
band with 72% and 71% accuracy, 
respectively 

Golonka 2019 ( 
Golonka et al., 
2019) 

Cross-sectional 
observational 

– EEG Other 
(Burnout) 

95 – Power/PF Lower alpha power in patients 
compared to healthy participants 
Alpha power negatively correlated 
with exhaustion symptoms in anterior 
and posterior region 
No significant PF difference 

Gschwind 2016 ( 
Gschwind et al., 
2016) 

Cross-sectional 
observational 

– EEG MS 102 FSMC Other 
(Microstate) 

Cognitive fatigue significantly 
predicted by short duration of class B 
microstate 

Jensen 2018 ( 
Jensen et al., 
2018) 

(Randomized) 
Controlled Trial 

NFB + Hypnosis 
vs. MM+

Hypnosis vs. 
Hypnosis 

EEG MS 32 FSS Power Hypnosis increased theta, beta and 
gamma power only in patients who 
received NFB and decreased beta and 
gamma in those who received MM 

Kayiran 2010 ( 
Kayıran et al., 
2010) 

(Randomized) 
Controlled Trial 

NFB vs. 
Escitalopram 

EEG FMS 36 VAS Power No power changes in NFB compared to 
control group 
Decrease in theta/sensory motor 
rhythm ratio in NFB group 

Kravitz 2006 ( 
Kravitz et al., 
2006) 

(Randomized) 
Controlled Trial 

NFB vs. Sham EEG FMS 47 Fibro- 
myalgia 
Symptom 
Scales 

Power Pre-treatment delta/alpha amplitude 
ratio > 1 associated with participant 
rated but not clinician rated global 
impression response, independent of 
intervention 

(continued on next page) 
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Table 2 (continued ) 

Author and year Study design Inter-vention M/ 
EEG 

Entity Total 
sample 
size 

Assess- 
ment tool 

M/EEG Analysis Main result (M/EEG) 

Loganovsky 2000 ( 
Loganovsky, 
2011) 

Cross-sectional 
observational 

– EEG CFS 38 – Power Lateralized (left-sided) in- crease of 
theta and beta as well as decrease of 
alpha power 

Lopez 2015 ( 
Navarro Lopez 
et al., 2015) 

Cross-sectional 
observational 

– EEG FMS 26 – Power/PF Ratios of theta/alpha and beta/alpha 
power as indicators of disease severity 
PF higher in patients compared to 
healthy participants 

Moore 2014 (Moore 
et al., 2014) 

Longitudinal 
descriptive 

Chemo-therapy EEG CRF 18 BFI Power Total spectrum power increased after a 
physical task in patients during 
chemotherapy but not healthy 
participants 

Neu 2011 (Neu 
et al., 2011) 

Cross-sectional 
observational 

– EEG CFS 30 FSS Power Higher theta power in electrodes Fp1 
and F4 as well as higher beta power in 
electrode O2 in patients compared to 
healthy participants 

Park 2019 (Park 
et al., 2019) 

Descriptive – EEG CRF/CFS 45 BFI/FSS Power FSS scores positively correlated with 
frontal delta, theta, alpha power in 
CFS group 

Porcaro 2019 ( 
Porcaro et al., 
2019) 

(Randomized) 
Controlled Trial 

tDCS vs. Sham EEG MS 30 mFIS Connectivity Before treatment, more severely 
impaired resting state dynamics in S1 
than in M1 in fatigued patients 
Left S1 fractal dimension at rest 
impaired compared to healthy 
participants before but not after tDCS 
treatment 

Sherlin 2007 ( 
Sherlin et al., 
2007) 

Cross-sectional 
observational 

– EEG CFS 34 – Power Higher delta power in the left uncus 
and parahippocampal gyrus as well as 
higher theta power in the cingulate 
gyrus and right precentral gyrus of the 
frontal lobe in patients compared to 
HC twins 

Sjøgård 2021 ( 
Sjogard et al., 
2021) 

Cross-sectional 
observational 

– MEG MS 146 FSMC Connectivity Lower alpha FC within the DMN and 
between the DMN, SMN and LAN as 
well as lower interhemispheric beta FC 
among nodes of the SMN in patients 
compared to healthy participants 
Significant negative correlation of FC 
with cognitive fatigue 

Vecchio 2017 ( 
Vecchio et al., 
2017) 

Cross-sectional 
observational 

– EEG MS 38 mFIS Other (Graph 
measures) 

Fatigue symptoms positively 
correlated with beta smallworldness in 
SN 

Wu 2016 (Wu et al., 
2016) 

Cross-sectional 
observational 

– EEG CFS 47 – Power Delta, theta and alpha power increased 
in frontal and prefrontal brain regions 
of patients compared to healthy 
participants 
Overall decrease in intensity and 
complexity of the brain electrical 
signals in patients 

Zinn 2016 (Zinn 
et al., 2016) 

Cross-sectional 
observational 

– EEG CFS 18 – Power/ 
Connectivity 

Decreased alpha power in bilateral 
parietal, occipital and posterior 
temporal lobes in patients compared to 
healthy participants 
Significantly decreased lagged phase 
synchronization for delta and alpha 
including the DMN and CEN 

Zinn 2017 (Zinn 
et al., 2017) 

Cross-sectional 
observational 

– EEG CFS 29 DSQ Connectivity/ 
Other (Graph 
measures) 

Lower delta smallworldness in patients 
compared to healthy participants 
Delta smallworldness negatively 
correlated with neurocognitive 
impairment scores on the DSQ 

Zinn 2018 (Zinn 
et al., 2018) 

Cross-sectional 
observational 

– EEG CFS 100 MFI-20/FSS Power Increased delta power predominately 
in the frontal lobe, and decreased beta 
power in the medial and superior 
parietal lobe in patients compared to 
healthy participants 
Left- lateralized, frontal delta sources 
associated with a clinical reduction in 
motivation 

Zinn 2021a (Zinn 
et al., 2021) 

Cross-sectional 
observational 

– EEG CFS 13 DSQ Power Higher delta and lower alpha and beta 
power in patients compared to healthy 
participants 

Zinn 2021b (Zinn 
and Jason, 2021) 

Cross-sectional 
observational 

– EEG CFS 68 DSQ Other (Graph 
measures) 

Significant group differences in 
baseline CAN organization 
Cognitive, affective, and somato- 

(continued on next page) 
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2018; Zinn et al., 2021), and five studies (three CFS, one FMS, and one 
Other) with non-significant results (Sherlin et al., 2007; Wu et al., 2016; 
Zinn et al., 2016; Fallon et al., 2018; Golonka et al., 2019) and three 
studies (two FCS, one FMS) showing higher beta power values (Loga-
novsky, 2011; Neu et al., 2011; Navarro Lopez et al., 2015). Gamma 
power was assessed in two studies (one CFS, one FMS), with both studies 
reporting non-significant results (Zinn et al., 2016; Fallon et al., 2018). 

In summary, more studies reported higher theta power and lower 
alpha power in patients compared to healthy participants. Results were 
inconclusive for delta, beta, and gamma power. 

3.4.1.2. Peak frequency. Peak frequency results are shown in Fig. 5. One 
study reported a higher peak frequency in patients with FMS compared 
to healthy participants (Navarro Lopez et al., 2015). The other two 
studies (CFS and Other) showed non-significant results (Flor-Henry 
et al., 2010; Golonka et al., 2019). Thus, results for peak frequency were 
sparse and inconclusive. 

3.4.1.3. Connectivity. Connectivity results are shown in Fig. 6. Theta 
connectivity was assessed in three studies, with one study in patients 
with MS showing lower connectivity in patients compared to healthy 
participants (Buyukturkoglu et al., 2017) and the two other studies (one 

MS, one CFS) reporting non-significant results (Zinn et al., 2016; Sjogard 
et al., 2021). Connectivity in the alpha band was reported in three 
studies, with two studies (one MS, one CFS) showing lower (Zinn et al., 
2016; Sjogard et al., 2021) and the other one (MS) showing higher alpha 
connectivity (Buyukturkoglu et al., 2017). Beta connectivity was 
assessed in three studies. One study in patients with MS showed lower 
(Sjogard et al., 2021) and one higher beta connectivity (Buyukturkoglu 
et al., 2017), and the other study in patients with CFS (Zinn et al., 2016) 
non-significant results in patients compared to healthy participants. 
Only one study in patients with CFS assessed gamma connectivity, 
yielding non-significant results (Zinn et al., 2016). Taken together, re-
sults for connectivity were sparse and inconclusive. 

3.4.2. Narrative synthesis of data analyses from cross-sectional studies 
using other outcome parameters as well as descriptive and longitudinal 
studies 

3.4.2.1. Cross-sectional studies using network analysis, microstate ana-
lyses, and classification approaches. Three studies (one MS, two CFS) 
assessed graph-theory-based network measures (Vecchio et al., 2017; 
Zinn et al., 2017; Zinn and Jason, 2021). Two studies evaluated the 
measure of smallworldness in patients with CFS and MS. In patients with 

Table 2 (continued ) 

Author and year Study design Inter-vention M/ 
EEG 

Entity Total 
sample 
size 

Assess- 
ment tool 

M/EEG Analysis Main result (M/EEG) 

motor symptom cluster ratings 
associated with alteration to CAN 
topology in patients, depending on the 
frequency band 

Note. M/EEG, Magneto-/Electroencephalography; PF, Peak Frequency; mFIS, modified Fatigue Impact Scale; FSS, Fatigue Severity Scale; FSMC, Fatigue Scale for 
Motor and Cognitive Funktions; DSQ, DePaul Symptom Questionnaire; BFI, Brief Fatigue Inventory; PFQ, Post-Polio Fatigue Questionnaire; NFB, Neurofeedback; MM, 
Mindfulness Meditation; tDCS, transcranial direct current stimulation; FC: Functional Connectivity; CEN, Central executive network; DMN: Default-mode network; SN, 
Salience Network; SMN; Sensory-motor network; CAN, Central autonomic network; LAN, language network; rsFC, resting-state functional connectivity; S1, primary 
somatosensory cortex; M1, primary motor cortex; CFS, chronic fatigue syndrome; CRF, cancer-related fatigue; FMS, fibromyalgia syndrome; MS, multiple sclerosis; 
PVFS, post-viral fatigue syndrome. 

Fig. 3. Risk of bias assessment for included studies. M/EEG, magneto-/electroencephalography.  
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MS, a positive correlation of smallworldness in the beta band with fa-
tigue symptoms was found (Vecchio et al., 2017). In patients with CFS, 
smallworldness in the delta band was reduced compared to healthy 
participants, which also negatively correlated with neurocognitive 
impairment (Zinn et al., 2017). A third study found a significant group 
difference in the topology of the cortico-autonomic network (CAN) in 
patients with CFS compared to healthy participants, which further 
showed associations with cognitive, affective, and somatomotor symp-
toms in different frequency bands (Zinn and Jason, 2021). 

Two studies reported machine-learning approaches based on power 
measures for classification in patients with CFS (Flor-Henry et al., 2010; 
Duffy et al., 2011). One study reported significant differences between 
medicated and unmedicated as well as female and male patients, with 

accuracies ranging from 60 to 89 % for patients with and without psy-
choactive medication, respectively (Duffy et al., 2011). Another study 
reported accuracies of 72 and 71 % using spectral current density in the 
alpha and beta bands, respectively (Flor-Henry et al., 2010). 

One microstate analysis study found that a short duration of micro-
state B significantly predicted cognitive fatigue in patients with MS. 

Together, these studies suggest fatigue-related alterations on the 
network level at different frequencies. However, the findings were too 
heterogenous to infer specific EEG network abnormalities in fatigue. 

3.4.2.2. Descriptive studies using power analysis. Four descriptive studies 
reported the relationship of EEG power with fatigue symptoms. Three 
studies (one PVFS, MS, and CFS) reported cross-sectional relationships, 

Fig. 4. Results of cross-sectional analyses of power for the different frequency bands. Power differences between patients and healthy participants in cross- 
sectional studies. P values on the x-axis are displayed on a logarithmic scale (log10). Higher values in patients compared to healthy participants are depicted on the 
right-hand side, non-significant differences in the middle and lower values on the left-hand side of each panel. The total sample size for single studies is depicted on 
the y-axis. n.s., not significant. 
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yielding inconsistent results. In one study in patients with PVFS, EEG 
slow-wave power in the right hemisphere significantly correlated with 
daily fatigue severity (Bruno et al., 1998). In one study in patients with 
MS, fatigue positively correlated with the inter-hemispheric power 
asymmetry of primary sensorimotor cortices as assessed with the inter- 
hemispheric symmetry index (Cogliati Dezza et al., 2015). In patients 
with CFS, frontal delta, theta, and alpha power were found to correlate 
with fatigue scores positively (Park et al., 2019). One longitudinal 
descriptive study in patients with CRF did not report changes in resting- 
state EEG power (Moore et al., 2014). Together, these findings were too 
heterogenous to draw conclusions about EEG correlates of fatigue. 

3.4.2.3. (Randomized) controlled trials using neurofeedback and non- 
invasive brain stimulation (NIBS). Four (randomized) controlled trials 
investigated the impact of neuromodulatory interventions on EEG 
measures and/or fatigue symptoms. Three studies (one MS and two 
FMS) reported power changes after neurofeedback (NFB) interventions 
with different control conditions and inconsistent results (Kravitz et al., 
2006; Kayıran et al., 2010; Jensen et al., 2018). 

One study assessed the effects of transcranial direct current stimu-
lation (tDCS) on connectivity in patients with MS suffering from fatigue. 
This study reported normalization of impaired resting-state fractal 
dimension, which encodes network complexity, of primary sensorimotor 
brain areas compared to healthy participants after the intervention 
(Porcaro et al., 2019). 

Taken together, studies assessing EEG correlates of neurofeedback 
interventions and NIBS for fatigue were too heterogenous to provide 

Fig. 5. Results of cross-sectional peak frequency analyses. Differences be-
tween patients and healthy participants in cross-sectional studies. P values on 
the x-axis are displayed on a logarithmic scale (log10). Higher values in patients 
compared to healthy participants are depicted on the right-hand side, non- 
significant differences in the middle and lower values on the left-hand side. 
The total sample size for single studies is depicted on the y-axis. n.s., 
not significant. 

Fig. 6. Results of cross-sectional connectivity analyses for the different frequency bands. Differences between patients and healthy participants in cross- 
sectional studies. P values on the x-axis are displayed on a logarithmic scale (log10). Higher values in patients compared to healthy participants are depicted on 
the right-hand side, non-significant differences in the middle and lower values on the left-hand side of each panel. The total sample size for single studies is depicted 
on the y-axis. n.s., not significant. 
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compelling evidence. 

4. Discussion 

4.1. Main findings 

The present systematic review assessed potential transdiagnostic M/ 
EEG biomarkers of pathological fatigue. To this end, cross-sectional as 
well as descriptive and longitudinal studies reporting resting-state M/ 
EEG findings in awake patients suffering from fatigue were analyzed. 
The main finding from cross-sectional studies, which can serve to 
identify diagnostic biomarkers, was an increase in theta power and a 
decrease in alpha power. The results of descriptive and longitudinal 
studies were too heterogenous to draw firm conclusions about M/EEG 
abnormalities in fatigue. 

A previous systematic literature review assessed neuroimaging al-
terations from different modalities, including EEG, in patients suffering 
from CFS (Maksoud et al., 2020). For 11 EEG studies in sleeping and 
awake patients, the review reported largely inconsistent results for 
different EEG measures, including power and functional connectivity. 
The review did not present a synopsis or (semi-)quantitative analysis but 
discussed findings from selected studies, which were interpreted to 
suggest an overall decreased EEG activity in patients suffering from CFS 
(Maksoud et al., 2020). Moreover, functional connectivity changes in 
the delta, theta, and alpha band were discussed as a potential sign of 
decreased complexity and an inhibitory state of brain function (Wu 
et al., 2016; Maksoud et al., 2020). Another systematic review and meta- 
analysis assessed EEG spectral power as a potential biomarker of task- 
related mental fatigue in healthy participants (Tran et al., 2020). In 
the 21 studies included, the authors found a robust correlation between 
mental fatigue with increases in theta and alpha band activity, with 
large and moderate to large effect sizes, respectively. This effect was 
most pronounced in the frontal, central, and posterior brain regions. 
Functionally, this increase was interpreted as an inhibitory mechanism 
with reference to studies on memory and cognition (Sauseng et al., 2010; 
Tran et al., 2020). 

The present systematic review complements and extends these 
findings by suggesting a shift towards brain activity at lower frequencies 
in patients suffering from fatigue across different disorders. Theta os-
cillations have been implicated in alertness and cognitive control (Kli-
mesch, 1999; Sauseng et al., 2010; Snipes et al., 2022), and a reciprocal 
relationship of theta and alpha oscillations has been observed (Klimesch, 
1999). In particular, higher theta and lower alpha activity during the 
resting state were associated with poorer cognitive performance (Kli-
mesch, 1999), corresponding to the clinical presentation of fatigue 
(Penner and Paul, 2017). Additionally, (mid-frontal) theta oscillations 
have been implicated in signaling predictions and response conflicts 
(Cohen and Donner, 2013; Huang et al., 2015). This fits well with pre-
dictive coding approaches to fatigue, proposing that this symptom re-
sults from a perceived inability to counteract conflicting expectations 
and sensory inputs (Stephan et al., 2016; Henningsen et al., 2018). 

The increase in slow-wave oscillations in fatigue in the present study 
overlaps with M/EEG findings in the highly comorbid symptoms of pain 
and depression. A recent systematic review reported increased theta 
power in chronic pain patients compared to healthy participants (Zeb-
hauser et al., 2022). Another review reported robust delta and theta 
band power increases in patients suffering from depression and other 
neuropsychiatric disorders (Newson and Thiagarajan, 2018). This sug-
gests partially overlapping brain oscillatory patterns in different 
neuropsychiatric disorders. A well-established concept to explain 
increased slow-wave oscillations in patients suffering from various 
neuropsychiatric disorders, including pain and depression, is the thala-
mocortical dysrhythmia model (Llinas et al., 1999; Llinas et al., 2005). 
This model proposes that abnormal thalamocortical theta oscillations 
cause subsequent alterations in higher frequency bands in the beta and 
gamma range, ultimately fostering different neuropsychiatric 

symptoms. In principle, the present findings in fatigue are compatible 
with this model. 

4.2. Risk of bias and limitations 

The interpretation of the present results is limited by a high risk of 
bias in many studies included. This refers to the low representativeness 
of cases, as reflected by relatively small sample sizes (median 36), with a 
priori sample size calculations being reported only rarely. Moreover, in 
many studies, methods and statistical tests applied to generate the 
outcomes were partially opaque, and largely unstandardized M/EEG 
(pre-)processing was used. Additionally, only a few studies effectively 
controlled for potential confounds such as neuropsychiatric comorbid-
ities, medication effects, or demographic factors. 

Further limitations apply to this systematic review itself. First, fa-
tigue occurs in different disorders with different pathomechanisms. It is 
unclear whether and how these different pathomechanisms converge 
and result in similar behavioral symptomatology. Our finding of 
increased slow-wave brain activity might represent a neural level where 
these different pathomechanisms converge. Second, the present review 
aimed to include patient groups with different disorders. However, most 
studies included patients with CFS and MS, limiting the results’ trans-
diagnostic generalizability. Correspondingly, the main findings ob-
tained for power differences are driven by results in CFS patients. Still, 
the present review provides a comprehensive overview and synopsis of 
available data and methods and can thus serve as a basis for future 
studies on transdiagnostic biomarkers. This is particularly relevant 
given the rapidly increasing number of patients with long COVID. Third, 
the albatross plots used for semiquantitative data synthesis in the pre-
sent study comprise local and global M/EEG measures. Thus, the con-
tributions of specific brain regions and networks might be obscured. 
Fourth, the review is limited to semiquantitative evidence since formal 
meta-analysis was not feasible due to the overall low number of studies 
and the heterogeneous study designs and outcomes. 

4.3. Outlook and recommendations 

The present systematic review can aid the development of trans-
diagnostic biomarkers for pathological fatigue by guiding future M/EEG 
studies. 

First, future studies should aim to assess biomarker specificity (Woo 
et al., 2017). Most previous studies did not adequately control for 
frequent comorbidities, including pain and depression. Thus, the spec-
ificity of the findings remains to be determined. Future studies should, 
therefore, formally assess and control for these symptoms. This might 
help to determine the specificity of the results and identify common 
pathophysiological mechanisms of comorbid neuropsychiatric symp-
toms in line with the National Institute of Mental Health (NIMH) 
research domain criteria (Insel et al., 2010). Specificity and sensitivity 
might be further enhanced by exploring composite biomarkers consid-
ering different biopsychosocial determinants of fatigue (Tracey et al., 
2019). Exploring the composite value of inflammatory and neuro-
imaging biomarkers might be particularly promising in fatigue. Such an 
approach holds the potential to understand better overlapping (neuro- 
immune) pathomechanisms underlying the frequent comorbidity of fa-
tigue, depression, and pain (Heitmann et al., 2022). 

Second, a better understanding of M/EEG correlates of fatigue could 
help to define treatment targets for non-invasive brain stimulation 
(NIBS) techniques. This would complement recent evidence for the ef-
ficacy of frequency-specific NIBS in treating fatigue (Lefaucheur et al., 
2017). NIBS showed promising results in MS and FMS fatigue (Lefau-
cheur et al., 2017; Ayache et al., 2022; Chen et al., 2022) and was 
recently proposed as a treatment for long COVID (Linnhoff et al., 2022). 

Third, small sample sizes and opaque methodology hinder repro-
ducibility, as in many of the studies included. Future studies should aim 
to enhance reproducibility in biomarker development by using large 
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datasets and transparent and standardized data analysis (Munafo et al., 
2017). In M/EEG research and beyond, this can be achieved by adhering 
to open science practices, including preregistration, data and code 
sharing to allow for multisite data analyses, the use of standardized 
reporting and data structuring (e.g., EEG-BIDS) (Pernet et al., 2019) as 
well as automated (pre-)processing and analysis pipelines (Pernet et al., 
2020). 

5. Conclusion 

Insights into brain function in pathological fatigue promise to 
advance the understanding of the underlying pathophysiology and the 
development of biomarkers that could further the diagnosis and treat-
ment of fatigue (Woo et al., 2017). Due to the broad availability and 
scalability, M/EEG holds excellent potential for developing such bio-
markers. We, therefore, systematically reviewed the current evidence 
for such biomarkers. Cross-sectional studies yielded evidence that a shift 
towards lower frequency oscillations in the theta band might be helpful 
as a diagnostic biomarker of fatigue and might also represent a potential 
treatment target. Large-scale studies assessing different biomarker types 
and their specificity are needed to better exploit the potential of M/EEG 
as transdiagnostic biomarkers of fatigue. Adhering to the highest stan-
dards in transparency and reproducibility will be key to yield reliable 
results. Moreover, exploring conceptual and pathophysiological over-
laps with comorbid depression and pain and developing composite 
biomarkers appears promising and might open new alleys for treatment. 
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