Skip to main content
. 2023 Aug 18;25:e47366. doi: 10.2196/47366

Table 1.

Grid search parameters in hyperparameter tuning.

Classifiera Parameters_grid Selected value
LogisticRegression
  • Penalty: [“l1,” “l2,” “elasticnet,” “none”]

  • C: {1, 0.1, 0.01}

  • Solver: [“lbfgs,” “newton-cg,” “liblinear,” “sag,” “saga”]

  • Penalty=“11”

  • C=0.1

  • Solver=“liblinear”

SVMb (kernel = “rbf,” degree = 3)
  • C: [0.1, 1, 10, 100]

  • Gamma: [1, 0.1, 0.01, 0.001]

  • C=1

  • Gamma=1

DecisionTree
  • criterion: [“gini,” “entropy”]

  • max_depth: [None, 4, 5, 6, 7, 8]

  • min_samples_split: {2, 4, 8, 10, 20, 30, 40}

  • Criterion=“entropy”

  • Max_depth=None

  • Min_samples_split=2

RandomForest
  • n_estimators: {30, 100, 200}

  • max_depth: {4, 5, 6, 7, 8}

  • min_samples_split: {2, 4, 6, 8}

  • min_samples_leaf: {1, 2, 3}

  • n_estimators=100

  • Max_depth=8

  • Min_samples_split=2

  • Min_samples_leaf=1

KNeighborsClassifier
  • n_neighbors: {5, 10, 15, 20, 30}

  • weights: [“uniform,” “distance”]

  • metric: [“minkowski,” “euclidean,” “manhattan”]

  • n_neighbors=5

  • weight=“distance”

  • metric=“manhattan”

AdaBoostClassifier
  • n_estimators: {5, 10, 30, 50, 100, 500}

  • learning_rate: [0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.5, 1.0]

  • algorithm: [“SAMME,” “SAMME.R”]

  • n_estimator=500

  • learning_rate=1.0

  • algorithm=“SAMME.R”

XGBClassifier (eval_metric = “aucpr,” n_estimators = 100, booster = “gbtree,” colsample_bytree = 1, learning_rate = 0.3)
  • eta: [0.01, 0.05, 0.1, 0.15, 0.2, 0.3]

  • gamma: {0, 1, 5}

  • max_depth: {5, 6, 8, 10}

  • min_child_weight: {0, 1, 2, 5, 10}

  • min_child_weight=0

  • max_depth=5

  • gamma=0

  • eta=0.2

MLPClassifier (hidden_layer_sizes = (64, 64, 64), activation = “relu”)
  • solver: [“adam,” “lbfgs”]

  • alpha: [0.0001, 0.001, 0.01, 0.05, 0.1]

  • learning_rate: [“constant,” “adaptive”]

  • learning_rate_init: [0.01, 0.005, 0.001]

  • batch_size: {150, 300, 500}

  • Solver=“lbfgs”

  • Alpha=0.1

  • Learning_rate=“constant”

  • Batch_size=150

  • Learning_rate_init=0.01

aThe algorithms were performed using the Python package Scikit-learn 0.24.2, and all other parameters not shown in this table were set to their default values.

bSVM: support vector machine.