Skip to main content
. 2023 Aug 18;25:e47366. doi: 10.2196/47366

Table 4.

Model performances (based on evaluation metrics) on the testing set.

Model name Accuracy Precision Recall F1-score Specificity AUROCa
LRb 0.750 0.360 0.720 0.540 0.750 0.832
SVMc 0.860 1.000 0.130 0.565 1.000 0.920
KNNd 0.910 0.660 0.910 0.785 0.910 0.938
Decision tree 0.877 0.624 0.605 0.615 0.930 0.767
Random forest 0.923 0.777 0.733 0.755 0.959 0.962
XGBooste 0.930 0.850 0.720 0.785 0.970 0.960
AdaBoostf 0.900 0.700 0.650 0.675 0.950 0.900
DNNg 0.927 0.790 0.746 0.768 0.962 0.933

aAUROC: area under the receiver operating characteristic curve.

bLR: logistic regression.

cSVM: support vector machine.

dKNN: k-nearest neighbor.

eXGBoost: extreme gradient boost.

fAdaBoost: adaptive boosting.

gDNN: deep neural network.