Table 4.
Model name | Accuracy | Precision | Recall | F1-score | Specificity | AUROCa |
LRb | 0.750 | 0.360 | 0.720 | 0.540 | 0.750 | 0.832 |
SVMc | 0.860 | 1.000 | 0.130 | 0.565 | 1.000 | 0.920 |
KNNd | 0.910 | 0.660 | 0.910 | 0.785 | 0.910 | 0.938 |
Decision tree | 0.877 | 0.624 | 0.605 | 0.615 | 0.930 | 0.767 |
Random forest | 0.923 | 0.777 | 0.733 | 0.755 | 0.959 | 0.962 |
XGBooste | 0.930 | 0.850 | 0.720 | 0.785 | 0.970 | 0.960 |
AdaBoostf | 0.900 | 0.700 | 0.650 | 0.675 | 0.950 | 0.900 |
DNNg | 0.927 | 0.790 | 0.746 | 0.768 | 0.962 | 0.933 |
aAUROC: area under the receiver operating characteristic curve.
bLR: logistic regression.
cSVM: support vector machine.
dKNN: k-nearest neighbor.
eXGBoost: extreme gradient boost.
fAdaBoost: adaptive boosting.
gDNN: deep neural network.