Table 5.
Model performance without the clinical assessment features.
| Model name | Accuracy | Precision | Recall | F1-score | Specificity | AUROCa |
| LRb | 0.720 | 0.350 | 0.870 | 0.610 | 0.690 | 0.814 |
| SVMc | 0.840 | 0.600 | 0.070 | 0.335 | 0.990 | 0.824 |
| KNNd | 0.800 | 0.430 | 0.700 | 0.565 | 0.820 | 0.821 |
| Decision tree | 0.835 | 0.494 | 0.530 | 0.512 | 0.894 | 0.712 |
| Random forest | 0.868 | 0.610 | 0.501 | 0.556 | 0.938 | 0.893 |
| XGBooste | 0.890 | 0.720 | 0.500 | 0.610 | 0.960 | 0.868 |
| AdaBoostf | 0.830 | 0.470 | 0.570 | 0.520 | 0.880 | 0.815 |
| DNNg | 0.893 | 0.687 | 0.632 | 0.660 | 0.944 | 0.899 |
aAUROC: area under the receiver operating characteristic curve.
bLR: logistic regression.
cSVM: support vector machine.
dKNN: k-nearest neighbor.
eXGBoost: extreme gradient boost.
fAdaBoost: adaptive boosting.
gDNN: deep neural network.