Skip to main content
. 2023 Aug 18;25:e47366. doi: 10.2196/47366

Table 5.

Model performance without the clinical assessment features.

Model name Accuracy Precision Recall F1-score Specificity AUROCa
LRb 0.720 0.350 0.870 0.610 0.690 0.814
SVMc 0.840 0.600 0.070 0.335 0.990 0.824
KNNd 0.800 0.430 0.700 0.565 0.820 0.821
Decision tree 0.835 0.494 0.530 0.512 0.894 0.712
Random forest 0.868 0.610 0.501 0.556 0.938 0.893
XGBooste 0.890 0.720 0.500 0.610 0.960 0.868
AdaBoostf 0.830 0.470 0.570 0.520 0.880 0.815
DNNg 0.893 0.687 0.632 0.660 0.944 0.899

aAUROC: area under the receiver operating characteristic curve.

bLR: logistic regression.

cSVM: support vector machine.

dKNN: k-nearest neighbor.

eXGBoost: extreme gradient boost.

fAdaBoost: adaptive boosting.

gDNN: deep neural network.