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Abstract

Objectives: The prevalence of neurodegenerative disorders demands methods of accessible 

assessment that reliably captures cognition in daily life contexts. We investigated the feasibility 

of smartphone cognitive assessment in people with Parkinson’s disease (PD), who may have 

cognitive impairment in addition to motor-related problems that limit attending in-person clinics. 

We examined how daily-life factors predicted smartphone cognitive performance and examined 

the convergent validity of smartphone assessment with traditional neuropsychological tests.

Methods: Twenty-seven nondemented individuals with mild–moderate PD attended one in-lab 

session and responded to smartphone notifications over 10 days. The smartphone app queried 

participants 5x/day about their location, mood, alertness, exercise, and medication state and 

administered mobile games of working memory and executive function.

Results: Response rate to prompts was high, demonstrating feasibility of the approach. Between-

subject reliability was high on both cognitive games. Within-subject variability was higher for 

working memory than executive function. Strong convergent validity was seen between traditional 

tests and smartphone working memory but not executive function, reflecting the latter’s ceiling 

effects. Participants performed better on mobile working memory tasks when at home and after 
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recent exercise. Less self-reported daytime sleepiness and lower PD symptom burden predicted a 

stronger association between later time of day and higher smartphone test performance.

Conclusions: These findings support feasibility and validity of repeat smartphone assessments 

of cognition and provide preliminary evidence of the effects of context on cognitive variability 

in PD. Further development of this accessible assessment method could increase sensitivity and 

specificity regarding daily cognitive dysfunction for PD and other clinical populations.
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INTRODUCTION

The rates of neurodegenerative disorders are rising as the population ages, and costs of 

assessment are a barrier to timely diagnosis and treatment (Hurd, Martorell, Delavande, 

Mullen, & Langa, 2013). Persons with Parkinson’s disease (PD) experience common 

barriers to assessment found with other neurodegenerative disorders (Bradford, Kunik, 

Schulz, Williams, & Singh, 2009), but motor impairment is an additional impediment to 

clinic and lab visits (e.g., slow gait, risk of falls, challenges to driving or using public 

transit). These limitations result in delayed diagnosis for some individuals long after 

symptoms emerge (Breen, Evans, Farrell, Brayne, & Barker, 2013) as well as suboptimal 

treatment (Hogan et al., 2008). Nonetheless, clinics and labs are required for current 

methods of assessment of PD symptoms, including non-motor symptoms such as cognitive 

impairment.

Neuropsychological testing to characterize cognitive deficits requires hours of time from 

persons with PD, who often experience daytime fatigue (Friedman et al., 2007), and current 

methods of testing capture cognitive performance only at a single time point. This is 

particularly problematic for persons with PD, which is a disorder marked by fluctuations 

in symptoms over time including changes in cognition, mood, motivation, and arousal level 

(Cronin-Golomb, Reynolds, Salazar, & Saint-Hilaire, 2019).

Digital technology has the potential to address limitations (e.g., access, time, and cost) 

inherent to neuropsychological assessment in clinical populations such as PD (Parsey & 

Schmitter-Edgecombe, 2013). Emerging digital assessments use computerized versions of 

the lengthy analog tests that only provide a snapshot of cognition in a single session 

(Bauer et al., 2012; Rentz et al., 2016); these tests can now be completed at home for 

tracking cognitive function. An emerging literature indicates that smartphone assessments of 

cognition in clinical samples show strong convergent validity with their analog traditional 

neuropsychological assessments (Dagum, 2018; Moore et al., 2020; Pal et al., 2016; 

Schuster, Mermelstein, & Hedeker, 2016; Sliwinski et al., 2018; Timmers et al., 2014).

Another benefit of remote digital assessment is the ability to easily assess cognitive 

variability with a higher volume of trials than one-time testing allows. Intraindividual 

variability is a sensitive marker of function and risk for decline in neurodegenerative 
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disorders (Christ, Combrinck, & Thomas, 2018; Haynes, Bauermeister, & Bunce, 2017). 

Specifically in PD, we know that greater intraindividual variability in processing speed, 

beyond mean changes, is associated with later stages of the disease (de Frias, Dixon, 

Fisher, & Camicioli, 2007). Repeated testing of cognition and state-based variables via 

a mobile assessment device, such as a smartphone, allows us to identify changes in 

disease symptoms, which can subsequently predict more subtle changes in disease state or 

progression. Furthermore, compared to the invasive and costly nature of biomarkers, within-

person variability as measured via intensive longitudinal data could produce a sensitive 

metric of disease stage and diagnosis without undue burden to individuals. The ubiquity 

of smartphones allows for evidence-based assessment in the hands of those who may most 

benefit from it. The potential of this technology is becoming increasingly apparent given 

the ever-shrinking digital divide between younger and older adults as smartphone ownership 

among seniors continues to rise (Anderson & Perrin, 2017).

Few studies to date have used ecological momentary assessment (EMA) in PD, which 

refers to frequent, typically brief assessments delivered in real-world environments 

(Csikszentmihalyi & Larson, 1987). Our lab demonstrated the feasibility of conducting a 

smartphone EMA study of mood and subjective sleep quality in PD (Wu & Cronin-Golomb, 

2020). Further, a single-case EMA study established proof-of-concept using smartphone 

technology to track intraindividual fluctuations in PD motor symptoms as they related to 

mood and then modeled these fluctuations using network analysis; they found that anxiety 

was prospectively associated with more tremor, and cheerfulness with less tremor (van 

der Velden, Mulders, Drukker, Kuijf, & Leentjens, 2018). The mPower Study used a brief 

repeated-measures smart-phone design to assess PD motor symptoms including motor and 

reaction time over six months (Bot et al., 2016; Lipsmeier et al., 2018). All elements of 

the assessment related to at least one component of the Unified Parkinson’s Disease Rating 

Scale (UPDRS); e.g., finger tapping (motor speed) was significantly correlated with UPDRS 

ability to independently dress oneself without difficulty (Lipsmeier et al., 2018). Another 

study used smartphone test data to develop an independent and valid disease severity score 

using a supervised and weighted machine learning algorithm. The score was significantly 

associated with the UPDRS and other standard PD motor tests such as Timed Up and Go 

(Zhan et al., 2018). A limitation of this latter study was that all assessments occurred within 

the clinic setting and no measures of neuropsychological function beyond reaction time were 

included. To date, no studies have examined patterns of neuropsychological testing using 

smartphone technology in PD, although research has found cognitive correlates in PD (Lo et 

al., 2019).

The first purpose of the present study was to use a smartphone EMA design to 

assess executive function and working memory, which are among the earliest cognitive 

dysfunctions to arise in PD (reviewed in Cronin-Golomb et al., 2019; Dirnberger & 

Jahanshahi, 2013; Miller, Neargarder, Risi, & Cronin-Golomb, 2013) and are related to a 

wide range of other symptoms, including anxiety (Reynolds, Hanna, Neargarder, & Cronin-

Golomb, 2017), depression and apathy (reviewed in Dirnberger & Jahanshahi, 2013), and 

impairments in spatial judgment (Salazar, Moon, Neargarder, & Cronin-Golomb, 2019) and 

gait (Morris et al., 2019). While the cognitive measures we included are similar to tests used 

in other app-based measures of cognition (Moore, Swendsen, & Depp, 2017), performance 
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on the app-based tests have generally not been measured alongside performance on the 

traditional neuropsychological tests (Spatial Span [working memory] and Trail Making 

Test [executive function]) upon which they are based. A recent smartphone-based study 

of performance on a Stroop-based task by persons aged 50 years and above with HIV, a 

disorder that is like PD in that it affects the basal ganglia, showed good feasibility and 

convergent validity with respect to traditional neuropsychological measures of executive 

function and working memory (Moore et al., 2020). We predicted a significant association 

in PD between scores on our traditional neuropsychological tests and overall mean score 

(across time points) on the respective smartphone cognitive assessments.

An additional objective was to examine how PD symptoms and individual differences relate 

to design feasibility and to intraindividual variability in cognitive performance. We predicted 

that the majority of participants, who were nondemented, would exhibit a completion 

rate similar to that seen in other studies of mobile cognitive assessment, roughly 70%–

80% completion of surveys (Moore et al., 2017). We hypothesized that those with lower 

baseline scores on a global cognitive screening measure, the Montreal Cognitive Assessment 

(MoCA), would have lower rates of response due to difficulty navigating the smartphone app 

interface without the assistance of a researcher or a clinician. We expected that those with 

greater symptom burden (higher UPDRS score) would have lower rates of response due to 

motor or other impairments (e.g., pain, fatigue).

Because the literature has demonstrated associations between specific contextual variables 

and within-person fluctuations in cognition (Weizenbaum, Torous, & Fuford, 2020), we 

developed exploratory hypotheses regarding contextually driven within-person fluctuations. 

Specifically, we examined whether lower mood and higher anxiety would be associated with 

worse performance on smartphone tasks, as prior research has shown negative mood (Brose, 

Schmiedek, Lövdén, & Lindenberger, 2012; Jefferies, Smilek, Eich, & Enns, 2008) and 

stress (Sliwinski, Smyth, Hofer, & Stawski, 2006) to be associated with poorer momentary 

performance on attention and working memory tasks, especially in older adults. Similarly, 

we assessed whether lower motivation related to worse smartphone performance due to 

poor task engagement, as shown in another EMA study of working memory (Brose et al., 

2012). As older adults typically perform best on working memory in the morning (West, 

Murphy, Armilio, Craik, & Stuss, 2002), we assessed whether time of day would be a 

significant predictor of performance. Subjective alertness can also be predictive of cognitive 

performance on attention accuracy tasks (Manly, Lewis, Robertson, Watson, & Datta, 2002); 

hence, we hypothesized that alertness would be positively associated with performance. 

Although social activity has been associated with improved cognitive performance in certain 

domains, including memory and processing speed (Bielak, Mogle, & Sliwinski, 2017), 

the visual and auditory distraction in these settings may be less conducive to optimal 

performance, and variable noise in the surrounding environment is associated with worse 

working memory (Lange, 2005). We examined whether being at home (versus in other 

environments) would produce a more controlled and familiar sensory environment and 

hypothesized that it may lead to improved cognitive performance.

We also considered whether smartphone cognitive performance would be related to self-

reported on-off periods of medication, as off-periods are associated with an increase in 
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motor symptoms including tremor as well as nonmotor symptoms such as pain and anxiety 

(Cheon, Park, Kim, & Kim, 2009). In those without medication-related fluctuations, it was 

predicted that off-periods would be associated with poorer cognitive performance at that 

time point. The final of the secondary contextual hypotheses was whether factors such as 

recent exercise may be associated with improved cognitive performance, as previous work 

suggests widespread benefit of exercise to cognition in people with PD (Murray et al., 2014; 

Reynolds et al., 2017).

METHODS

Participants

We initially recruited 30 community-dwelling participants who met the clinical criteria for 

mild to moderate idiopathic PD, following the United Kingdom Parkinson’s Disease Society 

Brain Bank diagnostic criteria (Hughes, Daniel, Kilford, & Lees, 1992). They were recruited 

from the Boston University Center for Neurorehabilitation and the Parkinson’s Disease and 

Movement Disorders Center at Boston Medical Center. Study protocols were approved by 

the Boston University Institutional Review Board, with consent obtained according to the 

Declaration of Helsinki. All participants were native-English speaking adults who owned a 

smartphone with iOS or Android operating systems. Exclusion criteria included a score of 

less than 20 on the Montreal Cognitive Assessment (MoCA) or a motor impairment (e.g., 

significant tremor or dyskinesia) that prohibited them from regularly using a smartphone. 

Out of the 30 enrolled, 27 completed the remote smartphone assessments in addition to the 

in-lab initial assessment. One dropped out due to other time commitments, and the other 

two experienced technical failures with their phone and/or the study app. All but one of the 

27 participants were taking medication to treat PD. We calculated levodopa equivalent daily 

dosages (LEDD) based on convention (Tomlinson et al., 2010). See Table 1 for descriptive 

statistics of the final sample.

Study Procedure

After enrollment by phone, participants were emailed a link to online questionnaires to 

complete before the in-lab assessment. In-lab (Study Day 0), after the MoCA confirmed 

eligibility, the UPDRS was administered by a trained examiner as well as two brief 

traditional neuropsychological measures: the WMS-III Spatial Span Test and the Trail 

Making Test A & B. Participants then downloaded the study app onto their own smartphone. 

They were guided through a slideshow presentation on how to use the app and practiced 

completing surveys and games with the researcher present. Immediately following the visit, 

participants were emailed the slideshow of instructions and the structure of smartphone 

assessment administration was described to them. On Study Days 1–10, smartphone 

assessment notifications appeared consistently at 9am, 12pm, 3pm, 6pm, and 9pm. The 

smartphone assessments consisted of a brief survey and two games (described below) and 

typically required five minutes to complete. Participants had the opportunity to respond to 

the assessments within two hours of the initial notification before the assessment window 

would close until the next time prompt (Table 2). Participants were encouraged to contact 

researchers if questions arose and were also emailed on Day 2 and Day 6 to check-in and 

troubleshoot any problems encountered using the study app. Participants were compensated 
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at the rate of $15/hour for time spent in-lab and $1 for every smartphone assessment, 

with the opportunity to earn a $15 bonus if they completed at least 80% (40/50) of all 

assessments.

Study Measures

Online pre-study survey—The following questionnaires were completed online before 

the lab visit. Mood and Anxiety Symptoms Questionnaire (MASQ-short) assesses symptoms 

of depression and anxiety (Wardenaar et al., 2010). Positive and Negative Affect Scale 
assesses trait positive and negative affect (Watson, Clark, & Tellegen, 1988). Motivation 
and Pleasure Scale assesses motivation and pleasure-seeking behavior (Llerena et al., 2013). 

Behavior Rating Inventory of Executive Functioning assesses self-perceived difficulties in 

executive functioning (Roth, Gioia, & Isquith, 2005). Epworth Sleepiness Scale (ESS) 
assesses daytime sleepiness (Johns, 1991).

In-lab baseline assessment—The following tests were administered in-lab: UPDRS, a 

standard assessment of PD symptoms including in-person interview and motor examination 

and Hoehn and Yahr (H&Y) stage rating (Fahn, Elton, & UPDRS program members, 1987); 

the neuropsychological measures, Spatial Span (Wechsler Memory Scale-III, Wechsler, 

1997) for visual working memory as the analog of the smartphone Backwards Spatial 

Span, and Trail Making Test A & B (Tombaugh, 2004), for processing speed and complex 

attention as the analog of to the smartphone Trails-B test.

mindLAMP smartphone assessments—The app-based assessment included questions 

of context, mood state, and cognition using the Mind Learn-Assess-Manage-Prevent app 

developed at the Department of Digital Psychiatry of Beth Israel Deaconess Medical 

Center, Boston (Torous et al., 2019). See screenshots of the app interface in Figure 

1a–d. Code for the smartphone assessments is publicly available at: https://github.com/

BIDMCDigitalPsychiatry

Location & Social Context Survey: Location & Social Context Survey assessed 

type of current location and social context (Figure 1a). Location options included 

home, work/school, someone else’s home, public place indoors, public place outdoors, 

and transportation. Social context survey options included alone, strangers, classmates/

coworkers, acquaintances, close friends, family members, and romantic partner. Mood & 
Alertness Survey included five questions relating to mood (happy/sad), anxiety, alertness, 

and level of motivation to try one’s hardest on subsequent cognitive games (Figure 1b).

As noted above, executive function and working memory are among the earliest cognitive 

domains affected by PD and also are domains affected by contextual variables and for this 

reason we included the following tests:

Backwards Spatial Span Test: Backwards Spatial Span Test consisted of four increasingly 

challenging trials requiring one to tap the sequence of boxes that appeared on the screen 

during that trial but in reverse order (Figure 1c). Trails-B Test consisted of four increasingly 

lengthy trials requiring one to tap numbers and letters on the screen in a sequential and 

alternating manner (Figure 1d).
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Data Analysis

EMA response rate was calculated as the number of completed smartphone assessments 

divided by the total possible number of assessments for each person (50), and then within-

person means were averaged to create a sample response rate mean. To determine whether 

there was reliable and systematic between-person variability that was greater than within-

person variability in participants’ cognitive tests scores (i.e., Backwards Spatial Span and 

Trails-B), a multilevel modeling approach was taken using the software MPlus Version 

8.1.7 that uses between- and within-person variance to calculate between-person reliability. 

The formula for reliability is where Var(BP) is the total variance in scores that is between 

persons, Var(WP) is the total variance in scores that is within persons, and n is the number of 

assessments (Sliwinski et al., 2018).

BP Reliablity  = V ar(BP)
V ar(BP) + V ar(WP)

n

Scores were aggregated across time points to find the sample’s average within-person means 

and standard deviations across the full study period and by time point and day. In addition 

to whole-sample analyses, within-person means were calculated along with within-person 

standard deviation to identify whether a person’s level of variability in score was associated 

with the overall performance on the task. Pearson correlations were used to assess potential 

convergence between within-person smartphone cognitive test means and self-reported 

executive dysfunction (BRIEF-A). Because of the repeated nature of smartphone tests 

compared to the one-time BRIEF-A questionnaire, a multilevel model maximum likelihood 

regression was used with the BRIEF-A as a Level 2 fixed effect predictor of smartphone 

test performance, which was entered as a Level 1 random effect outcome variable. To 

assess convergent validity with traditional neuropsychological measures, in-lab test scores 

were entered as Level 2 fixed effect predictors of Backwards Spatial Span and Trails-B 

performance (the Level 1 outcome variable) each in their own separate model.

We also conducted multilevel model regressions to assess the extent to which smartphone 

test performance on the Backwards Spatial Span or Trails-B task related to context and 

state variables collected at the same time point. In this model, each contextual variable was 

entered as an independent Level-1 predictor of the Level-1 outcome: Backwards Spatial 

Span or Trails-B. Survey time point (1–50) and day of study were independently analyzed 

as Level-1 predictors to determine whether smartphone cognitive test performance improved 

over the course of the study period as a result of practice and familiarity with the task. 

A two-level regression model was used to determine whether Level-2 fixed effects (between-

person measures) moderated the within-person relations between context and smartphone 

score. These fixed effects included demographics, PD-specific measures (UPDRS Total 

Score (Parts I-IV), UPDRS Motor Subscale (Part III), UPDRS tremor item total (items 20 

and 21), H&Y stage), baseline cognitive score (MoCA), and online questionnaires of trait 

affect, anxiety, sleepiness tendency, and motivation.
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RESULTS

Association with Sample Characteristics

LEDD was not significantly correlated with any cognitive measures (in-lab or smartphone) 

(r’s < .20, p’s > .33). Age was negatively associated with the smartphone Backwards Spatial 

Span Task (r = −.59, p < .01), and UPDRS total score was negatively associated with 

the smartphone Trails-B task (r = −.53, p < .01). No other participant characteristics were 

associated with smartphone or in-lab cognitive measures.

Feasibility

Adherence was 73% (SD = 10%); on average, participants responded to roughly 37 out of 

the 50 possible assessments over the course of the 10-day study period. Age, disease severity 

(UPDRS total), and baseline MoCA score were not significantly correlated with response 

rate to EMA prompts. Responses were captured in a variety of social contexts. Participants 

reported being alone 44% of the time when completing the surveys and games, followed 

by 32% with family members. Overall, responses were evenly distributed across the course 

of the day, with most responses in the afternoon (40%) and evening (37%), which is to be 

expected as two prompts occurred in the afternoon and two in the evening. Responses were 

most likely to occur within the physical context of being home (71%), with the remaining 

29% relatively evenly distributed across other locations including public places indoors, 

outdoors, work, someone else’s home, and during transit (Figure 2).

Smartphone Cognitive Test Psychometrics

Backward spatial span—Within-person mean accuracy was 85.9% (SD = 5.2) (Table 

3). Within-person means were significantly negatively correlated with standard deviation 

(r = −.70, p < .001), meaning that high accuracy was associated with less intraindividual 

variability. Between-person reliability was high (.89). Day of the study (1–10) was 

significantly related to higher accuracy (B = .33, SE = .13, p = .01), indicating a practice 

effect; however, no significant residual variance indicated no individual differences in this 

effect. Specifically, when scores were aggregated by day, the greatest amount of variability 

occurred on Day 1 (mean score = 84.0 [SD = 2.1]), after which SD rapidly narrowed to the 

study average of 85.9 (SD = 5.2).

Trails-B accuracy—When scores were collapsed across time points within individuals, 

Trails-B accuracy was 96.2% (SD = 3.3), indicating a ceiling effect with little variability 

around score from moment to moment within individuals (Table 3). Within-person means 

were significantly negatively correlated with standard deviation (r = −.93, p < .001), 

meaning that high accuracy was associated with less intraindividual variability around the 

mean. Between-person reliability was .87. There was no association between day of study (B 
= .13, SE = .08, p = .12) and accuracy, nor was there significant residual variance between 

persons. This indicates the absence of a practice effect, but likely reflects the high and 

unvaried score accuracy across participants and across the study period.
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Smartphone Cognitive Test Convergent Validity

The smartphone Backwards Spatial Span was significantly predicted by performance on the 

MoCA, WMS-III Spatial Span Test (including total score backward and forward and subtest 

scores), and the Trail Making Test (time on A & B) (Table 4). By contrast, smartphone 

Trails-B task accuracy was not predicted by any of the traditional neuropsychological 

measures, including baseline cognitive screen (MoCA), WMS-III Spatial Span Test, or Trail 

Making Test A & B Time (Table 4), potentially owing to the limited variability in scores 

on the smartphone measure. Neither smartphone test score was predicted by the BRIEF-A 

questionnaire score nor was BRIEF-A (subjective self-report) correlated with any of the 

traditional in-lab test scores, all from objective task-based measures.

Individual differences as independent predictors of smartphone test scores
—Using multilevel regression models of between-person (Level 2) predictors of repeated 

(Level 1) measurements, we found that higher scores on the UPDRS tremor items (B = 

−.77, SE = .27, p = .005), UPDRS Part III motor sub-scale (B = −.25, SE = .07, p = .001), 

and UPDRS Part I-IV total score (B = −.13, SE = .05, p = .009) predicted lower overall 

smartphone Trails-B accuracy scores, but not Backwards Spatial Span scores. Older age 

predicted lower overall Backwards Spatial Span scores, but not Trails-B scores. Neither the 

UPDRS Part I mood-mentation-behavior subscale nor the UPDRS Part II ADL subscale 

significantly predicted smartphone test scores, although there was a trend for an association 

between the ADL subscale score and Trails-B accuracy (B = −.280, SE = .149, p = .060) 

(Table 5).

EMA contextual variables and smartphone test performance—For Backwards 

Spatial Span, being at home (vs. other location) predicted a higher score at the same time 

point (B = 7.19, SE = 3.01, p = .02); there was no significant between-person residual 

variance in this association. Having reported exercising in the last 3 h also predicted higher 

Backwards Spatial Span score at the same time point (B = 2.16, SE = .78, p = .01); there 

was significant between person residual variance associated with this effect (B = 1.26, SE 
≤ .001, p ≤ .001), meaning that individual differences existed in the strength of the exercise 

and Span score association (Table 6). When entered as a Level 2 predictor, a person’s 

mean exercise frequency score (the percent of times a person endorsed having exercised 

in the past 3 h) predicted the strength of the relation between exercise and spatial span 

score. Specifically, when those who generally exercised less frequently endorsed having 

exercised in the last 3 h, Backwards Spatial Span score tended to be higher (B = −2.42, SE 
= .10, p < .001). The question remained as to whether specific individual differences may 

predict which participants exhibited variability in their accuracy scores in relation to context 

variables. Based on exploratory correlations between individual differences and contextual 

variables, we entered individual differences as Level 2 predictors in multilevel models. No 

individual differences examined predicted the exercise and spatial span association (Table 

7).

For Trails-B, there were no significant associations between contextual EMA variables and 

accuracy. There was a significant level of between-person variability, however, given the 

residual variance values in the relation between time of day and Trails-B score (B = 3.75, SE 
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= 1.65, p = .02) and being at home (versus another location) and Trails-B score (B = 57.76, 

SE = 23.49, p = .01). Despite the lack of sample-level relations between Trails-B score and 

time-of-day, this association did vary significantly from person to person in the study, as 

illustrated by the examples in Figure 3: Participant 40011 tended to be more accurate as 

the day progressed, whereas Participant 40008’s accuracy did not differ across the morning, 

afternoon, and evening.

Individual difference variables that were significantly correlated with Trails-B accuracy were 

entered as Level 2 or between-person predictors in individual multilevel models of context 

and performance (Table 7). Those who reported lower baseline daytime sleepiness tended to 

perform better on Trails-B later in the day. No individual difference variables predicted the 

strength of a participant’s association between Trails-B accuracy and being at home.

DISCUSSION

This study examined the utility and feasibility of repeated smartphone assessment of 

cognition and context in persons with PD. There is a paucity of data on smartphone 

cognitive assessment in PD, and while a visual working memory task has been incorporated 

into other apps used to measure symptoms in PD (Bot et al., 2016), to our knowledge this is 

the first study to report on remote repeated measurement of working memory and executive 

functioning, cognitive domains that are affected early in PD.

On both smartphone cognitive measures, higher within-person mean accuracy was 

associated with lower within-person variability. This indicates that those who were 

performing more poorly were likely to be less consistent. An implication is that traditional 

one-time testing may not always be sufficient to capture the extent of variability (the good 

days and bad days) that people with cognitive impairment experience in day-to-day life. On 

Backwards Spatial Span, participants’ scores increased over time, primarily on the first day 

of the study. We found that average performance was very high on the smartphone Trails-B 

task, indicating a ceiling effect. Increasing the difficulty or scoring of this measure would 

improve psychometrics. Despite this limitation, the measure was found to be reliable in 

differentiating between participants when taking into account within-person fluctuation of 

repeated measurements.

Convergent Validity

Performance on the smartphone Backwards Spatial Span task was related to a number of 

the traditional in-lab neuropsychological measures. Most notably, in-lab WMS-III Spatial 

Span (including total, forward, and backward scores) strongly predicted an individual’s 

performance on the smartphone task. This provides evidence that this smartphone task 

likely measures a similar construct as the traditional in-lab neuropsycho-logical measure 

and is the first to validate it against traditional measures. The present study supports use 

of smartphone cognitive assessment as a valid adjunct to traditional neuropsychological 

measures, especially because smartphone tasks can be completed quickly, administered 

remotely, and repeated across time points with high reliability.
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Performance on Trails-B was not related to performance on any of the traditional 

neuropsychological tests administered in-lab, likely due to ceiling effects. Further, the smart-

phone Trails-B was a measure of switching accuracy versus speed, whereas completion time, 

or speed, is the primary metric of performance in the traditional Trail Making Test B. Our 

Trails-B task accuracy reflects inhibition and planning, components of executive function, 

not processing speed. Our version measured total time per Trails-B game, but the number 

of trials within a game varied based on accuracy; hence, response time was not comparable 

within or between people. Updated time measurement and scores based on speed or screen 

tap latency could make this task a more sensitive measure of processing speed and executive 

function. For example, it may be that the latency or response time in between alternating 

numbers and letters in the task is what differentiates people more than the accuracy of 

switches, and this kind of sensitive timing ability is what differentiates digital assessment 

from current analog versions of this task.

When considering the use of smartphone cognitive assessment in clinical populations with 

motor impairments, such as PD, it is essential to understand relations between disease 

symptoms and performance on the tasks themselves. In our study, the Trails-B task required 

quick and spatially precise taps on small on-screen circles. We found that higher UPDRS 

motor and tremor subscale scores were associated with lower scores on the task itself. If the 

objective of the assessment is to measure changes in processing speed and motor accuracy as 

a result of disease, this could be valuable to capture in a smartphone cognitive measure. 

When the goal is to understand complex attention, switching, and executive function; 

however, it is clear that a participant’s motor impairments may obscure cognitive ability. 

By contrast, the Backwards Spatial Span task was not associated with PD symptoms as 

measured by the UPDRS, which signals its utility in measuring cognitive performance via 

smartphone in those with motor speed impairments.

EMA Contextual Variables and Smartphone Test Performance

An additional aim of this study was to explore the extent to which cognitive performance 

varied across different contexts. We found that being home rather than in another 

environment, and endorsing recent exercise, predicted higher Backwards Spatial Span 

scores. On this measure of working memory, it seems logical that being in a familiar and 

perhaps less distracting environment such as one’s home would be conducive to stronger 

performance.

In interpreting the direct effect of exercise on visual working memory performance, it is 

important to note that this is an observational finding only. One possibility is that the 

physiological effects of exercise could contribute to improved cognitive performance in 

PD. Indeed, a recent systematic review showed that a variety of exercise programs can 

lead to improvements in global cognitive function, processing speed, attention, and mental 

flexibility in people with PD (da Silva et al., 2018). A number of studies point toward 

increased levels of blood-derived neurotrophic factor as the mechanism of action in the 

relation between exercise and higher cognitive performance in PD (Hirsch, van Wegen, 

Newman, & Heyn, 2018). It is also possible that on days when people are feeling better, 

broadly, they may be more likely to perform better on a working memory task and be 
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more motivated to exercise. We found significant residual variance in this association 

indicating heterogeneous individual differences in how much recent exercise associated with 

Backwards Spatial Span scores. Specifically, those who least frequently endorsed exercise 

were the ones most likely to have a higher score when they did report recent exercise. 

This finding may further support the correlational interpretation that people with PD who 

exercise more frequently may be exercising unconditionally on “good” days and “bad” days 

or despite other factors of variability in their daily lives. By contrast, those who endorse 

exercising less frequently may have a more conditional relationship with exercise, such that 

choosing to exercise may be associated with other factors (e.g., less physical discomfort, a 

less busy day, etc.) that could also be conducive to better working memory.

Whereas there were no direct effects between contextual predictors and Trails-B, there 

were significant individual differences in these effects; specifically, those with less symptom 

burden (UPDRS total score) and less daytime sleepiness (ESS score) showed a stronger 

effect between Trails-B performance and later time of day. While there is reason to be 

cautious about these findings given the ceiling effect and motor confounds seen with Trails-

B, it is worth considering that those with greater disease burden may show less sensitivity 

to varying contexts; alternatively, they may be more homebound and so have less exposure 

to varying physical and social contexts. One potential future question is how variability in 

context and one’s response to different contexts relate to stage of a disorder. For example, 

could a decrease in the variety of contexts or one’s differential response to them as measured 

by repeated mobile testing help to predict advancing disease state? Alternatively, mobile 

testing may be most useful for those in early stages of a disease. It may also help identify 

contexts in which performance is lower and targeted interventions could be of benefit for 

people across the spectrum of disease severity.

Results are in line with other studies regarding engagement. Participants completed 73% 

of the EMA prompts on average. This response rate is similar to other studies of mobile 

cognitive assessment in a variety of clinical samples, which found average study response 

to be 79% (Moore et al., 2017) and is higher than the 61% response rate in a study of 

smartphone assessment of PD motor symptoms (Lipsmeier et al., 2018).

Study Limitations

This study examined a sample of individuals with mild to moderate PD severity without 

dementia and cannot generalize to individuals with more severe motor and cognitive 

symptoms. It is also important to note that participants in this sample were self-selected 

and had either previously participated in research or had expressed interest in participating. 

This type of sample often leads to narrow demographics in terms of socioeconomic status, 

education, and race, which poses barriers to community-wide generalization. A limitation in 

our methods was that one of our smartphone cognitive measures elicited very high accuracy 

and was not able to capture processing speed; nevertheless, the data produced were useful in 

regard to assessment of the relation between accuracy and performance variability.
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Future Directions

In our study design, smartphone assessments were prompted at fixed times during the day. 

As such, participants could anticipate the exact time of an assessment and may have altered 

their routine to accommodate test-taking, which could have restricted the range of locations 

and contexts in which tests were completed. Further investigation is needed to compare 

performance under conditions of random vs. fixed-time prompts within daytime intervals. 

A second avenue of investigation would be to intentionally time test administration to 

coincide with participant-specific activities and routines. Future studies should also aim to 

measure cognitive domains beyond visual working memory and the inhibition and planning 

components of executive function, in order to compare results with those presented here; 

investigators wishing to use our tests may do so through this link https://github.com/ 

BIDMCDigitalPsychiatry. We also suggest expanding the scope of studies of smartphone-

based assessments of cognition to include measures of activities of daily living (ADLs) 

beyond the UPDRS ADL subscale used in our study where a trend was seen between 

this score and smartphone Trails-B accuracy. This line of future investigation is supported 

by an extensive literature relating performance on traditional neuropsychological tests of 

executive function to ADLs in older adults with and without cognitive impairment (e.g., 

Bell-McGinty, Podell, Franzen, Baird, & Williams, 2002; see Overdorp, Kessels, Claassen, 

& Oosterman, 2016 for a review), including in PD (Higginson, Lanni, Sigvardt, & Disbrow, 

2013; Kudlicka, Hindle, Spencer, & Clare, 2018).

Conclusion

This study demonstrated that repeated smartphone assessment of cognitive performance in 

persons with PD is a feasible and useful method of neuropsychological assessment. Our 

smartphone measures of executive functioning and visual working memory both displayed 

strong between-person reliability. There was convergent validity for the smartphone test of 

visual working memory, with its results predicted by traditional neuropsychological tests 

administered in-lab. Performance on this task was also unrelated to PD motor impairment 

and tremor score, which demonstrates feasibility even in those with notable motor-based 

symptoms of PD. Further, we found that certain contexts and conditions (being at home and 

recent exercise) differentially predicted performance on this task at that same time point. 

Together these findings provide support for further investigation of smart-phone cognitive 

assessment in PD as a means of understanding idiographic patterns of symptoms, with 

the potential to better predict disease progression and provide targeted and individualized 

interventions.
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Fig. 1. 
mindLAMP App Assessments. (a) Location & Social Context Survey: Indication of type of 

current location and social context. (b) Mood & Alertness Survey: five questions including 

rating happiness, sadness, anxiety, alertness, and level of motivation to try one’s hardest on 

subsequent cognitive games. (c) Backwards Spatial Span Test: four increasingly challenging 

trials of a task requiring one to tap the sequences of boxes that appeared on the screen during 

that trial but in reverse order. (d) Trails-B Test: four increasingly lengthy trials of a task 

requiring one to tap numbers and letters on the screen in a sequential and alternating manner.
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Fig. 2. 
Summary of Smartphone Survey Responses.
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Fig. 3. 
Examples of Between-Person Variability in the Association Between Time of Day and 

Smartphone Trails-B Accuracy.
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Table 3.

Smartphone cognitive test psychometrics

Within-Person Mean Accuracy Correlation between Within-Person Mean and SD Between-Person 
Reliability Value

Backwards Spatial 
Span

85.9 % (SD = 5.2) r = −.70 (p < .001) .885

Trails-B 96.2% (SD = 3.3) r = −.93 (p < .001) .874
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