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Transfontanelle photoacoustic imaging of intraventricular brain hemorrhages in live sheep  
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A B S T R A C T   

Intraventricular (IVH) and periventricular (PVH) hemorrhages in preterm neonates are common because the 
periventricular blood vessels are still developing up to 36 weeks and are fragile. Currently, transfontanelle ul
trasound (US) imaging is utilized for screening for IVH and PVH, largely through the anterior fontanelle. 
However for mild hemorrhages, inconclusive diagnoses are common, leading to failure to detect IVH/PVH or, 
when other clinical symptoms are present, use of second stage neuroimaging modalities requiring transport of 
vulnerable patients. Yet even mild IVH/PVH increases the risk of moderate-severe neurodevelopmental 
impairment. Here, we demonstrate the capability of transfontanelle photoacoustic imaging (TFPAI) to detect IVH 
and PVH in-vivo in a large animal model. TFPAI was able to detect IVH/PVH as small as 0.3 mL in volume in the 
brain (p < 0.05). By contrast, US was able to detect hemorrhages as small as 0.5 mL. These preliminary results 
suggest TFPAI could be translated into a portable bedside imaging probe for improved diagnosis of clinically 
relevant brain hemorrhages in neonates.   

1. Introduction 

Intraventricular hemorrhage (IVH) and periventricular hemorrhage 
(PVH), jointly known as periventricular-intraventricular hemorrhage 
(PIVH), are common complications in preterm neonates. IVH applies to 
hemorrhages within the brain’s ventricular system, and PVH applies to 
hemorrhages in the periventricular region [1] (see Fig. 1). PIVH has an 
incidence rate of 15–25% in low birth weight infants (< 1500 g) and 
45–50% in extremely low birth weight infants (< 1000 g) [2,3]. US 
imaging through fontanelles, which can be described as cranial or 
transfontanelle US, is the current standard of care diagnostic modality to 
detect brain hemorrhages [4]. US has demonstrated sensitivity near 
100% and specificity near 93% for brain bleeds > 5% but low sensitivity 
and even lower specificity (i.e., 0–5%) for brain bleeds of < 5% (without 
obvious blood clots) [5,6]. Moreover, US has very poor sensitivity for 
detecting small cerebellar hemorrhages (PVH) [6]. Yet smaller hemor
rhages and brain bleeds can lead to moderate-severe neuro
developmental impairment [7] including development of 
post-hemorrhagic hydrocephalus (PHH) [8]. Treatment of PHH re
quires neurosurgical interventions for the purpose of placement of a 
shunt [9]. There is growing evidence that early neurosurgical in
terventions improve the neurodevelopmental outcome of infants with 
PHH [10]. A second-stage diagnostic tool, magnetic resonance imaging 
(MRI) [11], has high sensitivity and specificity for detecting brain 
hemorrhages but is only prescribed when the neonate exhibits clinical 
symptoms of neurological damage. Moreover, in most cases MRI re
quires transporting clinically unstable newborns out of the Neonatal 
Intensive Care Unit (NICU) for up to an hour or more [12,13], may 
necessitate anesthesia or sedation that can be associated with risks (i.e. 
hypotension, hemodynamic changes, or allergic reaction [14]), and has 
a relatively high cost. Therefore, development of novel non-invasive 
imaging methods for the detection of low-grade IVH and PVH could 
have a significant clinical impact by facilitating early neurosurgical and 

therapeutic interventions for the prevention and treatment of PHH in 
neonates [15]. Near-infrared spectroscopy (NIRS) is a recent optical 
imaging modality that can potentially assist clinicians in assessing ce
rebral perfusion and oxygenation which may indicate IVH [16–18], but 
has poor spatial resolution and poor penetration depth [19]. 

Photoacoustic (PA) imaging is a promising technique that provides 
non-invasive detection of structural, functional, and molecular anoma
lies in biological tissue [20,21]. It combines the technological advances 
of both optical and acoustic imaging, i.e., the high intrinsic contrast of 
optical imaging and the spatial resolution of US imaging [22]. In PA 
imaging, nanosecond laser pulses illuminate the tissue at the wave
lengths of endogenous chromophores such as oxy-hemoglobin (HbO2) 
and deoxy-hemoglobin (HbR) [23,24]. The temporary change in tem
perature caused by the absorption of photons by the chromophores re
sults in a thermal expansion, creating a localized change in pressure. An 
ultrasonic transducer is used to detect these pressure changes, which 
manifest as acoustic waves. 

In this proof-of-principle study, we assessed the feasibility of trans
fontanelle PA imaging (TFPAI) for the detection of low grade IVH and 
PVH, as modeled in live sheep with a surgically created acoustic window 
in the skull imitating a neonatal fontanelle. 

2. Materials and methods 

This study was approved by the Office of Animal Care and Institu
tional Biosafety and the Institutional Animal Care and Use Committee at 
the University of Illinois at Chicago. 

2.1. IVH and PVH model in sheep 

The rationale for using a sheep model was the similarity of gyro- 
encephalic morphology and volume between a human preterm 
neonate and adult sheep brain, the distance to region of interest, e.g., 
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ventricles from anterior skull location, and its amenability to surgical 
access through the frontal and parietal skull bones [25–27] (see Fig. 1). 
While there are animals other than humans that have fontanelles 
(including dogs and cats), sheep do not have fontanelles at any stage of 
their life. Rather, the sutures form hard skulls before birth. We mimicked 
the neonate fontanelle with a 2.5 diameter cranial window (neonate 
fontanelles range from 0.6 to 3.6 cm [28,29]). For location, the surgery 
was performed on the anterior of the skull, similar to the location of the 
anterior fontanelle. Two sheep were used in this study (breed: mix- 
Katahdin x Dorper, sex: female, weight: 50 kg). We performed a 
fronto-parietal craniotomy covered by a skin flap to generate a cranial 
acoustic window that would mimic a fontanelle. The process of creating 
a cranial acoustic window can be found in [30]. Significant steps were 
undertaken both during and after surgery to ensure lack of scar tissue or 

infections that might otherwise compromise the health of the sheep 
brain. The process of inducing a hemorrhage and the imaging sessions 
took place long after the craniotomy, when the animal was healed 
(approx. 3 weeks). 

The experimental setup is shown in Fig. 2a and the imaging protocol 
is shown in Fig. 2f. We injected a heparinized arterial blood sample 
precisely into the left lateral ventricular space while keeping the right 
lateral ventricle intact. An autologous arterial blood sample (10 mL) was 
obtained via an 18 G catheter and transferred into a heparinized (250 IU) 
syringe. The trajectory of needle insertion was designed so that the 
needle would travel the shortest distance that avoided sulci or the 
frontal sinus, or major vessels (Fig. 2c). An infant spinal needle (attached 
to a Hamilton syringe and connected to an infusion pump) was carefully 
inserted into the skin along the designed trajectory (guided by real-time 

Fig. 1. Demonstration of intraventricular and periventricular hemorrhages in human (left) and sheep (right) brains. Location of constructed fontanelle in sheep head 
(far right). IVH: intraventricular hemorrhage; PVH: periventricular hemorrhage; MV: medullary veins; FM: foramen of monro; TV: terminal veins; GM: germinal 
matrix; LV: lateral ventricles. 

Fig. 2. In-vivo experimental setup and imaging protocol. (a) Imaging setup and major components, (b) schematic of TFPAI probe components and optical fiber 
configuration, (c) schematic of sheep brain sagittal and coronal view demonstrating the location of the blood sample injection pathway to induce hemorrhage, (d) 
confirmation of needle insertion into a ventricle through release of CSF, (e) photograph of injection of arterial blood sample, and (f) overall imaging protocol. CC: 
corpus callosum; LV: lateral ventricles; SC: spinal cord; Po: pons; M: Medulla; TH: thalamus; CSF: cerebrospinal fluid. 

J. Benavides-Lara et al.                                                                                                                                                                                                                        



Photoacoustics 33 (2023) 100549

3

US imaging), passing through the dura until the planned ventricle 
location was reached. Confirmation that the needle was positioned 
correctly (inside the ventricle) was demonstrated by allowing several 
drops of CSF to flow out of the needle opening (Fig. 2d). Initially, to 
model the IVH with a low concentration of blood, we injected a small 
volume of blood (0.1 mL) into the ventricular CSF (Fig. 2e). Simulta
neously, we performed the PA imaging session. Subsequently, the vol
ume of blood injected into the ventricle was increased from 0.1 mL to 
1.0 mL with a step size of 0.1 mL. To model the low grade PVH, the blood 
injections were made into the periventricular brain parenchyma using 
repeating injections of 0.1 mL through the same needle without altering 
its position. To create both hemorrhage models, a small percentage of 
the total volume of the sheep brain (~ 250 mL) is used. For both IVH and 
PVH experiments, we provided a 5 min recovery window between 
injections. 

2.2. TFPAI instrumentation 

For the imaging sessions (see Fig. 2a), we used two pulsed Nd:YAG 
lasers (PhocusMobil, Opotek Inc., CA, USA) with a repetition rate of 
10 Hz, pulse width of 7 ns and wavelengths ranging from 690 to 950 nm. 
A fiber bundle (consisting of 14 fused silica fibers, 1000 µm core diam
eter, and 220 cm length) with a numerical aperture NA =0.22, (Arma
dillo SIA (Sunnyvale, CA,USA)), was used for illumination. On the laser 
side, there were two 10 mm diameter stainless-steel ferrules with active 
apertures of 4.8 mm, and on the imaging target side, 14 strands of fibers 
(diameter: 200 µm) (two bunches of 7 fibers each) directed with a 10◦

angle from the normal axis (see Fig. 2b). Length of fibers was 200 mm. 
The maximum fluence at the target was limited to 20 mJ/cm2 to be 
within ANSI limits [31]. For hemorrhage analysis, we collected images 
at 798 nm (isosbestic point for oxyhemoglobin and deoxyhemoglobin) 
[32]. The extinction coefficients for oxyhemoglobin and deoxy
hemoglobin in the near infrared region can vary by nearly 
10×depending on the choice of wavelength. Use of an isosbestic point, 
where the molar extinction coefficients of the two species are the same, 
reduces sources of error for correlating signal intensity with extent of 
hemorrhage. For PA signal detection, a P6–3 phased array (Philips 
Healthcare, TN, USA) US probe with 128-elements (footprint area: 
2.04 mm× 0.19 mm) and 4.5 MHz central frequency (− 6 dB fractional 
bandwidth 67.3%, resolution: 0.46 mm) was used [33]. The rationale for 
using a P6–3 transducer is based on a comparative analysis performed in 
[33]. Both the optical fiber and the probe position were fixed with 
clamps and attached to a motorized 3-axis stage for relative positioning 
and avoiding motion artifacts. PA signal acquisition was performed 
using a 128-channel, high-frequency, programmable US system (Van
tage 128, Verasonics Inc.). For PA image reconstruction we used a 
filtered back-projection algorithm [34]. Wavelength-dependent fluence 
compensation was performed following the method described in [35]. 
We acquired 10 frames at each injected blood sample volume. 

2.3. Imaging procedure 

At the time of imaging, the animals had intact skin and wool covering 
the surgically created craniotomy defect (acoustic window). Therefore, 
before positioning the TFPAI probe, the wool above the cranial window 
was carefully shaved to expose the skin. A thin layer of US gel was 
applied to ensure acoustic coupling between TFPAI probe and skin. US 
B-mode images were utilized as guidance to accurately position the 
TFPAI probe over the intact skin above the cranial window. Using the US 
B-mode imaging guidance, the TFPAI probe was placed so that both 
ventricles can be observed in the cross-section image (Fig. 3a). A 
photograph of an ex-vivo sheep brain (coronal plane), indicating the 
location of the lateral ventricles, is inset into Fig. 3a for illustrative 
purposes. Ventricular space (yellow dashed box) is magnified in Fig. 3b. 
Next, an infant spinal needle was inserted, also guided by simultaneous 
live US scan. Discharge of CSF through the open needle confirmed 

needle insertion to the ventricles (Fig. 2d). The needle tip location was 
observed at the boundary of the left ventricle, as depicted in Fig. 3c. 

2.4. Image analysis 

We manually specified an IVH or PVH region of interest (ROI) 
(shown in Fig. 3d-e) for use in analyzing the US and PA reconstructed 
images. The size of the ROI for IVH analysis was selected based on the 
fact that it could be located fully within the ventricle (~10 mm2). The 
size of the ROI for PVH image analysis was determined by reference to 
the size of the largest hemorrhage shown in all the PVH reconstructed 
images (~10 mm2). ROIi is the average pixel value within the ROI where 
the blood was injected (representing detection ability of PA signal 
associated with an IVH or PVH), and ROIc is the average pixel value 
within the ROI on the contralateral side. To obtain results from US im
ages, the same process was repeated. 

2.5. Hemorrhage detection 

The signal is detectable at a specific volume if it is statistically 
significantly different than the signal at zero volume (same location, 
before injection of blood) and more than signal intensity from all lower 
volume injections. The test is performed by a one-way t-test (signal must 
be larger than signal at zero volume) with p< 0.05. This definition of 
detectability removes the limitation of an analyst being forced to iden
tify the exact same contralateral region and determine signal strength 
(and removes the limitation of how to compare slightly asymmetric 
neonatal ventricles). 

3. Results and discussion 

We measured the capability of TFPAI to detect IVH and PVH in sheep 
brain in vivo. A reconstructed US image (coronal plane) shows location 
of both ventricles relative to the skull base (Fig. 3a) and needle insertion 
(Fig. 3b and c). Representative PA overlaid US images demonstrating the 
relative locations of the hemorrhage with respect to the ventricular wall 
(inside the ventricle ≈IVH and in the subependymal/ periventricular 
brain parenchyma ≈PVH) are shown. 

in Fig. 3d and e, respectively. The analyzed results of US and PA 
images (mean and range) from two sheep are shown in Figs. 3f and 3g 
(PVH model) and Fig. 3h and i (IVH model). The amplitudes in Fig. 3f-i 
are obtained from ROIi. Results for the contralateral side (ROIc) as well 
as the difference between the injected side and contralateral side are 
presented in Supplementary Fig. 1. 

The hemorrhage detection performance of TFPAI was compared to 
US. In the IVH model, the PA average intensity exhibits a steep pattern of 
linear growth, Fig. 3i, with increasing injected volumes (i.e., increasing 
severity of the hemorrhage), even from very low volumes in both sheep. 
TFPAI was able to detect hemorrhages as small as 0.3 mL in volume in 
sheep #1 or as small as 0.2 mL in sheep #2. These values correspond to 
as little as 2–3% bleed in CSF (total cranial blood volume 9–14 mL) [36]. 
In comparison, the US data (Fig. 3h) showed IVH detection at 0.5 mL in 
both sheep #1 and #2. US did show reasonable detection and quanti
fication of IVH at higher volumes. In other words, US imaging was able 
to measure hemorrhagic lesions at ~0.5 mL of blood in the CSF (corre
sponding to a ~5% bleed), which is in agreement with the results of 
neonatal clinical studies available in the literature [5,6]. In terms of 
PVH, TFPAI was able to detect blood volumes as low as 0.2 mL in sheep 
#1 and 0.3 mL in sheep #2 as shown in Fig. 3g. By comparison, US can 
detect presence of blood starting at 0.4 mL (sheep #1) or 0.5 mL (sheep 
#2), Fig. 3f. Above these volumes, US signal does increase mono
tonically. This study showed that while both US and TFPAI can detect 
IVH and PVH in our in vivo sheep model, TFPAI has greater sensitivity to 
detect smaller hemorrhages. 

US signal variation may be due to US signal being altered by internal 
structural reorganization of tissue in response to the presence of 
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Fig. 3. Capability of TFPAI to detect IVH and PVH. (a) Reconstructed US image (coronal plane) showing lateral ventricle location. A corresponding photograph of the 
same anatomical cross-section is shown in the inset, (b) lateral ventricles (yellow dashed box in (a)) magnified before needle insertion, (c) lateral ventricles (yellow 
dashed box in (a)) magnified after needle insertion, (d) reconstructed PA image overlaid on the US image demonstrating IVH within a ventricle, (e) reconstructed PA 
image overlaid on the US demonstrating PVH just outside the ventricular space, (f-i) averaged pixel values of the injected ROIi in sheep #1 and #2 shown separately 
for different injection volumes (mean and range): (f) in the US image to model PVH, (g) in the PA image to model PVH, (h) in the US image to model IVH, (i) in the PA 
image to model IVH. ROI: region of interest; PA: photoacoustic; US: ultrasound; IVH: intraventricular hemorrhage; PVH: periventricular hemorrhage. As described in 
the text, the plane of the brain shown in b/c is several mm away from the plane shown in figures d/e in order to illustrate needle placement. 
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hemorrhage, which is a slight effect, and which would be present 
whether the hemorrhage is induced or naturally occurring. The effect is 
not seen in PA, presumably, because PA tracks chromophores (blood) 
more strongly than other tissue structures. 

Although baseline readings did vary between the sheep, in TFPAI for 
each sheep, the increase in hemorrhage volume corresponded with 
increased signal for both the IVH and PVH models. The PVH model 
showed less linearity than IVH at the lowest volumes. This may be 
because at lower volumes of injected blood, less PA signal is induced at 
the site of the hemorrhage. Such PA signal travels towards the trans
ducer according to Poe-μad, where Po is the initial pressure generated, μa 
is the attenuation coefficient (a combination of the effect of acoustic 
absorption and scattering), and d is the distance traveled through the 
medium. At lower blood volumes, some of the initial pressure waves die 
out or become lower than the noise equivalent power (NEP) of the 
transducer through the random scattering process. With higher volumes 
of injected blood, the dying out of pressure waves due to random scat
tering events will be decreased and a more linear change in the corre
spondence between blood volume and PA signal will be observed. 
Moreover, for IVH, there is lower scattering within the CSF (inside the 
ventricle) and therefore the initial pressure waves have more opportu
nities to merge before they pass through the highly scattering brain 
tissue. This could explain why a linear signal is observed starting at a 
lower volume in IVH. 

Some limitations of the current study can be addressed in future 
work. For example, based on our experience, the positioning of the 
probe on the fabricated sheep fontanelle is very important and some
times time-consuming (the sheep’s head is fully healed at the time of 
imaging). We expect this can also be a problem when imaging through 
neonatal fontanelles. Finding the fontanelle and acquiring high quality 
US images depends on the experience of the US technician [37]. The 
results could be affected if not enough time is spent on such optimiza
tion, both with regards to the location of transducer and light illumi
nation. However, in our experiment, the probe positioning is not altered 
between collection of US and PA data, so the results would expect to be 
equally affected in both modalities. In addition, after having collected 
and analyzed the results of our TFPAI system, it appears to us that a 
3-dimensional ROI might be able to better capture the extent of hem
orrhage within the brain, which has motivated us to implement a 
3D-TFPAI system. Other methods for increasing PA image quality could 
also be addressed. Quantification might be improved by the use of a 
different image reconstruction algorithm. Although the PA results 
include linear compensation for pulse-to-pulse laser fluctuations, 
non-linear effects, which are a small but nonzero aspect of the PA signal, 
cannot be compensated for in a straightforward manner and in this 
analysis, have not been accounted for. This has a small effect on larger 
PA signals, but could be important for quantification of weak PA signals. 
Finally, in TFPAI, the detected bandwidth of the received PA signal is 
limited to those obtained from commercially-available transducers. A 
wider bandwidth, more sensitive transducer would be expected to 
generate stronger signals. 

4. Conclusions 

The results of the current study have demonstrated that TFPAI signal 
intensity is strongly correlated with the concentration of blood in ven
tricular CSF and volume of blood in a periventricular lesion. The results 
indicate that TFPAI potentially outperforms conventional B-mode 
transfontanelle US, demonstrating lower limits of detection for IVH and 
PVH. Because both methods utilize the same transducers, the difference 
in sensitivity may well be related to the physics underlying the two 
imaging modalities (i.e., acoustic scattering of blood in US imaging 
versus absorption of blood in PA imaging) [38]. Because it uses the same 
transducer as US, TFPAI could easily be integrated into the workflow of 
NICU for highly accurate hemorrhage detection. 
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