Skip to main content
. 2023 Sep 1;23:267. doi: 10.1186/s12893-023-02151-y

Table 2.

Construction and performance validations of machine learning models

Methods AUC (95% CI) Delong test Accuracy (95%CI) Sensitivity (95%CI) Specificity (95%CI) PPV (95%CI) NPV (95%CI)
In training set
GBDT 0.994 (0.988-1.000) Ref 0.994 (0.988-1.000) 0.996 (0.989-1.000) 0.992 (0.982-1.000) 0.992 (0.982-1.000) 0.996 (0.989-1.000)
LR 0.890 (0.860–0.920) < 0.001 0.834 (0.802–0.866) 0.810 (0.762–0.857) 0.858 (0.815-0.900) 0.852 (0.808–0.896) 0.817 (0.771–0.863)
AdaBoost 0.918 (0.894–0.941) < 0.001 0.918 (0.894–0.941) 0.962 (0.939–0.985) 0.873 (0.833–0.914) 0.885 (0.848–0.922) 0.958 (0.932–0.983)
SVM 0.912 (0.888–0.936) < 0.001 0.912 (0.888–0.936) 0.924 (0.892–0.956) 0.900 (0.864–0.936) 0.903 (0.868–0.939) 0.921 (0.888–0.954)
KNN 0.908 (0.883–0.933) < 0.001 0.908 (0.883–0.933) 0.916 (0.883–0.950) 0.900 (0.864–0.936) 0.903 (0.867–0.938) 0.914 (0.880–0.948)
MLP 0.948 (0.929–0.967) < 0.001 0.948 (0.929–0.967) 0.958 (0.934–0.982) 0.938(0.909–0.968) 0.940 (0.912–0.969) 0.957 (0.932–0.982)
In testing test
GBDT 0.985 (0.966-1.000) Ref 0.969 (0.940–0.999) 1.000 (1.000–1.000) 0.940 (0.884–0.997) 0.941 (0.885–0.997) 1.000 (1.000–1.000)
LR 0.896 (0.841–0.951) < 0.001 0.763 (0.691–0.836) 0.828 (0.736–0.921) 0.701 (0.592–0.811) 0.726 (0.624–0.828) 0.810 (0.709–0.911)
AdaBoost 0.940 (0.900–0.980) 0.099 0.939 (0.898–0.980) 0.984 (0.954-1.000) 0.896 (0.822–0.969) 0.900 (0.830–0.970) 0.984 (0.952-1.000)
SVM 0.924 (0.879–0.970) 0.031 0.924 (0.878–0.969) 0.953 (0.901-1.000) 0.896 (0.822–0.969) 0.897 (0.825–0.969) 0.952 (0.900-1.000)
KNN 0.924 (0.878–0.970) 0.030 0.924 (0.878–0.969) 0.938 (0.878–0.997) 0.910 (0.842–0.979) 0.909 (0.840–0.978) 0.938 (0.880–0.997)
MLP 0.916 (0.868–0.964) 0.017 0.916 (0.869–0.964) 0.922 (0.856–0.988) 0.910 (0.842–0.979) 0.908 (0.837–0.978) 0.924 (0.860–0.988)

Notes: SVM: Support vector machine; KNN: K-nearest neighbor; MLP: multi-layer perceptron; LR: logistic regression; GBDT: gradient boosting decision tree; AdaBoost: adaptive enhancement algorithm; PPV: Positive predictive values; NPV: Negative predictive values; AUC: Area under curve; CI: confidence interval; Ref: Reference