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ABSTRACT
We evaluate neural network (NN) coarse-grained (CG) force fields compared to traditional CG molecular mechanics force fields. We conclude
that NN force fields are able to extrapolate and sample from unseen regions of the free energy surface when trained with limited data. Our
results come from 88 NN force fields trained on different combinations of clustered free energy surfaces from four protein mapped trajectories.
We used a statistical measure named total variation similarity to assess the agreement between reference free energy surfaces from mapped
atomistic simulations and CG simulations from trained NN force fields. Our conclusions support the hypothesis that NN CG force fields
trained with samples from one region of the proteins’ free energy surface can, indeed, extrapolate to unseen regions. Additionally, the force
matching error was found to only be weakly correlated with a force field’s ability to reconstruct the correct free energy surface.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0147240

I. INTRODUCTION

Coarse-grained (CG) molecular dynamics (MD) is a tool to
complement experiments.1,2 A CG model can be considered a
“reduced model” as not all degrees of freedom are considered
explicitly. The objective is to eliminate irrelevant atomic details to
gain computational advantages.3 According to Noid,4 CG mod-
els provide a foundation for most scientific efforts by focusing on
“essential” features of a system. CG MD enables the sampling of
thermodynamic systems at larger spatial and temporal scales, which
are inaccessible at the all-atom resolution. As a result, CG MD is
often used to study phenomena such as protein folding and multi-
protein structure assemblies.5,6 CG modeling is implicitly based on
the separation of timescales between molecular motions. There-
fore, this provides a practical alternative to uncover the underlying
Hamiltonian of the reduced models at these length scales.7 Works by
Kidder, Szukalo, and Noid,8 Jin et al.,9 Noid,10 Saunders and Voth,11

and Brini et al.12 provide fundamental perspectives on CG modeling.
A CG model consists of two main components: (1) CG rep-

resentation (mapping) and (2) CG force field (FF). The first is a

projection of the all-atom system into a reduced, “coarser” repre-
sentation. A CG site can be identified as a pseudo-atom and should
ideally encapsulate the average physicochemical characteristics of
a given group of atoms.4,13 More discussions on selecting a suit-
able CG representation and their impact can be found in Refs. 2, 3,
and 13–17. Next, a CG FF is a potential energy function that approx-
imates the interactions between these pseudo-CG atoms. Ideally,
a CG FF should capture eliminated atomistic-level details.4,18 A
CG FF must be able to compute any equilibrium property that is
expressed as an ensemble average of the CG coordinates.19 For this
reason, a CG FF can be thought of as a potential of mean force
(PMF).3,4,20 Foley, Shell, and Noid3 highlighted that a CG PMF is a
configuration-dependent free energy function, which should ideally
preserve structural and thermodynamic properties at the lower reso-
lution. Finding a fitting approximation of this PMF is one of the key
challenges associated with CG modeling. Furthermore, since a CG
model averages over atomistic configurations, CG models are less
transferable to different thermodynamic state points.4,10,11,21 Ther-
modynamic inconsistency between atomistic and CG resolutions,
parameterization of the CG FFs, and the choice of CG representation

J. Chem. Phys. 159, 085103 (2023); doi: 10.1063/5.0147240 159, 085103-1

Published under an exclusive license by AIP Publishing

https://pubs.aip.org/aip/jcp
https://doi.org/10.1063/5.0147240
https://pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0147240
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0147240&domain=pdf&date_stamp=2023-August-29
https://doi.org/10.1063/5.0147240
https://orcid.org/0000-0002-3772-6927
https://orcid.org/0000-0002-5637-0698
https://orcid.org/0000-0002-6647-3965
mailto:andrew.white@rochester.edu
https://doi.org/10.1063/5.0147240


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

are a few factors that contribute to the limited transferability in
CG modeling. According to Noid,10 these fundamental challenges
arise due to the lack of understanding of the relationship between
atomistic and CG models.

Traditionally, two common approaches are used in devel-
oping CG FFs: (1) bottom-up approaches2,22 and (2) top-down
approaches.11 A bottom-up approach relies on information from
fine-grained (atomistic) models to approximate the PMFs, while a
top-down approach aims to reproduce macroscopic properties.3,4,23

However, the objective of both these approaches is that a CG model
must reflect the “correct physics” of the atomistic system.4 However,
parameterizing a CG FF to approximate the behavior of an atomistic
system is often a tedious and iterative task.

With the recent advances of deep learning, researchers have
begun to focus on utilizing neural networks (NNs) in CG model-
ing. Work in Ref. 13 is an example that demonstrates CG mapping
generation can be automated by training a graph neural network
(GNN) based on human knowledge. Additionally, NNs are being
used as atomistic MD FFs24–27 and CG FFs to study biomolecular
systems.20,28–31 The main assumption behind CG FF development is
that CG FFs can extrapolate to unseen regimes of the configurational
space when parameterized/trained with limited data. However, little
to no studies have investigated if this assumption is valid for NN
CG FFs when compared to physics-informed traditional CG FFs.
To address this research gap, we aim to evaluate the extrapolating
capability of NNs as CG FFs.

Often, a NN CG FF is trained by minimizing the force match-
ing error [shown in Eq. (1)]. This refers to the squared error between
mapped forces (atomistic forces mapped to CG atoms) and CG
forces, which are computed from the predicted CG coordinates,32,33

LFM =∑
t
∥∇mF̂(Mxt, θ) + f m

(xt)∥
2. (1)

Here, M is the mapping matrix that scales N atomistic coordi-
nates into n CG coordinates. ∇mF̂(Mxt, θ) represents the gradient
of the learned free energy function (effective CG forces), where
m are the CG variables. Instantaneous CG forces mapped from
the all-atom trajectory are represented by the last term in Eq. (1).
Note that, although NNs have shown to be promising as molecu-
lar FFs,34–36 their training is highly dependent on the availability of
useful data.33,37 Generally, the applicability of NNs raises an open
question of “how well can these NN FFs extrapolate beyond training
data.” Another important challenge using NNs as CG potential is the
lack of interpretability when compared with traditional FFs that are
parameterized on empirical data. Therefore, Zeni et al.37 explained
that it is not trivial whether NN potentials are able to exploit
the extrapolation regime, specifically when the atomistic potential
energy surface (PES) is smoothened by CG representations.

In this work, we aim to investigate the extrapolating capabili-
ties of NN CG potentials and the impact of the amount of data used
in training. We aim to discuss whether NNs are, indeed, apt to be
used in the place of traditional, physics-informed models. Finally,
we question if force matching by itself is adequate to benchmark
the performance of trained CG FFs. To study these research ques-
tions, we selected four (mini)proteins based on structural proper-
ties:38 (1) a folded protein: P-element somatic inhibitor miniprotein

(PDB ID:2BN6),39 (2) a half-folded protein: Miniature Esterase
(PDB ID: 1V1D),40 (3) a small fast-folding protein near its melt-
ing point: Trp-cage (PDB ID: 2JOF),41 and (4) a disordered protein:
β-amyloid peptide residues 10–35 (PDB ID: 1HZ3).42

First, we conducted atomistic simulations for these minipro-
teins with GROMACS software and mapped the trajectories to gen-
erate reference CG trajectories. These mapped protein trajectories
were next projected onto a low-dimensional free energy space (FES)
with time-structure independent component (IC) analysis.43–45

Next, the FES was clustered using a Markov State Model (MSM)
based approach to identify four states (conformations). Various sub-
samples from these states were selected systematically to train NN
CG FFs CGSchNet20,29 and TorchMD-Net.36 We trained 88 NN FFs
in total (11 CGSchNet FFs and 11 TorchMD-Net FFs for each of
the four proteins). Finally, we proceeded to produce CG simula-
tions from each FF and to evaluate the performances of the trained
FFs. We used a metric named total variation similarity46,47 (TVS)
given in Eq. (2) to compare the similarity between the mapped and
CG FES,

TVS = 1 −max
ϕ⊆Ω
∣Pmapped(ϕ) − PCG(ϕ)∣ + ζ, (2)

ζ =
PCG(π) − PCG(ϕ)

PCG(π)
, (3)

π = {x ∈ Ω∣PCG(x) ≥ Pmapped(x)}. (4)

The ∣Pmapped(ϕ) − PCG(ϕ)∣ term in Eq. (2) measures the maxi-
mum possible distance between the mapped and CG FES over the
measurable space Ω. ϕ is the maximizer in Eq. (2) that represents
the mapped space. ζ given in Eq. (3) is a penalty term that accounts
for the probability of the CG trajectory explored beyond the regions
of the mapped trajectory. As shown in Eq. (4), π defines the total
explored space by the CG trajectory. We use the TVS metric to evalu-
ate the performance of CG FFs because it is a system-agnostic metric.
Therefore, TVS can be used to compare different CG models with
dissimilar FFs and CG representations.

II. METHODS
A. Simulation methods
1. All-atom simulations

For each protein, all-atom MD simulations were conducted
with the AMBER99SB∗-ILDN force field48,49 and TIP3P water
model50 with neutralizing potassium ions added. All simulations
were performed in GROMACS 2020.4.51 Minimization and equili-
bration were performed according to a standard protocol,52 which
involves up to 50 000 steps of steepest descent minimization, fol-
lowed by 100 ps of NVT equilibration with backbone atoms
restrained. For each protein, 15 μs long NPT simulations were pro-
duced at T = 300 K for 2BN6, T = 290 K for 1V1D, T = 350 K for
2JOF, and T = 310 K for 1HZ3. These temperatures were selected
empirically to ensure that simulation temperature is below the melt-
ing point of each protein except for 2JOF.40,42,53,54 For 2JOF, we
selected a slightly higher temperature to sample from both folded
and non-folded states. Production simulations used a 2 fs time step,
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a 1 nm cutoff for electrostatics, the v-rescale thermostat55 with a
0.1 ps time constant, and a Parrinello–Rahman barostat56 using a
2 ps time constant. From these production runs, training data frames
were generated by restarting from fixed points along these trajecto-
ries using the same MD parameters, but with velocities resampled for
each run. Starting points for restart trajectories were checkpoint files
separated every 50 ns starting after 2.5 μs. From these 250 checkpoint
files, four 10 ns simulations were performed, where positions and
forces were saved in double precision every 20 ps. Each frame was
then treated for periodic boundary conditions to make the molecules
whole GROMACS.

To map atomistic trajectories to the CG representations,
MDAnalysis software57,58 and “fast_forward” software tools59 were
used. The latter is a specific CG mapping tool designed for
MARTINI modeling. MDAnalysis software was used for mapping
the trajectories for other CG models found in this study. α-carbon
CG representation was used for NN-based CG modeling. For MAR-
TINI and OpenAWSEM, their respective mapping schemes were
used.60–63

2. CG simulations
We selected two NN CG FFs: CGSchNet29 and TorchMD-

Net.36 After training CGSchNet and TorchMD-Net models, each FF
was used to conduct NVT CG simulations with Langevin dynam-
ics at the same temperatures as the all-atom simulations (300, 290,
350, and 310 K). A time step of 2 fs was used for all FFs. For all
NN CG simulations, each protein residue was represented by their
α-carbons (one-bead mapping). Each CG trajectory was initiated
from a centroid configuration randomly selected from the testing
states/clusters. For example, if a NN was trained from frames with
clusters labeled as 1–3, then the starting configuration was from
cluster 4. We used this approach to avoid the impact of the start-
ing configuration during the CG production. With CGSchNet FFs,
we were only able to run 50 independent trajectories in the range
0.02–0.2 ns. Most simulations were not stable beyond 0.2 ns. In
contrast, with TorchMD-Net, we were able to generate 2 ns long
CG trajectories with ten replicas. See the supplementary material
for further details. To perform NVT CG simulations with the
MARTINI FF, we employed Gō-like models in combination with
the MARTINI3 model64 following the standard protocol.65 Each
MARTINI3 simulation was run for 10 ns with a time step of 20 fs
using GROMACS software at constant temperatures as all-atom
simulations. Explicit water was used to solvate the protein system;
see the supplementary material for further details. For CG simu-
lations with the OpenAWSEM FF, we used Langevin dynamics at
constant temperatures (similar to the previous simulations). Each
CG simulation was run for 1 ns with a time step of 2 fs. Again,
the standard simulation protocol was followed.66 The CG mappings
used in MARTINI3 and OpenAWSEM analyses were the default
mappings associated with MARTINI60 and AWSEM62 FFs. CG sim-
ulations for both these FFs were initiated from their crystal structure
configurations. Simulations from MARTINI and OpenAWSEM FFs
were stable and ran to completion. More details can be found in the
supplementary material.

B. Clustering the configuration space
First, all-atom trajectories of 2BN6,39 1V1D,40 2JOF,41 and

1HZ342 miniproteins were mapped into a CG representation,

where each residue was represented with its α-carbon atom.
MDAnalysis57,58 software was used for the mapping. We used the
same configuration mapping operator for force mapping as well. A
reader may find more work on force mapping in Refs. 67 and 68.
Then, each mapped trajectory was clustered into four states based
on a Hidden-Markov State Model (HMSM)69,70 using the PyEMMA
python library, as described in Refs. 71 and 72. See Fig. 1. These
can be thought of as metastable states of the miniproteins. Finally,
configurations (snapshots from the trajectory) from various sub-
sets of the clustered states were used for training separate FFs.
Note that the number of frames per cluster was not equal after the
assignment.

As mentioned previously, protein FES was clustered into four
states based on a Hidden-MSM. In general, MSMs are used for ana-
lyzing dynamic data from MD simulations.73,74 Four main steps are
involved in building an MSM: (1) featurization, (2) dimensional-
ity reduction, (3) clustering, and (4) estimation of the transition
matrix.75 This workflow is illustrated in the supplementary material,
Fig. S1. The use of MSM on approximating observables from MD
simulations is extensively discussed in the literature.76–80

We selected the α-carbon pairwise distances to featurize the
mapped trajectories in the dimensionality reduction task. Time-
lagged independent component analysis (TICA)43–45,81 was used
for this step. Next, these projected spaces were discretized using
K-means82 clustering to estimate an initial Markov State Model
(MSM). 50, 75, 75, and 200 cluster centers were used for 2BN6,
1V1D, 2JOF, and 1HZ3 miniproteins, respectively. These cluster
numbers were selected based on the VAMP2 scores.83 These are the
sums of singular values of the symmetrized MSM transition matrix;
see the supplementary material. Respective lags of 100, 100, 100,
and 10 were selected to build the MSMs. Lags were selected such
that the implied timescales were constant with the statistical error
(see the supplementary material). Furthermore, we validated the
MSMs using Chapman–Kolmogorov tests (see the supplementary
material).84,85 Finally, HMSMs were estimated based on the refer-
ence MSMs where each trajectory was clustered into four coarser
groups where each frame of the trajectories was assigned to a cluster.
Christoforou et al.86 described an HMSM as a “kinetic” coarse-

FIG. 1. Four clusters of the miniproteins in the low-dimensional space pro-
jected using the TICA method.43 P-element somatic inhibitor miniprotein (PDB
ID:2BN639), Miniature Esterase (PDB ID: 1V1D40), Trp-Cage miniprotein (PDB
ID:2JOF41), and β-amyloid peptide residues 10–35 (PDB ID: 1HZ342) were used
in this study. The centroid configuration of each cluster is illustrated at the bottom
with their respective colors.
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graining model, which groups the microstates identified by the
k-means clustering algorithm. We followed a similar approach as
Christoforou et al.86 to cluster the projected configurational space.
Figure 1 illustrates the four clusters of reduced-dimensional spaces
along the first two independent components (IC1 and IC2) identi-
fied by TICA43 and their centroid configurations. Further details for
this procedure are given in the supplementary material.

C. Training force fields and running CG simulations
In this study, we selected two NN CG FFs: CGSchNet29 and

TorchMD-Net.36 CGSchNet29 is a modified version of the CGNet
model,20 which learns the CG FES based on the force-matching
approach. In the CGNet model, inputs are hand-selected features,
such as bond distances, angles, and dihedral angles. However, in
the CGSchNet model, the features are “learned” during training
by leveraging the SchNet model.26,87 Additionally, TorchMD-Net36

provides state-of-the-art graph neural network (GNN) and equiv-
ariant transformer (ET) based NN potentials for molecular sim-
ulations. In this work, we used TorchMD-Net’s GNN model for
training CG FFs since the performance from both models was sim-
ilar. The main difference between CGSchNet and TorchMD-Net
architectures arises from input featurization where the CGSchNet
model uses SchNet features and the TorchMD-Net model embeds
the atom types into a fixed embedding. Both architectures are built
on the PyTorch88 model builder. A technically oriented reader may
find further detail on the differences between the two models in
their open source GitHub repositories: https://github.com/coarse-
graining/cgnet and https://github.com/torchmd/torchmd. Note that
we used TorchMD30 Python API for performing CG MD simula-
tions using the TorchMD-Net trained FFs. The CGSchNet tool is
equipped with its own Python scripts for performing simulations.

The key objective of this work is to investigate if NN CG FFs
are able to extrapolate and sample from unseen regions of the ref-
erence FES. Therefore, during training, we subsampled different
sets of identified clusters and trained multiple independent FFs per
miniprotein (listed in Table I). For example, to train “FF1,” we used
75% of clusters, those labeled as 2–4—data from cluster 1 were with-
held. Note that the labels were generated randomly. The number of
frames for each cluster was kept constant through downsampling
to match the minimum number of frames among the four states to
avoid oversampling from one cluster. The total number of frames
used during training was 123 456, 258 676, 63 364, and 204 332 for
2BN6, 1V1D, 2JOF, and 1HZ3 miniproteins, respectively. Hyper-
parameters used in training and train-validation error plots can be
found in the supplementary material. Finally, the trained FFs were
used to produce CG simulations (see Sec. II A). Note that, due to

the smoothness of the underlying CG FES, a similar amount of sam-
pling is obtained in these “ns” long simulations as compared to the
original microseconds of training data.

III. RESULTS AND DISCUSSION
First, we compared the performances of FF0 from CGSchNet

and TorchMD-Net (trained with data from all four clusters)
with state-of-the-art physics-informed FFs MARTINI60,61 and Ope-
nAWSEM.63 MARTINI is possibly the most popularly used FF for
generating CG simulations89 of lipids,90,91 proteins,92,93 sugars,94

and other biomolecules.95,96 OpenAWSEM is the implementation of
the AWSEM62 CG FF for proteins within the graphics processing
unit (GPU)-compatible OpenMM framework. AWSEM contains
physics-informed many-body effects and employs an implicit sol-
vent environment.62 This FF has been successfully applied to study
protein structure prediction.97–99

Based on the comparison illustrated in Fig. 2, we observe the
following. (a) Performance of the OpenAWSEM FF decreases signif-
icantly with the increasing structural disorder of the miniproteins,
whereas MARTINI3 is not affected. (b) CGSchNet has the low-
est overall performance among all four FFs. (c) TorchMD-Net’s
performance is comparable among all four proteins regardless of
the structural disorder. (d) TorchMD-Net’s GNN and ET model
demonstrate similar performances.

First, CG trajectories from all four FF0 force fields were pro-
jected onto the first two independent components (ICs) identified
for the mapped trajectory with TICA. The similarity between the
reference and CG FES was calculated with TVS;46,47 see Eq. (2). The
configurational space explored by the protein is histogrammed in the
two-dimensional projected space of TIC1 and TIC2 with a resolu-
tion of 100 bins in each direction. TVS values are computed over the
area spanned by both atomistic and CG models. This metric evalu-
ates the performance of the CG models with respect to the atomistic
references. At the bottom of Fig. 3, the cartoon representations of
the four miniproteins and 20 frames from the mapped trajectories
are shown. The structural disorder of the proteins increases from
left to right in Fig. 3 (1HZ3 has the highest disorder).38 Note that the
reference FES of MARTINI and OpenAWSEM FFs is visually dis-
similar to the reference FES from the two NN FFs due to differences
in the CG representations. The FES (projected space) is a function
of the CG representations. In CGSchNet and TorchMD-Net mod-
els, each amino acid residue was represented with their α-carbons,
while in MARTINI and OpenAWSEM, their default mappings
(four heavy atoms to 1 CG atom) were used.60,63 Additionally, in
the supplementary material, Fig. 13, we provide a comparison of the

TABLE I. Cluster combinations used for training.

Cluster percentage 100% 75% 50% 25%

FF label: Clusters used in training FF0: 1,2,3,4

FF1: 2,3,4 FF5: 1,2 FF7: 1
FF2: 1,3,4 FF8: 2
FF3: 1,2,4 FF6: 3,4 FF9: 3
FF4: 1,2,3 FF10: 4
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FIG. 2. Comparison of CGSchNet and TorchMD-Net potentials with state-of-the-
art methods MARTINI and OpenAWSEM. TMD-GNN and TMD-ET refer to the
TorchMD-Net’s graph neural network and equivariant transformer models. Higher
TVS refers to the high similarity between the mapped and CG free energy surfaces
in the projected TICA spaces. 100% data were used to train the latter two FFs. PDB
IDs of the four protein systems used are shown in the x axis.

four FFs, where MARTINI and OpenAWSEM trajectories were also
mapped to a one-bead representation. The center-of-geometry of
each residue was used for this task. While TVS can be used to quan-
titatively compare the FF performances with respect to the reference
trajectories, S13 provides a better visual comparison.

We observed that CG trajectories from CGSchNet FFs explore
a broader region in their 2D FES beyond the reference trajectory,
resulting in lower TVS scores. This observation can be interpreted
as CGSchNet-FF0 having a tendency to explore physically non-
meaningful regions. This could explain why CG simulations from
CGSchNet FFs did not run to completion for all 44 simulations.
Total trajectory times were between 0.02 and 0.2 ns, and none of the
CG simulations were stable beyond 0.2 ns. Although we attempted
to improve the performance of CGSchNet FFs with hyperparame-
ter tuning, we were unsuccessful in our attempts. While we were
able to minimize the “over extrapolation” by increasing the friction
term in Langevin dynamics, the overall performance was not signif-
icantly improved. Wang et al.20 stated that a prior energy term was
added to their GNN architecture to avoid sampling from physically
non-meaningful regions. Therefore, we expect that by optimizing
the prior term, CGSchNet may be improved. However, we did not
attempt to alter the initial architecture, as this was beyond the scope
of our work.

In comparison, we were able to produce longer, stable sim-
ulations for 2 ns each with TorchMD-Net. Note that 2 ns in CG
coordinates are comparable to the microsecond length scale of
the atomistic simulations. Furthermore, we observe in Fig. 3 that
TorchMD-Net is able to explore the mapped trajectory while avoid-
ing physically non-meaningful regions. This demonstrates NNs
provide a promising playground for the development of CG FFs.
With these observations, we conclude that TorchMD-Net outper-
forms CGSchNet and its performance is consistent across all four
proteins with varying degrees of disorder. These observations raise
the following question: “does the model architecture significantly

FIG. 3. Mapped and CG FES from FF0–FFs trained with all four states. Top:
projected miniprotein mapped and CG trajectories from CGSchNet, TorchMD-
Net, MARTINI, and OpenAWSEM FFs. Total variation similarity (TVS) between
the mapped and CG FES is annotated as a percentage. Higher TVS indicates
higher similarity. Bottom: cartoon representations of miniprotein reference trajec-
tories annotated with approximate melting and simulation temperatures. P-element
somatic inhibitor miniprotein (PDB ID:2BN6), Miniature Esterase (PDB ID: 1V1D),
Trp-cage miniprotein (PDB ID:2JOF), and β-amyloid peptide residues 10–35 (PDB
ID: 1HZ3) were used in this study. Conformational ensembles are 20 random
frames after a weighted iterative alignment following the procedure of Ref. 100.

impact the performance of an FF?” To answer this non-trivial ques-
tion, we compared the performances of TorchMD-Net’s GNN and
ET models. Based on the results in Fig. 2, we note that both GNN
and ET models have almost identical TVS values. This suggests that
the role of the model architecture does not play a significant role in
the overall behavior. However, further investigations are needed to
establish a profound conclusion. We did not pursue to answer this
question, as the main aim of this work is to investigate if CG NN-FFs
are able to extrapolate. Therefore, we conclude with hyperparameter
tuning and architectural changes that the performance of the FFs can
be improved.

Additionally, TorchMD-Net’s performance is comparable to
MARTINI and OpenAWSEM FFs when trained with all avail-
able data. It can also be seen in Fig. 3 that CG trajectories from
MARTINI and OpenAWSEM FFs tend to be localized around the
starting configurations, unlike TorchMD simulations. We expect
that this restricted sampling of MARTINI and OpenAWSEM FFs
can be improved by increasing the CG simulation length. How-
ever, note that TorchMD-Net simulations can explore the reference
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FES more within the same timescale. Furthermore, OpenAWSEM
is seemingly affected by the structural changes of the miniproteins,
while the NN CG FFs are indifferent. This is a noteworthy obser-
vation as one of the main challenges in the field of CG modeling
is limited transferability. Based on these observations, we conclude
that NN CG FFs can satisfactorily learn the physicochemical behav-
iors of the underlying systems, and they are not yet utilized to
the full capacity. While NNs provide advantages such as ease of
training, conventional empirical FFs are better at capturing phys-
ical knowledge. Therefore, we can be hopeful that NN can be
integrated with empirical CG models to expand the boundaries of
research.

Next, we proceeded to focus on the impact of training data on
the performance of TorchMD-Net FFs. Results from the CGSchNet
model were not included here due to the poor performance observed
previously. See the supplementary material for CGSchNet results.
First, we tested the sensitivity of the TorchMD-Net FF0 model on
training data. We trained two separate FF0 models for each minipro-
tein with 500 000 frames and downsampled frames (123 456, 258
676, 63 364, and 204 332 frames for 2BN6, 1V1D, 2JOF, and 1HZ3,
respectively). As shown in Fig. S12 of the supplementary material,
the overall performance of the models did not improve significantly
when the models were trained with more data. Note that the results
shown in Fig. 4 are from models trained downsampled data clus-
ters. Surprisingly, we observed that the percentage of clusters used
in training is not correlated with the extrapolation ability of the FFs.
For example, we see that the TVS of FF0 trained with data from
all four states is comparable to FF7-10 trained with data from only
one cluster. These observations validate the hypothesis that CG FFs
can, indeed, extrapolate beyond the available knowledge and that
having large amounts of training data does not necessarily improve
performance. Fu et al.32 arrived at a similar conclusion where
they observed that the performance of learned NN FFs cannot be
improved by increasing the amount of training data. Stocker et al.101

FIG. 4. Impact of the amount of data in training of TorchMD-Net FFs. Labels of the
FFs indicate the percentage of states used in training. See Table I.

FIG. 5. Variation of TVS with the force matching error of all CGSchNet and
TorchMD-Net FFs. The x axis denotes the average force matching error of the last
three epochs. TVS indicates the similarity between mapped and CG trajectories
from the trained FFs.

stated that one way of improving the robustness of NN FFs is
by including distorted and off-equilibrium conformations during
training.

Another important observation was that during the training,
we observed that both CGSchNet and TorchMD-Net had similar
validation errors. This led us to expect similar performances from
both NN architectures. However, their performances varied dras-
tically in the simulation phase. We faced difficulty in conducting
stable, long simulations with CGSchNet unlike with TorchMD-Net.
Baffled by this, we had the following question: “is the force match-
ing error a suitable benchmark?” Our observations align with the
findings by Fu et al.,32 who showed that machine learning FFs with a
lower force matching error are not an indication of the performance.
They showed that learned FFs can fail to reproduce simulation-
based observables, such as radial distribution functions, and to
produce stable simulations. To further investigate this question,
we compared the force matching error (validation error) from all
CGSchNet and TorchMD-Net FFs with their respective TVS values.
Our results shown in Fig. 5 indicate that, although the force match-
ing errors from both CGschNet TorchMD-Net models only differ by
±0.2 kcal/(mol Å), their TVS differs by ∼ 20%. This indicates that
there is only a weak correlation between force matching error and
the FF’s performance as measured by TVS. Therefore, we conclude
that the force matching error should not be the only benchmark
when developing FFs, and it can be misleading.32,102

IV. CONCLUSIONS
Based on our results, we observe that TorchMD-Net trained

with limited data is comparable to the two physics-informed
FFs: MARTINI60 and OpenAWSEM.63 Unlike CGSchNet,
TorchMD-Net FFs strictly explore physically meaningful regions
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of the FES as captured by the mapped trajectories indicating. This
shows that TorchMD-Net FFs learned the underlying physics of the
reference system compared to CGSchNet. We also observe that the
amount used in training does not impact the overall performance of
FFs trained with TorchMD-Net for proteins with varying degrees
of protein disorder. This lessens the need to generate long-scale
atomistic trajectories with millions of data frames, which are already
time and resource expensive. Mainly, we observe that while NN
FFs are unaffected by the availability of data, they are able to
extrapolate to unseen regions of the FES. When compared with
empirical FFs MARTINI and OpenAWSEM, TorchMD-Net has
significant advantages—ease of training, exploring a large region
of the reference FES within a short time span, and robustness
to the structural disorder of miniproteins. Additionally, we find
that force matching error NN of CG FF is not strongly correlated
with a model’s accuracy. This highlights the need to explore a
better benchmark for FF training. We are hopeful that NN CG FFs
can be further improved with hyperparameter and architectural
optimization.

SUPPLEMENTARY MATERIAL

We have included methodologies, data, and results used during
training and conducting CG simulations and the following figures
and tables in the supplementary material. Figure S1: meta-state
assignment workflow. Figure S2: discretized reduced 2D configu-
rational spaces with k-means centers and implied timescale plots.
Figures S3–S6: Chapman–Kolmogorov tests for proteins 2BN6,
1V1D, 2JOF, and 1HZ3. Figure S7: train and validation error plots
of TorchMD-Net trained FFs. Figure S8: train and validation error
plots of CGSchNet trained FFs. Figure S9: mapped and CG FES
of the trained TorchMD-Net’s GNN FFs. Figure S10: mapped and
CG FES of the trained TorchMD-Net’s ET FF0. Figure S11: total
energy during CG simulations from TochMD-Net FF0. Figure S12:
impact on training data. Figure S13: one-bead representations of
all force fields. Figure S14: timeseries plots for the 2BN6 protein.
Figure S15: timeseries plots for the 1V1D protein. Figure S16: time-
series plots for the 2JOF protein. Figure S17: timeseries plots for the
1HZ3 protein. Figure S18: performance of all CGSchNet FFs. Figure
S19: mapped and CG FES of the trained CGSchNet FFs. Table S1:
parameters used in cluster assignment of mapped trajectories. Table
S2: hyperparameters used for training TorchMD-Net force fields.
Table S3: hyperparameters used for training CGSchNet force fields.
Table S4: CG simulations parameters: trained TorchMD-Net FFs.
Table S5: CG simulations parameters: trained CGSchNet FFs.
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