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Abstract 

Background  As pre-cut and pre-packaged chilled meat becomes increasingly popular, integrating the carcass-
cutting process into the pig industry chain has become a trend. Identifying quantitative trait loci (QTLs) of pork cuts 
would facilitate the selection of pigs with a higher overall value. However, previous studies solely focused on evaluat-
ing the phenotypic and genetic parameters of pork cuts, neglecting the investigation of QTLs influencing these traits. 
This study involved 17 pork cuts and 12 morphology traits from 2,012 pigs across four populations genotyped using 
CC1 PorcineSNP50 BeadChips. Our aim was to identify QTLs and evaluate the accuracy of genomic estimated breed 
values (GEBVs) for pork cuts.

Results  We identified 14 QTLs and 112 QTLs for 17 pork cuts by GWAS using haplotype and imputation genotypes, 
respectively. Specifically, we found that HMGA1, VRTN and BMP2 were associated with body length and weight. Sub-
sequent analysis revealed that HMGA1 primarily affects the size of fore leg bones, VRTN primarily affects the number 
of vertebrates, and BMP2 primarily affects the length of vertebrae and the size of hind leg bones. The prediction accu-
racy was defined as the correlation between the adjusted phenotype and GEBVs in the validation population, divided 
by the square root of the trait’s heritability. The prediction accuracy of GEBVs for pork cuts varied from 0.342 to 0.693. 
Notably, ribs, boneless picnic shoulder, tenderloin, hind leg bones, and scapula bones exhibited prediction accuracies 
exceeding 0.600. Employing better models, increasing marker density through genotype imputation, and pre-select-
ing markers significantly improved the prediction accuracy of GEBVs.

Conclusions  We performed the first study to dissect the genetic mechanism of pork cuts and identified a large 
number of significant QTLs and potential candidate genes. These findings carry significant implications for the breed-
ing of pork cuts through marker-assisted and genomic selection. Additionally, we have constructed the first reference 
populations for genomic selection of pork cuts in pigs.
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Background
Pig carcass cutting is a process of decomposing the post-
mortem carcass into various cuts with different sizes 
and weights according to the tissue structure of different 
anatomical parts, followed by trimming, cooling, packag-
ing, and preservation. The economic value of pork cuts 
varies depending on their quantity and quality. Different 
pork cuts also require diverse cooking and processing 
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methods [1–3]. In recent years, the outbreak of African 
swine fever in China has issued many policies restricting 
the transportation of live pigs to prevent the spread of 
the virus [4, 5], which has presented a new opportunity 
for the development of chilled meat. Furthermore, due 
to the rise in living standards and the fast-paced lifestyle, 
consumers have shifted their pork consumption hab-
its from purchasing hot carcasses for direct cutting and 
selling to opting for pre-packaged chilled meat that suits 
their preferences [1, 6]. This further led to the widespread 
acceptance and adaptation of chilled meat by the major-
ity of consumers. Consequently, many pig companies are 
rapidly deploying slaughterhouses and expanding their 
slaughter-processing capabilities within their production 
chain to optimize the carcass economic value. Mapping 
and identifying quantitative trait loci (QTLs) for pork 
cuts will help to breed merit pigs with higher propor-
tion of expensive pre-cut products to increase the over-
all value of cuts. To the best of our knowledge, there is a 
lack of reports on QTLs and causal genes that affect pork 
cuts, as well as investigations into genomic selection or 
the evaluation of prediction accuracy for pork cuts. The 
identification of QTLs and investigation of the genetic 
mechanisms of pork cut attributes serve as the founda-
tion for enhancing the economic value of pork cuts by 
improving the accuracy of genomic selective breeding.

In this study, 17 pork cuts and 12 carcass morphology 
traits were measured on 2,012 pigs from four populations 
genotyped using the CC1 PorcineSNP50K BeadChip 
(CC1 Chip) [7, 8]. The aim of this study was to identify 
QTLs affecting proportion of pork cuts to evaluate the 
accuracy of selection and the feasibility of industrial 
application. We employed imputation-based whole-
genome sequence (WGS) association analysis to uncover 
potential causal mutations and major genes affecting 
pork cuts, comparing it with haplotype-based CC1 Chip 
genotyping data association analysis [9–11]. These results 
are essential for pig companies who aim to enhance their 
advantage in the consumer market, core competitive-
ness, and brand value. Moreover, genetic dissection of 
pork cuts is vital for understanding carcass composition, 
which provides critical reference for studying regulatory 
mechanisms of skeletal and muscle growth and develop-
ment in different parts of pigs.

Materials and methods
Animals, feeding and sampling
A total of 2,012 pigs were randomly sampled from Muy-
uan Food Co., Ltd. (Henan, China) for pork cut evalua-
tion, as described by Xei et al. [12]. The experimental pigs 
including 265 Landrace (LR, 95 sows and 170 barrows), 
698 Yorkshire (YK, 435 sows and 263 barrows), 689 Lan-
drace × Yorkshire hybrid (LY, 402 sows and 287 barrows), 

and 258 Duroc × Landrace × Yorkshire hybrid (DLY, 115 
sows and 143 barrows). All pigs were raised under con-
sistent feeding environments and nutritional conditions, 
and they were provided with the same commercial diets 
and had unrestricted access to water. More details of 
breeding environment and pedigree family structure 
were described in our previous study [12]. Each time 
approximately 100 pigs were randomly selected from 500 
to 1,000 market-aged pigs for slaughter testing. A total of 
22 batches of pigs were measured for pork cuts and car-
cass morphology traits (Table S1). These pigs were uni-
formly slaughtered centrally, following the specifications 
described in the Operating Procedures of Livestock and 
Poultry Slaughtering – Pig (GB/T 17236–2019) [13], at 
an average age of 180 d.

Phenotypic determination
Twelve carcass morphology traits were measured for 
all individuals, including carcass straight length (SL), 
oblique length (OL), thoracic number (THN), lumbar 
number (LUN), thoracic length (THL), lumbar length 
(LUL), single lumbar length (SLUL), shoulder back-
fat depth (SBD), 6th_7th rib backfat depth (RBD), waist 
backfat depth (WBD), hip backfat depth (HBD), and the 
mean of backfat depth (MBD). Additionally, the carcass 
was cut into 17 pork cuts as shown in Fig.  1, and their 
weight was measured, including three primal cuts (shoul-
der cut (SC), middle cut (MC), leg cut (LC)), and 14 
subprimal cuts (boneless Boston shoulder (BBS), bone-
less picnic shoulder (BPS), front ribs (FR), fore leg bones 
(FLB), scapula bone (SB), loin (LO), belly (BE), ribs (RI), 
chine bones (CB), back fat (BF), boneless leg (BL), ten-
derloin (TL), hind leg bones (HLB), tail and pelvis bone 
(TPB)). The determination methods and processes were 
described in the previously published study [12]. Each 
pork cut was carefully weighed and measured by the 
investigators. The proportion of each pork cut was deter-
mined through the division of the weight of pork cut by 
the weight of the entire carcass.

Genotyping
Genomic DNA was extracted from the muscle tissue of 
each animal using the routine phenol/chloroform extrac-
tion method. Individuals were genotyped using the CC1 
PorcineSNP50 BeadChip (51,368 SNPs) [7, 8] according 
to the manufacturer’s protocol. The marker density and 
accuracy of the CC1 Chip were described in our prior 
study [7, 8]. Thresholds of individual call rates > 90%, 
SNPs call rates < 95%, minor allele frequency (MAF) < 5%, 
and Hardy–Weinberg disequilibrium (P < 10−5) were fil-
tered out using PLINK (v1.90b6.24) [14]. After quality 
control, 40,016 SNPs and 2,012 animals were retained for 
further analysis.
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Imputation of whole‑genome sequence variants
Genotype imputation for the experimental popula-
tion was performed using IMPUTE5 [15] from a high-
quality haplotype reference panel including 42,620,918 
variants as described by Tong et  al. [16]. The haplo-
type reference panel included whole-genome sequenc-
ing data of 1,096 samples from 43 pig breeds (n ≥ 3) 
with an average sequencing depth of 17.1 X. The 
detailed imputation process was described in our pre-
vious study [17]. Variants were called using GATK 
following the best practice flowchart and were qual-
ity controlled by following criteria: (1) SNP: QD < 2.0, 
QUAL < 30.0, MQ < 40.0, SOR > 3.0, FS > 60.0, MQRank-
Sum <  −2.5, ReadPosRankSum <  −8.0; (2) INDEL: 
QD < 2.0, QUAL < 30.0, MQ < 40.0, FS > 200.0, Read-
PosRankSum <  −20.0. SNPs in the target panel were 
further filtered with call rate < 95%, or minor allele 
frequency (MAF) < 5%, or Hardy–Weinberg disequi-
librium (P < 10E −5) by PLINK (v1.90b6.24) [14]. The 
haplotypes of the target panel (Sscrofa 11.1) were con-
structed by SHAPEIT4.2 [18] and PHASEBOOK [19]. 
Then, genotype imputation was performed between 

the target and reference panels by IMPUTE5 with 
default parameters [15]. The imputation accuracy was 
evaluated by an internal cross-validation solution of 
IMPUTE5. Specifically, the genotypes of one locus in all 
individuals in the target panel were masked at a time, 
and then the masked genotypes were imputed with the 
haplotype information from the reference panel. The 
genotypic concordance rate and squared correlation 
(R2) between original genotypes from the target panel 
and imputed genotypes were calculated as imputation 
accuracies. The accuracies (Mean R2/concordance rate) 
of the imputed genotypes for the experimental popula-
tion were 0.89/99.16%, which implied a high quality of 
the imputed genotypes.

Imputation‑based of whole‑genome sequence GWAS 
(IGWAS)
Single locus association analysis was conducted using 
the GEMMA software (version 0.98.1) [20] with a linear 
mixed model (LMM) that accounts for SNP-based popu-
lation structure and relatedness between individuals.

Pork cuts
Shoulder cut

1 Boneless Boston shoulder

1

2

6
7

8

9

10

11
12

13

143

452 Scapula bone

3 Fore leg bones

4 Front ribs

6 Back fat
7 Loin

11 Tenderloin

12 Boneless leg
14 Hind leg bones

13 Tail and pelvis bone

8 Chine bones

9 Ribs 10 Belly 

5 Boneless picnic shoulder

Shoulder cut
Middle cut

Leg cut

Middle  cut Leg  cut

Fig. 1  Standardized pork cuts and their corresponding pork cuts in a commercial pig carcass
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where y is the vector of phenotypes; W  is the fixed effect 
indicator matrix including sex, populations and slaughter 
batches; α is the corresponding estimations of fixed 
effects; X is incidence matrices of whole-genome 
imputed SNPs; β is the SNP substitution effect. ǫ is the 
residual effect that follows the multivariate normal distri-
bution MVNn

(
0, Inσ

2
e

)
 , in which σ2e is the variance of the 

residual, In is an n-vector of 1s, n is the number of phe-
notypic individuals. The vector u is the random polygenic 
effect that follows the multivariate normal distribution 
MVNn

(
0,Gσ

2
a

)
 , where σ2a is the additive genetic variance 

and G is the kinship matrix calculated using WGS 
imputed SNPs following VanRaden’s method [21] as: 
G = MM′

2
∑

pi(1−pi)
 , where M is the allele frequency matrix 

of centered genotypes with dimensions equal to the num-
ber of individuals and the number of SNPs and pi is the 
frequency of the reference allele at the i-th SNP. Using 
Bonferroni corrections of 0.05 divided by the number of 
SNPs to correct multiple comparisons would result in an 
overly stringent threshold in our study, as many SNPs are 
highly correlated. Pe’er et al. [22] and Johnson et al. [23] 
proposed that a genome-wide significance threshold of 
5 × 10−8 could be used in human GWAS based on inde-
pendent haplotype blocks in an African population struc-
ture. We used the same genome-wide threshold in our 
study based on the assumption that an equal number of 
independent haplotype segments exist between pigs and 
humans. The chromosome-wide significance threshold of 
1 × 10−6 was used as the suggestive significance threshold 
[24, 25].

Haplotype‑based CC1 Chip genotyping data GWAS 
(HGWAS)
Haplotypes of the SNP genotypes were constructed by 
PHASEBOOK [19]. It assumes that all haplotypes in the 
population can be traced back to a predetermined num-
ber (K = 10) of ancestral haplotypes [26]. Then a hidden 
Markov model was employed to infer the ancestral hap-
lotypes inherited by each individual at each locus [21]. To 
detect the association between phenotypes and the hap-
lotype status, a linear mixed framework was used similar 
to single locus association with a difference in the inci-
dence matrices. In this model, X is the incidence matrices 
of the ancestral haplotypes rather than SNP genotypes. 
The haplotype effects were fitted as random effects. G is 
the kinship matrix calculated from the SNP genotypes 
using VanRaden’s method.

Statistical models to genome prediction
Two genomic selection models were implemented 
to evaluated the genomic accuracy of pork cuts. (1) 

y = Wα + Xβ + u+ ǫ;u ∼ MVNn

(
0,Gσ

2
a

)
, ǫ ∼ MVNn

(
0, Inσ

2
e

) Genomic best linear unbiased prediction (GBLUP) [21], 
which is the most widely used model in genome breeding 
practice. The mixed linear model is as follows:

where y is the vector of phenotype, µ is the overall 
mean, α is the fixed effect including sex, populations and 
slaughter batches, a is the vector of genomic breeding 
values of all individuals, e is the vector of residuals, 1 is 
a vector of ones, W  is the indicator matrix of α , and Z is 
the indicator matrix of a . Assume that e follows a nor-
mal distribution of N(0,Iσ 2

e  ), and a follows a normal dis-
tribution of N(0,Gσ 2

a  ). Where σ2a is the additive genetic 
variance, G is the kinship matrix obtained from genotype 
data (included CC1 PorcineSNP50 BeadChip genotype 
and genome-wide imputed SNPs), which was calculated 
using VanRaden’s method [21], and the detailed calcula-
tion method can be found in Yang et  al. [27]. Then a is 
solved from the mixed model equations (MME) [28]. In 
this study, the MME formula is solved by using GCTA 
software [29], and the estimated genome breeding value 
of the individual is â.

(2) Bayesian sparse linear mixed model (BSLMM), 
which assumes that the effects of markers follow a mix-
ture of two normal distributions [30]. It assumes that all 
markers have at least a small effect, but some proportion 
of markers have an additional large effect. The model 
consists of a standard linear mixed model, with one ran-
dom effects term, and with sparsity inducing priors on 
the regression coefficients, corresponding formula is:

where y is the vector of the corrected phenotype, µ is the 
phenotype mean, α is a vector of the fixed effect includ-
ing sex, populations and slaughter batches, W  is the cor-
responding indicator matrix for α, ε is the residual effect 
following a multivariate normal distribution, τ−1 is the 
variance of the residual errors, In is an n-vector of 1s, n is 
the number of phenotypic individuals. Z is the genotype 
indicator matrix; β̃ is the SNP substitution effect vector 
come from a mixture of two normal distributions:

where σ 2
a /pτ is the variance for the SNPs with large 

effects, σ 2
b /pτ is the variance for the SNPs with minor 

effects, p is the number of SNPs, and π denotes the pro-
portion of SNPs with large effects. SNP effect β̃ was esti-
mated by GEMMA software (version 0.98.1) [20] uses the 
Markov chain Monte Carlo (MCMC) algorithm and the 

y = 1µ+Wα + Za + e

y = 1µ+Wα + Zβ + ε

ε ∼ MVNn(0, τ
−1

In)

β̃ i ∼ πN
(
0, (σ 2

a + σ
2

b)/pτ
)
+ (1− π)N

(
0, σ 2

b /pτ
)
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EBV was calculated as: GEBV =
∑

n

i=1
β̃ i×SNPi , where 

SNPi is the i-th SNP genotype of the individual (coded as 
0, 1, 2).

Evaluation of the accuracy of genomic prediction
The accuracy of genomic predictions was evaluated using 
the fivefold cross-validation method and leave-one-out 
method. In the fivefold cross-validation method, the 
population (combined population, YK population or LY 
population) were divided into five equal groups. For each 
test, one group of individuals served as the validation 
dataset, while the other four groups constituted the refer-
ence dataset. The test was repeated until all individuals 
had predicted GEBV, and then the prediction accuracy 
was calculated. In leave-one-out method, the main step 
is to take one individual out as the verification group 
each time, and the remaining individuals as the refer-
ence group. The test was repeated to circularly predict 
the GEBV of all individuals, and calculate the prediction 
accuracy.

 The prediction accuracy was calculated using the for-
mula proposed by Hayes et  al. [31], the formula is as 
follows:

where A is the prediction accuracy, yval is the adjusted 
phenotype of each animal, GEBV is the genomic esti-
mated breeding values, and h2 is the heritability of the 
trait. Estimates of heritability (Table S2) for all traits refer 
to our previous studies [32]. Ap and Aw denote, respec-
tively, the prediction accuracy of GEBV for the propor-
tion and weight of pork cuts. To further investigate the 
genomic prediction accuracy impacted by pre-selection 
of SNPs, we perform GWAS analysis on the reference 
dataset and selected SNPs which significantly associated 
with the phenotype to predict the GEBV of individuals 
in the validation dataset. In the GWAS based on geno-
type imputation data, we selected the SNPs with P-val-
ues < 0.01 to predict GEBV. Considering that the SNPs of 
microarray genotyping are much less than the imputa-
tion data, we selected SNPs with P-value < 0.05 to predict 
GEBV in SNP Chip data.

Results
Summary of HGWAS
In haplotype-based association studies, we identified a 
total of 14 QTLs significantly associated with pork cuts 
and 14 QTLs significantly associated with carcass mor-
phology traits (Table 1). In shoulder cuts, we found three 
QTLs associated with the proportion of BBS and FLB 
(Table  1), with the most significant SNP (rs0700815, 
P = 4.03 × 10−9) associated with the proportion of FLB 

A = r(GEBV ,yval)
/
√
h2

located at 31,161,760 bp of Sus scrofa chromosome (SSC) 
7. This QTL region contains genes (GRM4, HMGA1, 
SMIM29, NUDT3 and PPARD) associated with body 
height and limb bone length [33–35]. In middle cuts, we 
identified 6 QTLs significantly associated with the weight 
and proportion of RI, BF, and MC (Table  1), with the 
most significant SNP (rs0702042, P = 1.05 × 10−16) associ-
ated with the RI proportion located at 97,732,109 bp of 
SSC7. This QTL region contains the VRTN gene, which 
has been identified and functionally validated as a causa-
tive gene affecting the number of thoracic vertebrae and 
ribs [36]. In leg cuts, we found three QTLs significantly 
associated with the weight and proportion of HLB and 
LC (Table 1), with the most significant SNP (rs1705050, 
P = 6.25 × 10−11) associated with the HLB weight located 
188,108 bp downstream of BMP2 gene on SSC17. In car-
cass morphology traits, we identified 14 QTLs signifi-
cantly associated with carcass length (SL, OL), length and 
number of vertebrae (THL, LUL, THN, LUN, SLUL). The 
two major candidate genes identified in carcass morphol-
ogy traits affecting carcass length and vertebral length 
were VRTN and BMP2.

Additionally, we detected new QTLs significantly 
associated with pork cuts, such as a QTL on SSC1 sig-
nificantly associated with the weight and propor-
tion of BF, with the most significant SNP (rs0700815, 
P = 1.57 × 10−7) located at 161,408,832 bp and a QTL on 
SSC5 associated with LC weight, with the most signifi-
cant SNP (rs0501529, P = 9.35 × 10−7) located at the posi-
tion of 81,315,221 bp, 460,749 bp away from IGF1 gene.

Summary of imputation‑based IGWAS
Based on imputed genotype data, we identified a total 
of 167 QTLs significantly related to pork cuts and car-
cass morphology traits (Table S3). The majority of QTLs 
identified by HGWAS were also validated in the IGWAS, 
comprising 54 QTLs associated with weight of pork cuts, 
8 QTLs associated with carcass weight, 58 QTLs associ-
ated with proportion of pork cuts, and 47 QTLs associ-
ated with carcass morphology traits.

In shoulder cuts, a total of 25 QTLs were identified 
for the weight of pork cuts and 26 QTLs for the propor-
tion of pork cuts (Table  2, Fig.  1, and Table S3). Nota-
bly, the largest number of QTLs affecting the weight 
and proportion of the BBS was observed, with a total 
of 22 QTLs. The most significant SNP was located at 
11,938,089  bp on SSC14, and it was significantly asso-
ciated with both the weight and proportion of BBS, 
with P-values of 2.75 × 10−9 and 1.58 × 10−9, respec-
tively. This SNP was located in the intronic region of 
the ELP3 gene. In middle cuts, a total of 15 and 19 
QTLs were identified affecting the weight and propor-
tion of the pork cuts respectively (Table  2, Fig.  1, Table 
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S3). The QTLs significantly associated with the weight 
and proportion of CB were the most. The most sig-
nificant SNP (rs17_15644200) affecting CB weight was 
located at 15,644,200  bp on SSC17 with a P-value of 
1.70 × 10−9. And rs17_15384749 (15,384,749 bp), located 
near rs17_15644200, showed a significant association 
with CB proportion, with a P-value of 2.18 × 10−7. Both 
SNPs are situated upstream of the BMP2 gene. Similarly, 
the SNPs at positions 97, 130, 183 bp and 97,576,486 bp 
on SSC7 are top SNPs affecting CB weight and pro-
portion, with P-values of 2.88 × 10−7 and 3.92 × 10−9, 
respectively. These SNPs are located upstream of the 
VRTN gene at positions 484,524  bp and 38,221  bp. 
Additionally, two QTLs (97,578,564 – 97,112,240  bp 
and 97,596,043 – 96,354,619  bp) containing causative 
gene of VRTN affecting vertebra number also signifi-
cantly affected the weight and proportion of RI. In leg 

cuts, a total of 14 and 13 QTLs were identified affecting 
the weight and proportion of the pork cuts respectively. 
Among them, the greatest number of QTLs that affect the 
weight and proportion of TL were identified. The most 
significant SNP affecting the weight of TL was located 
at 68,490,542 bp on SSC10, with a P-value of 8.07 × 10−8, 
located in the intronic region of the WDR37. Further-
more, the QTLs significantly associated with HLB weight 
and proportion were located on SSC17 at 14,621,182–
19,590,143  bp and 149,33,905–17,042,539  bp, covering 
BMP2.

In carcass morphology traits, 27 QTLs associated with 
carcass length and vertebral length, 4 QTLs associated 
with vertebral number, and 16 QTLs associated with the 
thickness of backfat were detected (Table 3 and Table S3). 
Among them, VRTN on SSC7 and BMP2 on SSC17 were 
found to be the major QTLs affecting carcass length, 

Table 1  Significant loci associated with pork cuts and carcass morphology traits by haplotypes-based GWAS

1 Within ± 500 kb of the QTL, the gene closest to the Top SNP or the gene that has been reported to be associated with the phenotype
2 The distance between the Top SNP site and the candidate gene

Traits Top SNP Chr Pos, bp P-value Candidate gene1 Dis2, bp

Pork cuts weight

  Ribs rs0702042 7 97,732,109 8.41E-13 VRTN 107,836

  Back fat rs0103099 1 161,408,832 6.30E-07 CCBE1 Within

  Hind leg bones rs1705050 17 15,949,323 6.25E-11 BMP2 188,108

  Leg cut rs0501529 5 81,315,221 9.35E-07 IGF1 460,749

Pork cuts proportion

  Boneless boston shoulder rs0701491 7 65,738,048 7.89E-07 EGLN3 67,452

  Fore leg bones rs0700815 7 31,161,760 4.03E-09 HMGA1 832,351

  Fore leg bones rs0901869 9 84,593,678 8.43E-07 AGMO Within

  Ribs rs0702042 7 97,732,109 1.05E-16 VRTN 107,836

  Back fat rs0103099 1 161,408,832 1.57E-07 CCBE1 Within

  Middle cut rs0702038 7 97,618,073 1.70E-11 VRTN Within

  Middle cut rs0700525 7 19,581,991 8.72E-07 GMNN 4008

  Hind leg bones rs1705090 17 17,801,643 5.32E-08 BMP2 2,040,428

Carcass morphology traits

  Straight length rs1705043 17 15,562,883 2.00E-17 VRTN Within

  Straight length rs0702038 7 97,618,073 1.04E-14 BMP2 186,952

  Straight length rs1704946 17 9,342,605 8.71E-07 IDO2 Within

  Oblique length rs0702038 7 97,618,073 2.57E-14 VRTN Within

  Oblique length rs1705050 17 15,949,323 4.59E-12 BMP2 188,108

  Thoracic number rs0702038 7 97,618,073 6.70E-169 VRTN Within

  Thoracic number rs0701070 7 42,952,142 3.58E-07 PTCHD4 182,162

  Thoracic length rs0702038 7 97,618,073 8.16E-60 VRTN Within

  Thoracic length rs1302182 13 103,068,791 2.01E-07 TMEM266 Within

  Thoracic length rs1303285 13 159,490,799 3.01E-07 SI 1,227,492

  Thoracic length rs0701325 7 56,379,471 4.48E-07 COL8A1 116,295

  Thoracic length rs1705043 17 15,562,883 7.04E-07 BMP2 186,952

  Lumbar length rs0702035 7 97,347,282 5.84E-07 VRTN 267,425

  Single lumbar length rs0101891 1 88,605,020 9.40E-07 HTR1B 3,973
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Table 2  Significant loci associated with pork cuts by imputation-based GWAS

Traits Top SNP Chr Pos, bp P-value Candidate gene1 Dis2, bp

Pork cuts weight

  Boneless boston shoulder 4_18049606 4 18,049,606 3.44E-07 MTBP 482,396

  Boneless boston shoulder 8_28310248 8 28,310,248 5.60E-07 DTHD1 236,341

  Boneless boston shoulder 10_16027531 10 16,027,531 6.94E-08 CEP170 41,008

  Boneless boston shoulder 10_2216709 10 2,216,709 8.78E-07

  Boneless boston shoulder 11_65555808 11 65,555,808 1.57E-07 HS6ST3 Within

  Boneless boston shoulder 13_204134036 13 204,134,036 1.44E-08 DSCAM Within

  Boneless boston shoulder 13_16622614 13 16,622,614 1.48E-07 TGFBR2 161,877

  Boneless boston shoulder 14_11938089 14 11,938,089 2.75E-09 ELP3 Within

  Boneless boston shoulder 15_44717893 15 44,717,893 4.52E-07 WWC2 Within

  Fore leg bones 7_106392250 7 106,392,250 8.66E-07

  Fore leg bones 17_15643342 17 15,643,342 3.35E-11 BMP2 106,493

  Ribs 7_97578564 7 97,578,564 1.69E-10 VRTN 36,143

  Ribs 17_15688035 17 15,688,035 5.46E-09 BMP2 61,800

  Chine bones 4_5079579 4 5,079,579 6.61E-07 FAM135B 421,559

  Chine bones 7_97130183 7 97,130,183 2.88E-07 VRTN 484,524

  Chine bones 8_32078955 8 32,078,955 9.80E-07 APBB2 Within

  Chine bones 9_137791545 9 137,791,545 6.29E-08 GRB10 1,049,013

  Chine bones 12_23208536 12 23,208,536 2.44E-07 LASP1 14,172

  Chine bones 17_15644200 17 15,644,200 1.70E-09 BMP2 105,635

  Chine bones 16_6316048 16 6,316,048 5.41E-08 MYO10 170,606

  Tenderloin 5_57305189 5 57,305,189 1.01E-07 RERG 44,188

  Tenderloin 9_5248024 9 5,248,024 9.90E-07 OR51T1 Within

  Tenderloin 10_68490542 10 68,490,542 8.07E-08 WDR37 Within

  Tenderloin 10_54307891 10 54,307,891 1.52E-07 PLXDC2 Within

  Tenderloin 11_23214392 11 23,214,392 2.58E-07 ENOX1 23,305

  Tenderloin 17_61945735 17 61,945,735 3.08E-07 COL9A3 129,390

  Hind leg bones 17_15643442 17 15,643,442 4.05E-20 BMP2 106,393

Pork cuts proportion

  Boneless boston shoulder 1_129573783 1 129,573,783 2.22E-08 PLA2G4B 40,385

  Boneless boston shoulder 3_128528849 3 128,528,849 6.59E-07 RNF144A 218,877

  Boneless boston shoulder 4_59046856 4 59,046,856 8.50E-07 PEX2 205,481

  Boneless boston shoulder 7_79346730 7 79,346,730 5.01E-08 OR4K17 1319

  Boneless boston shoulder 8_22044470 8 22,044,470 4.74E-07

  Boneless boston shoulder 9_133440994 9 133,440,994 3.37E-08 LAMB3 89,797

  Boneless boston shoulder 10_16027531 10 16,027,531 4.53E-08 CEP170 41,008

  Boneless boston shoulder 10_1972864 10 1,972,864 8.34E-07 RGS18 433,201

  Boneless boston shoulder 13_204136763 13 204,136,763 2.72E-07 DSCAM Within

  Boneless boston shoulder 14_11938089 14 11,938,089 1.58E-09 ELP3 Within

  Boneless boston shoulder 14_2182509 14 2,182,509 8.90E-07 SYK 21,337

  Boneless boston shoulder 15_45520738 15 45,520,738 1.21E-07 WWC2 717,973

  Boneless boston shoulder 18_39232070 18 39,232,070 4.89E-07 BMPER 180,768

  Fore leg bones 5_59607391 5 59,607,391 3.80E-07 DDX47 26,034

  Fore leg bones 7_30253940 7 30,253,940 9.26E-08 HMGA1 66,514

  Fore leg bones 17_16478561 17 16,478,561 2.93E-08 HAO1 265,879

  Ribs 7_97596043 7 97,596,043 1.32E-18 VRTN 18,664

  Ribs 7_24454624 7 24,454,624 7.83E-07 NOTCH4 198,343

  Ribs 9_133934063 9 133,934,063 2.87E-07

  Ribs 16_2809427 16 2,809,427 7.97E-07 DNAH5 304,852
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vertebrae length, and number of vertebrae (Fig.  2). The 
QTL near to VRTN was significantly associated with 
various traits such as carcass SL, OL, THL, LUL, THN, 
and LUN and QTL near BMP2 was also significantly 
associated with SL, OL, THL, LUL, and SLUL. Interest-
ingly, VRTN was found to affect carcass length and total 
vertebral length by increasing the number of vertebrae, 
while the BMP2 may affect these traits by affecting the 
length of every vertebra. In backfat thickness traits, the 
most significant SNP was located at 12,758,893  bp on 
SSC7 with 38,175 bp upstream of the ATXN1 gene, which 
was significantly associated with MBD, with a P-value 
of 4.05 × 10−8  (Table  3). Furthermore, two QTLs affect-
ing the MBD were identified in the region of 159,644–
161,160 kb of SSC1 and 7,347–7,356 kb of SSC2, which 
affect RBD and WBD  (Table  3). The most significant 
SNPs in these two QTLs were rs1_161160798 (SSC1: 
161,160,798  bp) and rs2_7347710 (SSC2: 7,347,710  bp), 
located at 386,674  bp downstream of MC4R and 
158,720  bp downstream of BATF2 gene, and with the 
P-values of 3.45 × 10−7 and 1.23 × 10−7, respectively.

Accuracy of genomic predictions
The accuracy of GEBV for all traits using SNP Chip data 
were presented in Table 4. In pork cuts, the highest pre-
diction accuracy was RI (Ap = 0.693, Aw = 0.664), fol-
lowed by BPS (Ap = 0.665, Aw = 0.640), and the lowest 
prediction accuracy was TPB (Ap = 0.342, Aw = 0.438). 

In carcass morphology traits, the highest predic-
tion accuracy was THN (A = 0.882), followed by LHN 
(A = 0.749), and the lowest prediction accuracy was LUN 
(A = 0.373) (Table 4). Additionally, pork cuts and carcass 
morphology traits with the highest prediction accuracy 
using the GBLUP model were SB (Ap = 0.586, Aw = 0.554) 
and THL (A = 0.579), respectively (Table 4). Importantly, 
the accuracy of prediction using the BSLMM model 
was significantly higher than that of the GBLUP model 
(P = 9.54 × 10−8) (Fig.  3a), with THN showing the great-
est improvement of 0.333. Additionally, we found that the 
prediction accuracy of the leave-one-out method was sig-
nificantly higher than that of the fivefold cross-validation 
method (P = 1.27 × 10−10) (Fig. 3b).

Different populations, marker densities and pre‑selecting 
markers
We found that the prediction accuracy based on the CC1 
Chip genotype data was significantly higher than that 
based on sequence imputation data by GBLUP model 
(P = 6.16 × 10−5, Fig.  3c). This shows that the accuracy 
of the CC1 chip data for genome selection of pork cuts 
and carcass morphology traits is better. We propose two 
potential explanations for this result. Firstly, the CC1 
Chip, developed collaboratively by the National Labora-
tory of Pig Genetic Improvement and Breeding Technol-
ogy and over 12 universities and research institutes in 
China, includes causal loci that influence body length and 

Table 2  (continued)

Traits Top SNP Chr Pos, bp P-value Candidate gene1 Dis2, bp

  Chine bones 4_1312897 4 1,312,897 2.14E-07 LY6L 12,946

  Chine bones 7_97576486 7 97,576,486 3.92E-09 VRTN 38,221

  Chine bones 7_36885255 7 36,885,255 8.73E-07 TFEB Within

  Chine bones 15_10051390 15 10,051,390 8.89E-08 LRP1B Within

  Chine bones 17_15384749 17 15,384,749 2.18E-07 BMP2 365,086

  Tenderloin 4_79051804 4 79,051,804 7.54E-07 SNAI2 213,074

  Tenderloin 10_54307891 10 54,307,891 2.29E-07 PLXDC2 Within

  Tenderloin 10_29167522 10 29,167,522 8.24E-07 GOLM1 Within

  Tenderloin 13_12587359 13 12,587,359 7.12E-07 TOP2B 11,776

  Hind leg bones 4_10303912 4 10,303,912 4.68E-09 ASAP1 Within

  Hind leg bones 17_15643251 17 15,643,251 1.60E-10 BMP2 106,584
1 Within ± 500 kb of the QTL, the gene closest to the Top SNP or the gene that has been reported to be associated with the phenotype
2 The distance between the Top SNP site and the candidate gene

Fig. 2  GWAS results of length-related carcass morphology traits. (left) Manhattan plots for carcass morphology traits with the data after imputation. 
(right) Quantile–quantile plots (Q-Q plots) for carcass morphology traits. In the Manhattan plots, the y-axis and x-axis represent the −log10(P-value) 
of the SNPs and the genomic positions separated by chromosomes, respectively. The tomato puree points represent SNPs that exceeded 
the genome-wide significance threshold (−log10(5 × 10−8)). The green points represent SNPs that exceeded the suggestive significance threshold (−
log10(1 × 10−6)). In Q-Q plots, the y-axis and x-axis represent the expected and observed −log10(P-value), respectively

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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weight. Secondly, the poor prediction accuracy of GEBVs 
based on genotype imputation data may be attributed 
to the fact that over 98% of imputed genotypes were not 

associated (P > 0.05) with the phenotype, and these loci 
may be unfavorable to the prediction of GEBV. Previous 
studies have found that the accuracy of GEBV prediction 

Table 3  Significant loci associated with carcass morphology traits by imputation-based GWAS

1 Within ± 500 kb of the QTL, the gene closest to the Top SNP or the gene that has been reported to be associated with the phenotype
2 The distance between the Top SNP site and the candidate gene

Traits Top SNP Chr Pos, bp P-value Candidate gene1 Dis2, bp

Straight length 7_97579520 7 97,579,520 2.08E-15 VRTN 35,187

Straight length 7_11494001 7 11,494,001 6.08E-07 JARID2 Within

Straight length 14_106872034 14 106,872,034 7.89E-07 SORBS1 23,729

Straight length 17_11091283 17 11,091,283 5.35E-08 AP3M2 75,878

Straight length 17_15692918 17 15,692,918 4.79E-36 BMP2 56,917

Straight length 17_21101373 17 21,101,373 4.17E-08 SPTLC3 668,111

Oblique length 7_97595573 7 97,595,573 4.07E-13 VRTN 19,134

Oblique length 9_43335271 9 43,335,271 4.81E-07 CADM1 350,392

Oblique length 12_7316631 12 7,316,631 9.06E-08 C17orf80 393,636

Oblique length 14_105368901 14 105,368,901 6.16E-07 SLC35G1 23,627

Oblique length 17_15758097 17 15,758,097 8.54E-23 BMP2 Within

Thoracic length 7_97595573 7 97,595,573 2.03E-58 VRTN 19,134

Thoracic length 14_55238487 14 55,238,487 3.43E-07 NID1 1,165

Thoracic length 17_15758097 17 15,758,097 4.71E-15 BMP2 Within

Thoracic length 17_19496491 17 19,496,491 1.12E-07 JAG1 94,761

Thoracic length 18_47976390 18 47,976,390 2.96E-07 NPY 9,335

Lumbar length 2_14043586 2 14,043,586 4.50E-07 SSRP1 414,353

Lumbar length 3_117271220 3 117,271,220 6.35E-07 APOB Within

Lumbar length 7_97585410 7 97,585,410 5.53E-10 VRTN 29,297

Lumbar length 14_131660585 14 131,660,585 5.99E-08 TACC2 Within

Lumbar length 17_15643493 17 15,643,493 1.22E-08 BMP2 106,342

Single lumbar length 6_145816008 6 145,816,008 5.12E-07 SLC35D1 219,942

Single lumbar length 6_126510205 6 126,510,205 5.53E-07 PIK3C3 467,044

Single lumbar length 17_15643442 17 15,643,442 3.36E-20 BMP2 106,393

Single lumbar length 17_57495096 17 57,495,096 1.05E-07 BMP7 88,995

Single lumbar length 17_21269115 17 21,269,115 1.18E-07 BTBD3 390,900

Single lumbar length 17_13713769 17 13,713,769 2.39E-07 PRNP 8,451

6th_7th rib backfat depth 1_161160798 1 161,160,798 2.46E-07 MC4R 386,674

6th_7th rib backfat depth 1_14679941 1 14,679,941 2.94E-07 ESR1 186,578

6th_7th rib backfat depth 2_7347710 2 7,347,710 9.21E-07 BATF2 158,720

6th_7th rib backfat depth 7_12752211 7 12,752,211 1.80E-07 ATXN1 31,493

Waist backfat depth 1_161834607 1 161,834,607 1.99E-07 MC4R 1,060,483

Waist backfat depth 1_238788828 1 238,788,828 9.41E-07 IGFBPL1 331,784

Waist backfat depth 2_15159846 2 15,159,846 3.17E-07 CELF1 Within

Waist backfat depth 7_77480725 7 77,480,725 3.06E-07 TRAV3 1205

Waist backfat depth 14_36628672 14 36,628,672 5.19E-07 MED13L 244,110

Hip backfat depth 2_9942614 2 9,942,614 8.14E-07 SYT7 5311

Hip backfat depth 4_10303912 4 10,303,912 3.20E-07 ASAP1 Within

Hip backfat depth 18_41881878 18 41,881,878 9.71E-07 GHRHR 148,632

Mean of backfat depth 1_161160798 1 161,160,798 3.45E-07 MC4R 386,674

Mean of backfat depth 2_7347710 2 7,347,710 1.23E-07 BATF2 158,720

Mean of backfat depth 7_12758893 7 12,758,893 4.05E-08 ATXN1 38,175

Mean of backfat depth 7_9256447 7 9,256,447 9.06E-07 PHACTR1 Within
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Table 4  Effects of different models, validation methods, and SNPs datasets on the prediction accuracy of GEBV

Genotype data CC1 chip genotyping data CC1 chip genotyping data CC1 chip genotyping data Genotype 
imputation data

Models GBLUP BSLMM GBLUP GBLUP

Validation methods Fivefold cross-validation Fivefold cross-validation Leave-one-out Leave-one-out

Samples 2,012 2,012 2,012 2,012

Pork cuts weight

  Shoulder cut 0.486 0.570 0.541 0.455

  Middle cut 0.519 0.513 0.535 0.556

  Leg cut 0.530 0.548 0.567 0.541

  Boneless boston shoulder 0.408 0.406 0.508 0.576

  Boneless picnic shoulder 0.547 0.640 0.597 0.481

  Front ribs 0.395 0.586 0.487 0.356

  Fore leg bones 0.502 0.512 0.508 0.522

  Scapula bones 0.554 0.579 0.576 0.609

  Loin 0.521 0.513 0.553 0.585

  Belly 0.525 0.519 0.553 0.556

  Ribs 0.565 0.664 0.568 0.461

  Chine bones 0.450 0.487 0.452 0.467

  Back fat 0.546 0.547 0.565 0.590

  Boneless leg 0.558 0.586 0.583 0.560

  Tenderloin 0.514 0.603 0.590 0.538

  Hind leg bones 0.507 0.635 0.569 0.442

  Tail and pelvis bone 0.346 0.342 0.373 0.402

Pork cuts proportion

  Shoulder cut 0.335 0.562 0.418 0.314

  Middle cut 0.521 0.610 0.523 0.456

Leg cut 0.559 0.560 0.567 0.546

  Boneless boston shoulder 0.496 0.517 0.569 0.571

  Boneless picnic shoulder 0.548 0.665 0.604 0.496

  Front ribs 0.321 0.498 0.426 0.369

  Fore leg bones 0.512 0.562 0.571 0.531

  Scapula bones 0.586 0.656 0.635 0.589

  Loin 0.502 0.509 0.567 0.543

  Belly 0.501 0.489 0.534 0.540

  Ribs 0.573 0.693 0.573 0.505

  Chine bones 0.462 0.596 0.459 0.314

  Back fat 0.536 0.559 0.558 0.547

  Boneless leg 0.585 0.583 0.603 0.585

  Tenderloin 0.516 0.586 0.563 0.526

  Hind leg bones 0.559 0.561 0.564 0.573

  Tail and pelvis bone 0.372 0.438 0.403 0.309

Carcass morphology traits

  Half carcass weight 0.530 0.538 0.563 0.551

  Carcass weight 0.518 0.521 0.547 0.581

  Straight length 0.567 0.661 0.597 0.577

  Oblique length 0.540 0.652 0.590 0.528

  Thoracic length 0.579 0.749 0.595 0.502

  Lumbar length 0.395 0.510 0.445 0.476

  Thoracic number 0.549 0.882 0.594 0.484

  Lumbar number 0.353 0.373 0.335 0.331
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The data in the table are the accuracy of predicting GEBV for all traits

Table 4  (continued)

Genotype data CC1 chip genotyping data CC1 chip genotyping data CC1 chip genotyping data Genotype 
imputation data

Models GBLUP BSLMM GBLUP GBLUP

Validation methods Fivefold cross-validation Fivefold cross-validation Leave-one-out Leave-one-out

Samples 2,012 2,012 2,012 2,012

  Single lumbar length 0.544 0.714 0.594 0.541

  Shoulder backfat depth 0.412 0.528 0.466 0.364

  6th_7th rib backfat depth 0.422 0.445 0.495 0.466

  Waist backfat depth 0.451 0.441 0.480 0.514

  Hip backfat depth 0.460 0.443 0.541 0.536

  Mean of backfat depth 0.486 0.504 0.558 0.552

Fig. 3  Boxplots comparing the prediction accuracy of GEBV across different models, validation methods, and SNP datasets. a Comparison 
of the accuracy of predicting GEBV using the GBLUP and BSLMM models based on the CC1 Chip genotyping data. b Comparison of the accuracy 
of predicting GEBV using the fivefold cross-validation and leave-one-out method based on the CC1 Chip genotyping data. c Comparison 
of the accuracy of predicting GEBV using the CC1 Chip genotyping data and genotype imputation data based on GBLUP models. CC1 Chip 
represents CC1 Chip genotyping data. Imputation represents imputation-based of whole-genome sequence
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can be improved by excluding markers that have no 
effect on traits or have inconsistent effects among differ-
ent populations [37–39]. Therefore, we pre-selected a set 
of SNPs to predict GEBV in WGS genotype imputation 
data. The prediction accuracy of CC1 Chip data was still 
significantly higher than that of pre-selected genotype 
imputation data, but the difference in prediction accu-
racy became smaller (Fig. 4a), with a P-value of 0.027, in 
the combined populations. However, the prediction accu-
racy of genotype imputation data was significantly higher 
than that of chip data in the YK and LY populations 
(Fig.  4a), with significant P-values of 9.88 × 10−24 and 
1.01 × 10−24, respectively. Similarly, we chose the GWAS 
significant loci based on CC1 chip data for genomic pre-
diction. The genomic prediction based on the CC1 Chip 
data showed that the accuracy of GEBVs for different 
traits in the combined populations using GWAS sig-
nificant loci was lower than that using all SNPs (Fig. 4b), 
with a P-value of 8.76 × 10−5. However, the prediction 
accuracy in the YK populations and LY populations was 
the opposite (Fig.  4b). Furthermore, we compared the 
prediction accuracy under pre-selection strategy of SNP 
Chip data and imputation data, we found that the predic-
tion accuracy of imputation-based data was significantly 
higher than that of the CC1 Chip-based data (Fig.  5a). 
The results indicate that the selection of GWAS signifi-
cant loci for GEBV prediction has substantially improved 
accuracy in single-breed populations, whether using CC1 
Chip data or genotype imputation data. However, in the 
combined population, the prediction accuracy of GEBVs 
using all markers from CC1 Chip data outperformed oth-
ers. Also, the prediction accuracy of GEBVs varies signifi-
cantly across populations when using different datasets 
(Fig. 5b).

In summary, when predicting GEBVs using genome-
wide data, it is advisable to exclude non-relevant loci, also 
known as pre-selection markers, through GWAS analy-
sis. Different populations may require different strategies 
for genomic selection.

Discussion
Candidate genes affecting body size
We identified three candidate genes associated with skel-
etal development, namely VRTN, BMP2, and HMGA1. 
A causal mutation (g.19034 A > C) in VRTN was found 
to be significantly correlated with thoracic vertebra 
number in our previous studies, and was confirmed by 
a series of biochemical experiments [36]. In this study, 
QTLs were also identified in the VRTN, which was sig-
nificantly associated with the weight and proportion of 
RI and CB, SL, OL, THL and LUL. Li et  al. [40] found 
that the rs320706814 SNP located approximately 123 kb 
upstream of the BMP2 was the strongest candidate 

affecting carcass length. However, this study found that 
the QTL upstream of the BMP2 was associated with 
weight and proportion of FLB, HLB and RI, SL, OL, THL, 
LUL and SLUL. And, Zhang et al. [35] identified HMGA1 
and PPARD as candidate for limb bone length in pigs in 
the Large White × Minzhu intercross population. Fur-
thermore, other studies have reported that HMGA1 is a 
strong candidate gene affecting pig body size [35, 41, 42]. 
This study found that a QTL in the intron region of the 
HMGA1 gene was significantly associated with the pro-
portion of FLB. Overall, VRTN, BMP2, and HMGA1 are 
prominent candidate genes influencing pig body size and 
play crucial roles in bone development.

Effects of marker preselection, marker density, 
and reference population size on genomic prediction
Based on previous research, we know that several fac-
tors can influence the accuracy of predicting genomic 
estimated breeding values (GEBVs). These include the 
selection and size of the reference population [43, 44], 
marker density [45, 46], pre-selection of markers [37], 
prediction models [47–49], and heritability of traits [50, 
51]. We compared the effect of different populations on 
GEBV prediction accuracy and observed significantly 
higher accuracy in the combined populations when using 
CC1 Chip data compared to the YK and LY populations 
(Fig. 5b). This may be due to the limited size of the YK and 
LY populations, which reduces the accuracy of GEBV pre-
diction. However, using GWAS significant loci for GEBV 
prediction resulted in significant improvement in accu-
racy for the YK and LY populations, although it remained 
lower than that of the combined population. Apart from 
the reference population size, the variation in linkage 
disequilibrium between markers in combined popula-
tions and single-breed populations also affects prediction 
accuracy. In the combined population, linkage disequilib-
rium blocks formed between markers are smaller. Thus, 
assuming a specific marker has an effect in the combined 
population, it is more likely due to its higher linkage dis-
equilibrium with the QTL, rather than longer linkage 
blocks within a single breed. Previous research by Roos 
et al. [52] also showed that the accuracy of genome pre-
diction is the highest when multiple populations are com-
bined to form a training set, but a higher labeling density 
is also required. Higher marker density can improve pre-
diction accuracy to some extent, but not all markers will 
have an impact on traits. In our study, we found that the 
accuracy of GEBV predictions using genotype imputation 
data was lower than that based on CC1 Chip genotyping 
data. However, when using GWAS significant loci to pre-
dict GEBVs of different traits, the accuracy of genotype 
imputation data significantly improved, and in the single-
breed population, the accuracy of genotype imputation 
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Fig. 4  Boxplot comparing the prediction accuracy of GEBV based on different SNP datasets. a Comparison of the accuracy of predicting GEBV 
using the CC1 Chip genotyping data and significant SNPs of IGWAS in different populations. b Comparison of the accuracy of predicting GEBV using 
all SNPs and GWAS significant SNPs of the CC1 chip data in different populations
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Fig. 5  Boxplot comparing the prediction accuracy of GEBV in different populations. Comparison of the accuracy of predicting GEBV using the CC1 
chip-based GWAS significant loci data and imputation-based GWAS significant loci in different populations
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data was significantly higher than that of CC1 Chip data. 
It can be seen that while increasing the marker density, 
we also need to pre-select the markers to improve GEBVs 
prediction accuracy [37–39].

Feasibility of genome‑based selection for pork cuts
As we all know, the most important thing in animal 
breeding is to select elite individuals and those are identi-
fied as the candidates with high EBVs. One of the widely 
used molecular breeding methods is marker-assisted 
selection, which involves identifying QTLs associated 
with traits of interest and then using models incorpo-
rating these QTLs to predict EBV in individuals [50]. 
In this study, QTLs related to pork cuts were identi-
fied, which has important reference value for breed-
ing pork cuts using marker-assisted selection. However, 
marker-assisted selection has been gradually replaced by 
molecular breeding methods based on genomic selec-
tion in recent years [53–55]. Genomic selection requires 
establishing a reference population containing pheno-
type and genotype individuals, evaluating the effect 
value of each marker on the target phenotype using a 
suitable model, and then genotyping the individuals that 
need to be predicted. The GEBVs of each individual are 
calculated using the estimated marker effect value of 
the reference population, and individuals are selected 
and retained based on their GEBVs ranking [56]. This 
method improves the accuracy of selective breeding and 
shortens the generation interval. It is especially effec-
tive for difficult-to-measure phenotypes and phenotypes 
with low heritability [57, 58]. In our previous study, we 
found that most of the pork cuts were medium to high 
heritability traits. This suggests that breeding for pork 
cuts using genomic selection may have higher predictive 
accuracy. In this study, we predicted the GEBVs of pork 
cuts weight and proportion and found that the predic-
tion accuracy of pork cuts was similar to that of carcass 
morphology traits, and the accuracy ranged from 0.342 
to 0.693. The prediction accuracy of some pork cuts can 
even reach above 0.65, such as the proportion of RI and 
BPS. In addition, the pork cuts are the traits of pigs after 
slaughter, and it is still challenging to predict the weight 
and proportion of pork cuts through live bodies. There-
fore, the use of genomic selection would be a practical 
way to select elite pigs for pork cuts early in life.

Conclusion
In this study, we identified 14 QTLs and 112 QTLs asso-
ciated with 17 pork cuts, as well as candidate genes, using 
HGWAS and IGWAS for the first time. Our results sug-
gest the independent regulation of skeletal development 
by several genes across different body parts. Specifically, 
we identified HMGA1 as a candidate gene that affects 

the size of the fore leg bones, VRTN as a causal gene that 
affects the number of vertebral and rib bones and BMP2 
as candidate gene that affects the size of both hind leg 
bones and fore leg bones, as well as the length of a single 
vertebral bone. The QTLs and candidate genes we iden-
tified have important implications for marker-assisted 
selection and genome selection. Moreover, we conducted 
genomic selection of pork cuts and carcass morphology 
traits in different populations. We found that the predic-
tion accuracy of GEBVs for pork cuts ranged from 0.342 
to 0.693, and that the predictive accuracy of several traits, 
including ribs, boneless picnic shoulder, tenderloin, hind 
leg bones, and scapula bones, exceeded 0.6. We also 
found that genomic selection strategy of using BSLMM 
model, with higher density of effective markers and pre-
selecting markers can improve the accuracy of GEBVs. 
Furthermore, we constructed the first reference popu-
lations for genome selection of pork cuts in pigs. These 
reference populations contain the genetic information 
of main commercial breeds of Landrace, Yorkshire, and 
Duroc, which can be directly used for genome selection 
for most of the commercial pig companies. Overall, our 
study provides valuable insights into the genetics of pork 
cuts in pigs and lays a foundation for improving the effi-
ciency of pig breeding programs.
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