Skip to main content
Journal of Sichuan University (Medical Sciences) logoLink to Journal of Sichuan University (Medical Sciences)
. 2023 May 20;54(3):497–504. [Article in Chinese] doi: 10.12182/20230560304

免疫代谢在肿瘤免疫中的功能研究进展

Latest Findings on the Function of Immune Metabolism in Tumor Immunity

Yang YANG 1,2, Dian FAN 1,2, Bo-hao ZHENG 1,2, Sheng-tao ZHOU 1,2,Δ
PMCID: PMC10475430  PMID: 37248574

Abstract

代谢重编程是癌症的重要特征,以满足其快速增殖的需求。肿瘤中的代谢变化调控免疫细胞多种代谢途径来实现抗肿瘤免疫抑制。近年来对糖、氨基酸和脂质的代谢变化的研究,以及肿瘤细胞和免疫细胞间代谢调控的相互作用的深入探索,靶向代谢的同时联合现有抗肿瘤疗法,通过满足免疫细胞的代谢需求增强免疫治疗的抗肿瘤效应,为靶向肿瘤免疫代谢治疗、增强抗肿瘤免疫反应提供新的思路。关于新的免疫检查点分子、新型细胞免疫疗法的研究也正在进行。本文对近年来肿瘤免疫抑制的免疫代谢机制及其在免疫治疗中的功能相关研究进展进行综述,并对未来免疫代谢调控的发展进行展望。

Keywords: 免疫代谢, 肿瘤微环境, 免疫治疗


肿瘤被认为是世界各国的主要健康负担。在过去十年中,随着免疫检查点抑制剂(immune checkpoint inhibitors, ICIs)的广泛应用,肿瘤治疗已向新的模式转变。肿瘤免疫治疗促使免疫系统发挥抗肿瘤免疫反应,但大多数患者仍无法从免疫治疗中获益,这可能是由于免疫抑制性肿瘤微环境(tumor microenvironment, TME)限制了促肿瘤免疫反应向抗肿瘤免疫反应转化[1]

代谢改变是肿瘤组织的重要特征之一。肿瘤细胞对糖、氨基酸、脂质代谢重编程,以形成有利于肿瘤增殖和转移的微环境,并通过与免疫细胞相互作用及竞争营养物质,促使免疫细胞发生代谢变化,促使免疫细胞向免疫耐受表型转化,损害其抗肿瘤免疫反应。此外,免疫检查点在增强T细胞活化信号的同时,也会调节T细胞的代谢适应性[2]。因此,利用靶向免疫代谢的药物可能会通过TME的代谢重编程协同增强免疫治疗的效果。本文旨在总结近年来肿瘤免疫抑制的免疫代谢机制,以及肿瘤免疫治疗中免疫代谢调控的功能的研究进展,并对免疫代谢在未来肿瘤免疫治疗中可能的研究方向进行展望。

1. TME中的代谢重编程与免疫治疗

1.1. 糖酵解

即使在氧气充足的情况下,肿瘤细胞也将通过有氧糖酵解利用大量葡萄糖并产生乳酸,氧化磷酸化(oxidative phosphorylation, OXPHOS)率相对较低,即Warburg效应。肿瘤细胞上调有氧糖酵解是为适应缺氧环境作出准备,并为适应糖酵解带来的低葡萄糖浓度和酸性环境而作出相应改变,如葡萄糖转运蛋白(glucose transporters, GLUT)尤其是GLUT1[3]和H+转运蛋白表达上调[4]

有氧糖酵解和偏酸性的TME影响抗肿瘤免疫。CASCONE等[2]发现肿瘤糖酵解活性的增加与T细胞效应降低相关。TME中调节性T细胞(regulatory T cell, Treg cell)糖酵解活性增强,葡萄糖摄取和消耗增加[5],低糖和高酸环境不会影响Treg细胞增殖和抑制免疫功能[6],但低糖会诱导CD4+ T细胞和CD8+ T细胞衰老[7],也会导致T细胞哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)活性降低及干扰素γ(interferon-gamma, IFN-γ)产生减少[8]。LI等[9]发现糖酵解通过刺激肿瘤细胞中粒细胞集落刺激因子和粒细胞-巨噬细胞集落刺激因子的表达,可促进骨髓源性抑制细胞(marrow-derived suppressor cells, MDSCs)的发展。糖酵解代谢产物乳酸会抑制T细胞和单核细胞分化及免疫反应,抑制自然杀伤(natural killer, NK)细胞功能,促进T细胞凋亡和肿瘤相关巨噬细胞(tumor-associated macrophage, TAM)M2极化,抑制Ⅰ型IFN的产生[10-12]。乳酸还可通过自分泌和旁分泌途径激动G蛋白偶联受体81(G-protein-coupled receptor 81, GPR81),促进血管生成和免疫逃逸[13]。肿瘤糖酵解途径的关键酶及转运体是开发肿瘤免疫治疗药物的重要靶点。

2-脱氧-D-葡萄糖(2-deoxy-D-glucose, 2-DG)是己糖激酶(hexokinase, HK)Ⅱ抑制剂,通过抑制HK介导的磷酸化有效抑制糖酵解,从而限制肿瘤细胞增殖[14]。2-DG及其衍生物结合其他抗肿瘤免疫方法的治疗方案有待探索。此外,丙酮酸激酶2(pyruvate kinase M2, PKM2)在糖酵解中催化丙酮酸生成,通常在肿瘤细胞中过表达并促进肿瘤增殖和转移,也有研究发现PKM2促进单核细胞向巨噬细胞分化[15-16]。基于以上类似发现,探究PKM2的抑制剂和激动剂在肿瘤免疫治疗中的作用成为一个热点。PKM2抑制剂如Benserazide(Ben)、化合物3k(C3k)能抑制黑色素瘤、宫颈癌、乳腺癌等肿瘤细胞的增殖及功能[17-19]。PKM2激动剂如ML-265、Tepp-46、Parthenolide(PTL5),通过激活PKM2的四聚体形式促进OXPHOS,达到抑制肿瘤发生和发展的目的[20]。LI等[1]则发现PKM2激动剂联合程序性死亡1/配体(programmed death-1/ligand, PD-1/PD-L1)免疫检查点抑制剂,可能通过消除肿瘤细胞及抑制性免疫细胞的有氧糖酵解和PD-L1表达,从而减少TME中的代谢应激和免疫抑制。PKM2相关药物与免疫检查点药物在肿瘤治疗中的联合应用仍有待研究。

乳酸脱氢酶A(lactate dehydrogenase A, LDHA)抑制剂的使用可以降低肿瘤细胞产生乳酸的水平。有研究显示LDHA抑制剂预处理黑色素瘤细胞能增强T细胞介导的抗肿瘤免疫反应,同时也发现,血清中低LDHA水平的黑色素瘤患者对抗PD-1抗体派姆单抗可能有更好的治疗反应[2]。以上研究结果提示或许可以通过减少乳酸的产生以增强肿瘤免疫治疗的疗效,但小分子LDHA抑制剂的选择性作用有限。肿瘤细胞中高水平的单羧酸转运蛋白(monocarboxylate transporter, MCT)是乳酸的快速转运载体,其被阻断会导致细胞内乳酸积累,抑制糖酵解,抑制肿瘤细胞生长与增殖。AZD3965可有效抑制MCT1,并具有MCT2活性,在血液肿瘤中表现出抑制肿瘤生长的作用,与利妥昔单抗联合则能进一步增加抗肿瘤效果,为血液肿瘤提供了新的治疗策略[21]

1.2. 氨基酸及其衍生物

除了上调的糖酵解外,肿瘤细胞对外源性氨基酸的需求也大大增加,甚至导致非必需氨基酸的营养缺陷型,即特定非必需氨基酸的缺乏会限制肿瘤细胞生长。本文将讨论几种肿瘤特异性依赖的氨基酸及其潜在的临床应用。

谷氨酰胺(glutamine, Gln)是参与细胞生物合成、维持氧化还原稳态和调控细胞信号通路的重要氨基酸,同时,肿瘤细胞代谢重编程还将Gln分解作为重要的能量来源,这也是肿瘤代谢的标志。肿瘤细胞竞争性利用Gln会抑制T细胞增殖并减少细胞因子的产生,但会促进Treg细胞的产生。NABE等[22]发现在体外模拟T细胞活化过程中,限制Gln可促进记忆CD8+T细胞的分化。谷氨酰胺酶(glutaminase, GLS)缺乏能促进Th1细胞和CD8+细胞毒性T淋巴细胞(cytotoxic T lymphocyte, CTL)的增殖、分化及杀伤肿瘤细胞的效应能力,这可能与磷脂酰肌醇3激酶相互作用蛋白1(phosphoinositide-3-kinase interacting protein1, PIK3IP1)下调及白介素2(interleukin-2, IL-2)产生增加导致mTORC1激活上调相关。除此之外,GLS缺乏可能会通过增加活性氧损害Th17细胞的分化,但GLS缺乏并不影响Treg细胞[23]。另外,Gln分解产生的α-酮戊二酸(alpha-ketoglutaric acid, α-KG)对巨噬细胞M2极化也很重要[24]。研究表明,由c-Myc或KRAS驱动的肿瘤非常依赖于外源性Gln[25]。总之,TME中不同细胞的Gln代谢特点还需要进一步研究。GLS变构抑制剂CB-839,抑制肿瘤细胞利用Gln以提高免疫细胞对Gln的利用率。CB-839无论是单用或是与ICIs联合使用,在三阴性乳腺癌(triple- negative breast cancer, TNBC)、急性髓系白血病(acute myeloid leukemia, AML)以及非小细胞肺癌(non-small cell lung cancer, NSCLC)的临床前模型中均具有良好的效应[26-28]。此外,利用Gln代谢对不同T细胞亚群的作用,在Gln限制下培养肿瘤特异性CD8+ T细胞可能是提高过继细胞疗法(adoptive cell therapy, ACT)疗效的一种策略。

天冬酰胺(asparagine, Asn)在Gln限制的情况下有助于细胞增殖和蛋白质合成,这可能是靶向Gln代谢后肿瘤细胞的适应性代谢。PAVLOVA等[29]的研究指出在Gln限制情况下,Asn在肿瘤环境中促进谷氨酰胺合成酶(glutamine synthetase, GS)及其他适应性蛋白的翻译。胞质天冬酰胺酶(asparaginase, ASNase),作为酰胺基水解酶,减少Asn在肿瘤细胞的积累,在Gln缺乏的情况下有效地阻断了细胞的蛋白质合成和增殖,从而抑制体内肿瘤细胞的生长。有研究表明,淋巴细胞选择性地依赖于Asn,将ASNase用于小儿急性淋巴细胞白血病(acute lymphocytic leukemia, ALL)的治疗,可大大提高治愈率[30]。ASNase是多药治疗方案的关键组成部分。ASNase还表现出GLS协同活性,可通过消耗肿瘤中Asn和Gln的双重作用,抑制原发肿瘤的生长和转移。但有研究发现其某些副作用可能与GLS活性水平相关,Lavie A团队最近的研究结果发现,L-ASNase变体L-GLS协同活性降低,其体内毒性下降的同时,仍具有持久的抗白血病作用[31]。但目前缺少临床前模型用于评估L-ASNase的免疫原性,这也是未来ASNase研究需要克服的一大难题。

精氨酸代谢在T细胞活化和调节免疫反应中也具有重要作用。在炎症反应消退期间,免疫调节细胞通过表达精氨酸酶1(arginase 1, ARGase1)促进精氨酸水解,从而限制T细胞利用精氨酸,抑制肿瘤免疫[32]。因此,补充精氨酸和防止精氨酸水解是重新激活T细胞和NK细胞介导的免疫反应的有效方式。在体外实验中,增加精氨酸有利于T细胞和NK细胞产生细胞毒性作用、刺激效应细胞因子的产生[33]。在体外扩增T细胞的过程中补充精氨酸可促进其分化为具有抗肿瘤活性的记忆性T细胞[34]。值得注意的是,研究发现ARGase1抑制剂与抗PD-1治疗具有协同作用,是因为ARGase1靶向免疫疗法诱导Th1相关炎症,有利于PD-L1在TME中的表达[35]。新型抗癌药物聚乙二醇化精氨酸脱亚胺酶(PEGylated arginine deiminase, ADI-PEG20)可以通过消耗TME中的精氨酸,从而抑制精氨酸营养缺陷型癌症的生长[36]。ARGase1抑制剂和ADI-PEG20适用的具体肿瘤类型仍待进一步研究。

低精氨酸的TME也会影响嵌合抗原受体(chimeric antigen receptors, CAR)T细胞的增殖,从而降低CAR-T细胞对血液和实体恶性肿瘤的清除[37]。由于精氨琥珀酸合成酶(arginosuccinate synthetase, ASS)和鸟氨酸转氨甲酰酶(ornithine transcarbamylase, OTC)的低表达,受低精氨酸的TME的影响,T细胞重新编程设计以表达功能性ASS或OTC与嵌合抗原受体协同作用[36, 38]。在体内,CAR-T细胞经过酶修饰后可增强白血病或实体瘤负荷的清除率[39]。因此,根据TME中精氨酸的特点对CAR-T细胞疗法进行代谢修饰是肿瘤治疗的新思路。

色氨酸代谢在肿瘤的发展中也发挥着重要作用,其具有抑制抗肿瘤免疫反应和增加癌细胞的恶性的特性,主要是因为肿瘤细胞中色氨酸降解酶——吲哚胺2,3-双加氧酶1(Indoleamine 2,3-dioxygenase 1, IDO1)、IDO2和色氨酸2,3-双加氧酶(tryptophan 2,3-dioxygenase, TDO)的高水平表达,降低了TME中色氨酸的可用性,从而抑制T细胞功能并促进了肿瘤的发展[40]。同时,色氨酸的分解代谢产物犬尿氨酸的积累促进效应T细胞向Treg细胞转化[41]。犬尿氨酸途径产生的NAD+还支持着巨噬细胞的抗炎和吞噬活性,这表明抑制IDO可能会减少TAM的M2样表型[42]。目前临床试验发现IDO1抑制剂与派姆单抗联合使用在晚期黑色素瘤患者中并没有显示出优于派姆单抗单药治疗的治疗效果,多项IDO1抑制剂的临床试验也暂时停止,因而进一步研究IDO和TDO的作用机制对未来肿瘤免疫治疗具有指导意义[43]

1.3. 脂质代谢

肿瘤细胞为响应其高代谢要求而激活脂肪酸的从头合成大量脂肪酸,脂肪细胞和脂肪细胞相关成纤维细胞的存在也增加了TME中的脂质含量[44]。不同亚群TAM脂质代谢方式也存在差异。脂肪酸合成(fatty acid synthesis, FAS)在M1巨噬细胞中占主导地位,而M2巨噬细胞的生物能量需求依赖于脂肪酸氧化(fatty acid oxidation, FAO),TME中高脂肪酸含量也有利于TAM的M2极化[45]。通过抑制脂肪酸转运蛋白如CD36等介导的脂质摄取和FAO来干扰TAM的脂质代谢,可能会达到增强抗肿瘤免疫的效果。TME中的脂质种类可能会改变CD4+ T细胞的浸润模式,并决定靶向脂质代谢途径治疗癌症的效果。TME中脂肪酸含量的增加激活了CD8+肿瘤浸润淋巴细胞(tumor infiltrating lymphocyte, TIL)的过氧化物酶体增殖物活化受体α(peroxisome proliferator-activated receptor alpha, PPARα)信号,从而上调FAO并促进效应T细胞分化[46]。LIN等[47]提出在胃腺癌中CD8+组织驻留记忆T(tissue-resident memory T cell, Trm)细胞是TIL,依赖FAO存活,阻断PD-L1可以降低肿瘤细胞脂肪酸结合蛋白(fatty acid binding protein, FABP)的表达,从而增加Trm对脂肪酸的摄取,增强Trm抗肿瘤免疫活性。

抑制胆固醇酯化关键酶的活性可以上调CD8+ T细胞的质膜胆固醇水平,增加T细胞受体(T cell receptor, TCR)聚集,并促进细胞因子和溶细胞颗粒的产生,增强CD8+ T细胞的增殖及抗肿瘤免疫功能[48]。QIN等[49]研究发现低密度脂蛋白受体(low density lipoprotein receptor, LDLR)可介导NK细胞摄取胆固醇,增强NK细胞的免疫活性,因此,LDLR过表达可能是增强NK细胞抗肿瘤免疫反应的途径。ATP结合盒转运体G1(ATP-binding cassette transporter G1, ABCG1)介导胆固醇的分泌,在巨噬细胞及其他多种细胞大量表达,而MDSCs和TAM中胆固醇含量增加可能协同激活抗肿瘤免疫反应并杀伤肿瘤细胞,抑制ABCG1能促使巨噬细胞M2极化向M1极化转变,并增加NK细胞和CD4+ T细胞浸润,限制肿瘤生长[50]。但也有研究发现胆固醇可能诱导T细胞衰竭,削弱抗肿瘤免疫[51]。因此,深入探索TME中胆固醇代谢的调控途径,可能为开发新的抗肿瘤疗法指明方向。

2. 基于代谢重编程调控免疫细胞的功能

细胞代谢参与并调控免疫细胞的生长、增殖、活化及效应功能。研究参与肿瘤细胞免疫逃逸的代谢调控,以及调控免疫细胞功能的关键代谢途径,有助于为肿瘤免疫治疗提供新的靶点。本文将总结调控先天与适应性免疫功能的代谢途径的研究进展,并讨论了靶向这些途径的可能性。

2.1. 免疫代谢与TAM极化

研究发现,代谢重编程在调控巨噬细胞活化和极化方面都起到了重要作用。巨噬细胞在TME中极化为两大类,M1巨噬细胞多被脂多糖和IFN-γ经典激活,M2巨噬细胞则通常被IL-4交替激活,这两大类巨噬细胞各自具有不同的代谢特征[45]。M2通过磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase, PI3K)/AKT/mTOR信号通路上调L-精氨酸代谢,这一代谢改变在促进TAM介导的免疫抑制中也占据了重要地位,抑制PI3Kγ可以抑制髓细胞ARGase1的表达和活性[52]。KANEDA等[52]研究表明抑制PI3Kγ还能间接刺激T细胞介导的抗肿瘤免疫反应。

BOHN等[11]提出在酸性TME中,巨噬细胞的G蛋白偶联受体(G-protein-coupled receptor, GPCR)可以感知酸性环境,促使巨噬细胞表达转录抑制因子——诱导型cAMP早期抑制因子(inducible cyclic AMP early repressor, ICER),并通过上调ARGase和血管内皮生长因子等的表达,诱导肿瘤相关髓细胞免疫抑制极化。使用质子泵抑制剂或碳酸氢钠以降低TME酸度可以减少TAM免疫抑制极化,增强T细胞的功能和肿瘤淋巴细胞浸润[53-54]。抑制GS可使TAM胞内Gln减少和琥珀酸增加,上调糖酵解,促使M2极化向M1表型转变,并抑制肿瘤转移[55]。WU等[56]发现在肝癌中,TAM的受体相互作用蛋白激酶3(receptor-interacting protein kinase 3, RIPK3)下调,会促进FAO并诱导M2极化。以上研究揭示了通过靶向代谢途径可以诱导TAM的抗肿瘤效应或逆转TAM的免疫抑制活性,抑制肿瘤发生与转移,因此深入研究TAM的代谢特点十分必要,为肿瘤治疗提供新的治疗思路和途径。

2.2. 训练免疫

研究表明,先天免疫细胞也表现出记忆特征[57],如单核细胞、巨噬细胞和NK细胞短暂暴露于某些刺激后,这些免疫细胞会对再刺激表现出高反应性。训练刺激物,如来自微生物或病原体的物质、疫苗等,通过表观遗传和代谢重编程,刺激先天免疫细胞产生持续高效的免疫反应,称为训练免疫,其异质性取决于刺激、表观遗传和代谢重编程。介导训练免疫的代谢途径为肿瘤免疫治疗提供了新的靶点。

有研究对接受β-葡聚糖训练的巨噬细胞的代谢与转录特点进行分析,发现了各种代谢途径的上调,例如糖酵解、Gln分解、FAS和胆固醇合成[58],其中,糖酵解上调是由mTOR途径激活介导的[59]。高浓度β-葡聚糖训练能促使OXPHOS向糖酵解转化,但低浓度的β-葡聚糖、卡介苗(Bacillus Calmette–Guérin, BCG)以及氧化的低密度脂蛋白(low-density lipoprotein, LDL)也可以激活OXPHOS和糖酵解[59-61]。糖酵解通过促进H3K4me3组蛋白修饰,并富集在激活的细胞因子基因的启动子上,从而诱导细胞因子的产生[62]。Gln分解是训练免疫的重要代谢途径,产生的谷氨酸和α-KG可以补充TCA,其代谢产物,如延胡索酸、富马酸含量增加,从而激活或抑制一系列细胞表观遗传相关酶,诱导组蛋白修饰,最终诱导训练免疫[58]。两种特定的表观遗传酶——组蛋白去甲基化酶KDM5(诱导H3K4去甲基化)和赖氨酸甲基转移酶Set7(诱导H3K4me1),目前被认为是调节训练免疫表观遗传重编程的关键酶,最近KEATING等[63]进一步证明在β-葡聚糖诱导的训练免疫中,Set7是调节OXPHOS的关键酶。

进一步的研究表明,胆固醇合成代谢产物甲羟戊酸通过激活胰岛素样生长因子1受体(insulin-like growth factor 1 receptor, IGF1-R)和mTOR,促进表观遗传重组,诱导H3K4me3在IL-6和肿瘤坏死因子-α(tumor necrosis factor-alpha, TNF-α)的启动子上富集从而介导训练免疫[64]。β-葡聚糖诱导的训练免疫还会抑制免疫反应基因1(immune-responsive gene 1, IRG1)的表达,其编码的顺乌头酸脱羧酶合成减少,导致代谢物衣康酸的产生减少,从而调节衣康酸介导的先天免疫耐受[65]

训练免疫是宿主防御不可或缺的一部分。关于代谢途径和表观遗传在训练免疫中的作用,目前仍有许多问题尚不清楚,训练免疫激活其他先天免疫细胞的机制也有待进一步研究,可能将为未来的免疫治疗提供新的方向。

2.3. ICIs与免疫代谢

ICIs的开发是肿瘤治疗的里程碑。细胞毒性T淋巴细胞相关蛋白4(CTL-associated protein-4, CTLA-4)和PD-1/PD-L1是目前研究最多的抑制性免疫检查点途径,靶向二者的ICIs已在临床上用于多种癌症的治疗[66],国内外研究者也在不断探索新的靶点,LAG-3、TIM-3以及TIGIT等相关靶点抗体联合抗PD-1抗体可以增强抗肿瘤免疫,但未来仍需要探索ICIs联合治疗的方案,并根据患者特异性和肿瘤特异性特征进行个体化免疫治疗[67-68]

免疫检查点共刺激受体如CD28活化会参与代谢重编程以增强T细胞活化的代谢适应性,而抑制性免疫检查点受体如CTLA-4和PD-1的激活,则会抑制T细胞活化[69-70]。抑制性免疫检查点受体及其配体会改变TME中肿瘤与T细胞之间的代谢活动。PD-L1和B7-H3(B7 homolog 3 protein, B7-H3)通过激活PI3K/AKT/mTOR通路而上调肿瘤细胞的有氧糖酵解,PD-1和PD-L1相互作用会抑制mTOR通路从而破坏T细胞代谢重编程,且PD-1通过增加T细胞中的FAO限速酶——肉碱棕榈酰转移酶(carnitine palmitoyltransferase 1A, CPT1A)的表达,从而上调FAO[8]。CTLA-4竞争并抑制CD28的共刺激信号,通过抑制AKT激活、下调GLUT1的表达,从而减少糖酵解,抑制T细胞活化,但CTLA-4不会上调FAO[71-73]。阻断PD-1/PD-L1、CTLA-4可以促进TIL的活性、上调T细胞糖酵解,同时抑制肿瘤细胞的有氧糖酵解[2]。TIM3也是抑制性免疫检查点受体,在耗竭T细胞中高水平表达,也通过抑制mTOR途径降低T细胞代谢适应性,同样,LGA3也可以抑制CD4+ T细胞的糖酵解活性。

而与抑制性免疫检查点受体相反,免疫检查点共刺激受体比如CD28、TNF受体超家族(tumor necrosis factor receptor superfamily, TNFRSF),通过诱导T细胞代谢重编程来增强T细胞活化。ICIs和共刺激受体激动剂的联合使用会影响T细胞代谢,目前关于共刺激受体激动剂的研究也正在进行。

2.4. CAR-T的代谢干预

ACT经历了从TIL扩增到TCR编辑到CAR-T细胞的演变,CAR-T细胞是通过基因修饰让自体T细胞表达靶向特定肿瘤抗原的嵌合抗原受体,并希望未来能通过体外调控CAR-T细胞的代谢途径从而进一步提高ACT疗效。

在抗CD19的CAR-T细胞体外扩增期间,抑制AKT后细胞代谢发生改变,向记忆表型分化的细胞增加,对B-ALL的疗效也得到改善。使用PI3K抑制剂可以改善CAR-T细胞的抗肿瘤活性和持久性,还能够在不抑制CAR-T细胞扩增的情况下促使T细胞向幼稚表型和记忆表型分化[74]。如前文所述,已有研究证明CAR中加入共刺激分子如CD28、4-1BB可以提高T细胞的代谢适应性。CD28可以上调CAR-T细胞的糖酵解和效应器分化,4-1BB则能够诱导记忆T细胞分化以提高其持久性[75]

CAR-T细胞体外扩增或改造阶段有利于研究者进行实验,进一步探索通过调控CAR-T细胞代谢途径来改善ACT疗效的有效策略。希望未来能通过体外调控CAR-T细胞的代谢途径从而进一步提高ACT疗效。

3. 总结与展望

肿瘤细胞与肿瘤浸润免疫细胞竞争营养物质,并通过代谢调控产生免疫抑制微环境,因而抑制抗肿瘤免疫反应,最终影响免疫治疗的效果。肿瘤细胞和免疫细胞间代谢调控的相互作用是靶向肿瘤免疫代谢治疗、增强抗肿瘤免疫反应的理论基础。通过减少葡萄糖摄取,靶向糖酵解的关键酶,或降低糖酵解代谢产物的产生与积累,抑制肿瘤细胞的糖酵解;CB-839阻断GLS,抑制肿瘤细胞利用Gln,提高免疫细胞的Gln利用率;ASNase不仅能消耗肿瘤细胞中的天冬氨酸,还表现出GLS活性;IDO和TDO抑制剂则提高了TME中色氨酸的可用性;ICIs联合肿瘤代谢干预的多项研究正在推进。近年来的研究结果强调了探索免疫代谢机制对肿瘤免疫治疗的重要性,免疫代谢为提高肿瘤免疫治疗的有效性带来新的希望。

肿瘤细胞和免疫细胞的代谢途径并非单一而相对独立的,靶向肿瘤免疫代谢,在抑制肿瘤细胞的同时,也会干扰免疫细胞的功能,因此找到肿瘤特有的代谢途径及产物作为靶点是一个亟待解决的问题。靶向代谢多联合现有抗肿瘤疗法,包括ACT、ICIs等,通过满足免疫细胞的代谢需求增强免疫治疗的抗肿瘤效应。此外,靶向新的免疫检查点分子的免疫代谢效应的探索刚刚开始,新型细胞免疫疗法CAR-巨噬细胞(CAR-macrophages, CAR-M)在实体瘤的治疗中也初露头角[76]。继续深入探索TME中的代谢重编程,了解肿瘤免疫逃逸和免疫细胞发挥抗肿瘤免疫作用的代谢调控机制,对于提高免疫疗法的有效性、解决免疫治疗耐药等问题至关重要,有助于实现靶向代谢药物和肿瘤免疫治疗的联合应用。

*    *    *

利益冲突 所有作者均声明不存在利益冲突

Biography

graphic file with name scdxxbyxb-54-3-497-ZHOUShengtao.gif

周圣涛,教授,博士生导师,国家优秀青年科学基金获得者,四川大学华西第二医院党委委员,妇科副主任,曾获得2019年度中国肿瘤青年科学家奖,国家科技部“干细胞研究与器官修复”重点研发计划青年首席科学家,第八届“中国青少年科技创新奖”,成都市五四青年奖章等荣誉。现为四川省学术和技术带头人,四川大学“双百人才工程”首批入选者,担任中华医学会妇科肿瘤分会青委副主任委员,中国抗癌协会肿瘤微环境专委会青委副主任委员等。带领团队长期从事肿瘤免疫微环境分子机制及靶向治疗相关研究,近年来以通信作者身份在Cancer Discov(封面文章)、Sci AdvGenome Biol、PNASCancer ResClin Cancer Res等国际期刊发表多篇学术论文,目前担任Genome BioleLifeBMC BiolOncogeneiScience等期刊编委

Funding Statement

国家自然科学基金(No.81822034)资助

Contributor Information

扬 杨 (Yang YANG), Email: yangyang_scu@163.com.

圣涛 周 (Sheng-tao ZHOU), Email: shengtaozhou@scu.edu.cn.

References

  • 1.LI X, WENES M, ROMERO P, et al Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nat Rev Clin Oncol. 2019;16(7):425–441. doi: 10.1038/s41571-019-0203-7. [DOI] [PubMed] [Google Scholar]
  • 2.CASCONE T, MCKENZIE J A, MBOFUNG R M, et al Increased tumor glycolysis characterizes immune resistance to adoptive T cell therapy. Cell Metab. 2018;27(5):977–987. doi: 10.1016/j.cmet.2018.02.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.ANCEY P B, CONTAT C, MEYLAN E Glucose transporters in cancer--from tumor cells to the tumor microenvironment. FEBS J. 2018;285(16):2926–2943. doi: 10.1111/febs.14577. [DOI] [PubMed] [Google Scholar]
  • 4.CORBET C, FERON O Tumour acidosis: from the passenger to the driver's seat. Nat Rev Cancer. 2017;17(10):577–593. doi: 10.1038/nrc.2017.77. [DOI] [PubMed] [Google Scholar]
  • 5.LIU X, HOFT D F, PENG G Senescent T cells within suppressive tumor microenvironments: emerging target for tumor immunotherapy. J Clin Invest. 2020;130(3):1073–1083. doi: 10.1172/jci133679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.ANGELIN A, GIL-De-GÓMEZ L, DAHIYA S, et al Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab. 2017;25(6):1282–1293.e7. doi: 10.1016/j.cmet.2016.12.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.LIU X, MO W, YE J, et al Regulatory T cells trigger effector T cell DNA damage and senescence caused by metabolic competition. Nat Commun. 2018;9(1):249. doi: 10.1038/s41467-017-02689-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.CHANG C H, QIU J, O'SULLIVAN D, et al Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 2015;162(6):1229–1241. doi: 10.1016/j.cell.2015.08.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.LI W, TANIKAWA T, KRYCZEK I, et al Aerobic glycolysis controls myeloid-derived suppressor cells and tumor immunity via a specific CEBPB isoform in triple-negative breast cancer. Cell Metab. 2018;28(1):87–103.e6. doi: 10.1016/j.cmet.2018.04.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.HUSAIN Z, HUANG Y, SETH P, et al Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells. J Immunol. 2013;191(3):1486–1495. doi: 10.4049/jimmunol.1202702. [DOI] [PubMed] [Google Scholar]
  • 11.BOHN T, RAPP S, LUTHER N, et al Tumor immunoevasion via acidosis-dependent induction of regulatory tumor-associated macrophages. Nat Immunol. 2018;19(12):1319–1329. doi: 10.1038/s41590-018-0226-8. [DOI] [PubMed] [Google Scholar]
  • 12.ZHANG W, WANG G, XU Z G, et al Lactate is a natural suppressor of RLR signaling by targeting MAVS. Cell. 2019;178(1):176–189.e15. doi: 10.1016/j.cell.2019.05.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.SUN S, LI H, CHEN J, et al Lactic acid: no longer an inert and end-product of glycolysis. Physiology (Bethesda) 2017;32(6):453–463. doi: 10.1152/physiol.00016.2017. [DOI] [PubMed] [Google Scholar]
  • 14.PAJAK B, SIWIAK E, SOŁTYKA M, et al 2-deoxy-d-glucose and its analogs: from diagnostic to therapeutic agents. Int J Mol Sci. 2019;21(1):234. doi: 10.3390/ijms21010234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.CHRISTOFK H R, VANDER HEIDEN M G, HARRIS M H, et al The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 2008;452(7184):230–233. doi: 10.1038/nature06734. [DOI] [PubMed] [Google Scholar]
  • 16.HOU P P, LUO L J, CHEN H Z, et al Ectosomal PKM2 promotes HCC by inducing macrophage differentiation and remodeling the tumor microenvironment. Mol Cell. 2020;78(6):1192–1206.e10. doi: 10.1016/j.molcel.2020.05.004. [DOI] [PubMed] [Google Scholar]
  • 17.ZHOU Y, HUANG Z, SU J, et al Benserazide is a novel inhibitor targeting PKM2 for melanoma treatment. Int J Cancer. 2020;147(1):139–151. doi: 10.1002/ijc.32756. [DOI] [PubMed] [Google Scholar]
  • 18.HUANG R, JING X, HUANG X, et al Bifunctional naphthoquinone aromatic amide-oxime derivatives exert combined immunotherapeutic and antitumor effects through simultaneous targeting of indoleamine-2, 3-dioxygenase and signal transducer and activator of transcription 3. J Med Chem. 2020;63(4):1544–1563. doi: 10.1021/acs.jmedchem.9b01386. [DOI] [PubMed] [Google Scholar]
  • 19.RIVERA-ÁVALOS E, De LOERA D, ARAUJO-HUITRADO J G, et al Synthesis of amino acid-naphthoquinones and in vitro studies on cervical and breast cell lines. Molecules. 2019;24(23):4285. doi: 10.3390/molecules24234285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.HSU M C, HUNG W C Pyruvate kinase M2 fuels multiple aspects of cancer cells: from cellular metabolism, transcriptional regulation to extracellular signaling. Mol Cancer. 2018;17(1):35. doi: 10.1186/s12943-018-0791-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.CURTIS N J, MOONEY L, HOPCROFT L, et al Pre-clinical pharmacology of AZD3965, a selective inhibitor of MCT1: DLBCL, NHL and Burkitt's lymphoma anti-tumor activity. Oncotarget. 2017;8(41):69219–69236. doi: 10.18632/oncotarget.18215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.NABE S, YAMADA T, SUZUKI J, et al Reinforce the antitumor activity of CD8(+) T cells via glutamine restriction. Cancer Sci. 2018;109(12):3737–3750. doi: 10.1111/cas.13827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.JOHNSON M O, WOLF M M, MADDEN M Z, et al Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism. Cell. 2018;175(7):1780–1795.e19. doi: 10.1016/j.cell.2018.10.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.LIU P S, WANG H, LI X, et al α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat Immunol. 2017;18(9):985–994. doi: 10.1038/ni.3796. [DOI] [PubMed] [Google Scholar]
  • 25.ALTMAN B J, STINE Z E, DANG C V From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer. 2016;16(10):619–634. doi: 10.1038/nrc.2016.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.GREGORY M A, NEMKOV T, PARK H J, et al Targeting glutamine metabolism and redox state for leukemia therapy. Clin Cancer Res. 2019;25(13):4079–4090. doi: 10.1158/1078-0432.Ccr-18-3223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.JACQUE N, RONCHETTI A M, LARRUE C, et al Targeting glutaminolysis has antileukemic activity in acute myeloid leukemia and synergizes with BCL-2 inhibition. Blood. 2015;126(11):1346–1356. doi: 10.1182/blood-2015-01-621870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.LUENGO A, GUI D Y, VANDER HEIDEN M G Targeting metabolism for cancer therapy. Cell Chem Biol. 2017;24(9):1161–1180. doi: 10.1016/j.chembiol.2017.08.028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.PAVLOVA N N, HUI S, GHERGUROVICH J M, et al As extracellular glutamine levels decline, asparagine becomes an essential amino acid. Cell Metab. 2018;27(2):428–438.e5. doi: 10.1016/j.cmet.2017.12.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.COOLS J Improvements in the survival of children and adolescents with acute lymphoblastic leukemia. Haematologica. 2012;97(5):635. doi: 10.3324/haematol.2012.068361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Van TRIMPONT M, SCHALK A M, De VISSER Y, et al In vivo stabilization of a less toxic asparaginase variant leads to a durable antitumor response in acute leukemia. Haematologica. 2023;108(2):409–419. doi: 10.3324/haematol.2022.281390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.GROHMANN U, MONDANELLI G, BELLADONNA M L, et al Amino-acid sensing and degrading pathways in immune regulation. Cytokine Growth Factor Rev. 2017;35:37–45. doi: 10.1016/j.cytogfr.2017.05.004. [DOI] [PubMed] [Google Scholar]
  • 33.HE X, LIN H, YUAN L, et al Combination therapy with l-arginine and α-PD-L1 antibody boosts immune response against osteosarcoma in immunocompetent mice. Cancer Biol Ther. 2017;18(2):94–100. doi: 10.1080/15384047.2016.1276136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.GEIGER R, RIECKMANN J C, WOLF T, et al L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell. 2016;167(3):829–842.e13. doi: 10.1016/j.cell.2016.09.031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.AABOE JØRGENSEN M, UGEL S, LINDER HÜBBE M, et al Arginase 1-based immune modulatory vaccines induce anticancer immunity and synergize with anti-PD-1 checkpoint blockade. Cancer Immunol Res. 2021;9(11):1316–1326. doi: 10.1158/2326-6066.Cir-21-0280. [DOI] [PubMed] [Google Scholar]
  • 36.WERNER A, KOSCHKE M, LEUCHTNER N, et al Reconstitution of T cell proliferation under arginine limitation: activated human T cells take up citrulline via l-type amino acid transporter 1 and use it to regenerate arginine after induction of argininosuccinate synthase expression. Front Immunol. 2017;8:864. doi: 10.3389/fimmu.2017.00864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.MUSSAI F, WHEAT R, SARROU E, et al Targeting the arginine metabolic brake enhances immunotherapy for leukaemia. Int J Cancer. 2019;145(8):2201–2208. doi: 10.1002/ijc.32028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.TARASENKO T N, GOMEZ-RODRIGUEZ J, MCGUIRE P J Impaired T cell function in argininosuccinate synthetase deficiency. J Leukoc Biol. 2015;97(2):273–278. doi: 10.1189/jlb.1AB0714-365R. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.FULTANG L, BOOTH S, YOGEV O, et al Metabolic engineering against the arginine microenvironment enhances CAR-T cell proliferation and therapeutic activity. Blood. 2020;136(10):1155–1160. doi: 10.1182/blood.2019004500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.PLATTEN M, NOLLEN E A A, RÖHRIG U F, et al Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat Rev Drug Discov. 2019;18(5):379–401. doi: 10.1038/s41573-019-0016-5. [DOI] [PubMed] [Google Scholar]
  • 41.MUNN D H, MELLOR A L IDO in the tumor microenvironment: inflammation, counter-regulation, and tolerance. Trends Immunol. 2016;37(3):193–207. doi: 10.1016/j.it.2016.01.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.MINHAS P S, LIU L, MOON P K, et al Macrophage de novo NAD(+) synthesis specifies immune function in aging and inflammation. Nat Immunol. 2019;20(1):50–63. doi: 10.1038/s41590-018-0255-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.MULLARD A IDO takes a blow. Nat Rev Drug Discov. 2018;17(5):307. doi: 10.1038/nrd.2018.67. [DOI] [PubMed] [Google Scholar]
  • 44.BOCHET L, LEHUÉDÉ C, DAUVILLIER S, et al Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res. 2013;73(18):5657–5668. doi: 10.1158/0008-5472.Can-13-0530. [DOI] [PubMed] [Google Scholar]
  • 45.GEERAERTS X, BOLLI E, FENDT S M, et al Macrophage metabolism as therapeutic rarget for cancer, atherosclerosis, and obesity. Front Immunol. 2017;8:289. doi: 10.3389/fimmu.2017.00289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.CHOWDHURY P S, CHAMOTO K, KUMAR A, et al PPAR-induced fatty acid oxidation in T cells increases the number of tumor-reactive CD8(+) T cells and facilitates anti-PD-1 therapy. Cancer Immunol Res. 2018;6(11):1375–1387. doi: 10.1158/2326-6066.Cir-18-0095. [DOI] [PubMed] [Google Scholar]
  • 47.LIN R, ZHANG H, YUAN Y, et al Fatty acid oxidation controls CD8(+) tissue-resident memory T-cell survival in gastric adenocarcinoma. Cancer Immunol Res. 2020;8(4):479–492. doi: 10.1158/2326-6066.Cir-19-0702. [DOI] [PubMed] [Google Scholar]
  • 48.YANG W, BAI Y, XIONG Y, et al Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism. Nature. 2016;531(7596):651–655. doi: 10.1038/nature17412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.QIN W H, YANG Z S, LI M, et al High serum levels of cholesterol increase antitumor functions of nature killer cells and reduce growth of liver tumors in mice. Gastroenterology. 2020;158(6):1713–1727. doi: 10.1053/j.gastro.2020.01.028. [DOI] [PubMed] [Google Scholar]
  • 50.SAG D, CEKIC C, WU R, et al The cholesterol transporter ABCG1 links cholesterol homeostasis and tumour immunity. Nat Commun. 2015;6:6354. doi: 10.1038/ncomms7354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.MA X, BI E, LU Y, et al Cholesterol Induces CD8. Cell Metab. 2019;30(1):143–156.e5. doi: 10.1016/j.cmet.2019.04.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.KANEDA M M, CAPPELLO P, NGUYEN A V, et al Macrophage PI3Kγ drives pancreatic ductal adenocarcinoma progression. Cancer Discov. 2016;6(8):870–885. doi: 10.1158/2159-8290.Cd-15-1346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.PILON-THOMAS S, KODUMUDI K N, El-KENAWI A E, et al Neutralization of tumor acidity improves antitumor responses to immunotherapy. Cancer Res. 2016;76(6):1381–1390. doi: 10.1158/0008-5472.Can-15-1743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.KUCHUK O, TUCCITTO A, CITTERIO D, et al PH regulators to target the tumor immune microenvironment in human hepatocellular carcinoma. Oncoimmunology. 2018;7(7):e1445452. doi: 10.1080/2162402x.2018.1445452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.PALMIERI E M, MENGA A, MARTÍN-PÉREZ R, et al Pharmacologic or genetic targeting of glutamine synthetase skews macrophages toward an M1-like phenotype and inhibits tumor metastasis. Cell Rep. 2017;20(7):1654–1666. doi: 10.1016/j.celrep.2017.07.054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.WU L, ZHANG X, ZHENG L, et al RIPK3 orchestrates fatty acid metabolism in tumor-associated macrophages and hepatocarcinogenesis. Cancer Immunol Res. 2020;8(5):710–721. doi: 10.1158/2326-6066.Cir-19-0261. [DOI] [PubMed] [Google Scholar]
  • 57.NETEA M G, DOMÍNGUEZ-ANDRÉS J, BARREIRO L B, et al Defining trained immunity and its role in health and disease. Nat Rev Immunol. 2020;20(6):375–388. doi: 10.1038/s41577-020-0285-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.ARTS R J, NOVAKOVIC B, TER HORST R, et al Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metab. 2016;24(6):807–819. doi: 10.1016/j.cmet.2016.10.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.CHENG S C, QUINTIN J, CRAMER R A, et al MTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science. 2014;345(6204):1250684. doi: 10.1126/science.1250684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.ARTS R J W, CARVALHO A, La ROCCA C, et al Immunometabolic pathways in BCG-induced trained immunity. Cell Rep. 2016;17(10):2562–2571. doi: 10.1016/j.celrep.2016.11.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.KEATING S T, GROH L, THIEM K, et al Rewiring of glucose metabolism defines trained immunity induced by oxidized low-density lipoprotein. J Mol Med (Berl) 2020;98(6):819–831. doi: 10.1007/s00109-020-01915-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Van Der HEIJDEN C, GROH L, KEATING S T, et al Catecholamines induce trained immunity in monocytes in vitro and In vivo. Circ Res. 2020;127(2):269–283. doi: 10.1161/circresaha.119.315800. [DOI] [PubMed] [Google Scholar]
  • 63.KEATING S T, GROH L, Van Der HEIJDEN C, et al The Set7 lysine methyltransferase regulates plasticity in oxidative phosphorylation necessary for trained immunity induced by β-glucan. Cell Rep. 2020;31(3):107548. doi: 10.1016/j.celrep.2020.107548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.BEKKERING S, ARTS R J W, NOVAKOVIC B, et al Metabolic induction of trained immunity through the mevalonate pathway. Cell. 2018;172(1/2):135–146.e9. doi: 10.1016/j.cell.2017.11.025. [DOI] [PubMed] [Google Scholar]
  • 65.DOMÍNGUEZ-ANDRÉS J, NOVAKOVIC B, LI Y, et al The itaconate pathway is a central regulatory node linking innate immune tolerance and trained immunity. Cell Metab. 2019;29(1):211–220.e5. doi: 10.1016/j.cmet.2018.09.003. [DOI] [PubMed] [Google Scholar]
  • 66.SOULARUE E, LEPAGE P, COLOMBEL J F, et al Enterocolitis due to immune checkpoint inhibitors: a systematic review. Gut. 2018;67(11):2056–2067. doi: 10.1136/gutjnl-2018-316948. [DOI] [PubMed] [Google Scholar]
  • 67.LAG3-PD-1 combo impresses in melanoma. Cancer Discov. 2021;11(7):1605–1606. doi: 10.1158/2159-8290.Cd-nb2021-0347. [DOI] [PubMed] [Google Scholar]
  • 68.DIXON K O, TABAKA M, SCHRAMM M A, et al TIM-3 restrains anti-tumour immunity by regulating inflammasome activation. Nature. 2021;595(7865):101–106. doi: 10.1038/s41586-021-03626-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.La-BECK N M, JEAN G W, HUYNH C, et al Immune checkpoint inhibitors: new insights and current place in cancer therapy. Pharmacotherapy. 2015;35(10):963–976. doi: 10.1002/phar.1643. [DOI] [PubMed] [Google Scholar]
  • 70.LIZÉE G, OVERWIJK W W, RADVANYI L, et al Harnessing the power of the immune system to target cancer. Annu Rev Med. 2013;64:71–90. doi: 10.1146/annurev-med-112311-083918. [DOI] [PubMed] [Google Scholar]
  • 71.LIM S, LIU H, Da SILVA L M, et al Immunoregulatory protein B7-H3 reprograms glucose metabolism in cancer cells by ROS-mediated stabilization of HIF1α. Cancer Res. 2016;76(8):2231–2242. doi: 10.1158/0008-5472.Can-15-1538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.PATSOUKIS N, BARDHAN K, CHATTERJEE P, et al PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun. 2015;6:6692. doi: 10.1038/ncomms7692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.SHARMA P, WAGNER K, WOLCHOK J D, et al Novel cancer immunotherapy agents with survival benefit: recent successes and next steps. Nat Rev Cancer. 2011;11(11):805–812. doi: 10.1038/nrc3153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.ZHENG W, O'HEAR C E, ALLI R, et al PI3K orchestration of the in vivo persistence of chimeric antigen receptor-modified T cells. Leukemia. 2018;32(5):1157–1167. doi: 10.1038/s41375-017-0008-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.KAWALEKAR O U, O'CONNOR R S, FRAIETTA J A, et al Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity. 2016;44(2):380–390. doi: 10.1016/j.immuni.2016.01.021. [DOI] [PubMed] [Google Scholar]
  • 76.KLICHINSKY M, RUELLA M, SHESTOVA O, et al Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat Biotechnol. 2020;38(8):947–953. doi: 10.1038/s41587-020-0462-y. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Sichuan University (Medical Sciences) are provided here courtesy of Editorial Board of Journal of Sichuan University (Medical Sciences)

RESOURCES