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H I G H L I G H T S  

• Investigate the application value of deep learning tech based on CE-MRI in the differential diagnosis of spinal metastases. 
• Study involves a deep learning algorithms and CE-MRI parameter maps as the input of CNN. 
• CE-MRI based deep learning are feasible in the differential diagnosis of spinal metastases from bone cancer. 
• Inception-ResNet model with CE-MRI image achieve high accuracy similar to the diagnostic accuracy of radiomics.  
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A B S T R A C T   

Objective: The objective of this study was to investigate the use of contrast-enhanced magnetic resonance imaging 
(CE-MRI) combined with radiomics and deep learning technology for the identification of spinal metastases and 
primary malignant spinal bone tumor. 
Methods: The region growing algorithm was utilized to segment the lesions, and two parameters were defined 
based on the region of interest (ROI). Deep learning algorithms were employed: improved U-Net, which utilized 
CE-MRI parameter maps as input, and used 10 layers of CE images as input. Inception-ResNet model was used to 
extract relevant features for disease identification and construct a diagnosis classifier. 
Results: The diagnostic accuracy of radiomics was 0.74, while the average diagnostic accuracy of improved U-Net 
was 0.98, respectively. the PA of our model is as high as 98.001%. The findings indicate that CE-MRI based 
radiomics and deep learning have the potential to assist in the differential diagnosis of spinal metastases and 
primary malignant spinal bone tumor. 
Conclusion: CE-MRI combined with radiomics and deep learning technology can potentially assist in the differ
ential diagnosis of spinal metastases and primary malignant spinal bone tumor, providing a promising approach 
for clinical diagnosis.   

1. Introduction 

Cancer stands as the predominant cause of mortality on a global 
scale. Among the various sites prone to metastasis, the liver emerges as 
the most common, followed by the lungs and bones [1]. Specifically, 
spinal metastases account for approximately 68% of bone metastases, 

with a substantial portion of patients experiencing pathological frac
tures that lead to nerve damage and spinal nerve compression. These 
complications significantly compromise both the patients’ quality of life 
and their chances of survival, while also incurring substantial medical 
resource consumption and costs [2]. Unfortunately, the overall effec
tiveness of interventions for spinal metastases continues to decline. Once 
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a pathological compression fracture in the spine occurs, the risk of pa
ralysis escalates, inevitably resulting in a drastic reduction in patients’ 
quality of life. From a clinical perspective, the ability to predict the 
vertebral segment at risk of suffering from a pathological fracture en
ables the implementation of effective preventive measures to avert, 
mitigate, or delay such detrimental events. Given these challenges, ac
curate and prompt assessment of spinal metastases is crucial in pre
venting the progression of spinal metastases to pathological 
compression fractures. It allows for the selection of an appropriate 
treatment strategy prior to the patient’s health deterioration and serves 
as a solid foundation for informed decision-making regarding inter
ventional treatments [3,4]. 

In this context, the study of radiographic risk factors assumes para
mount significance. The sensitivity and accuracy of magnetic resonance 
imaging (MRI) in detecting spinal metastases surpass those of computed 
tomography (CT) and X-ray. This distinction arises from the physio
logical and pathological basis of the spine itself, coupled with the diverse 
imaging techniques employed in MRI [5]. The typical vertebral body 
predominantly comprises bone tissue, red marrow, and yellow marrow. 
In adults, the average fat content of red bone marrow within the 
vertebral body ranges from 25% to 30%. However, as individuals age, 
red bone marrow gradually diminishes, giving way to an increase in 
yellow bone marrow. On T1-weighted imaging (T1WI), yellow bone 
marrow exhibits high signal intensity, while on T2-weighted imaging 
(T2WI), it demonstrates slightly elevated signal intensity when 
compared to normal bone tissue associated with aging. In contrast, 
metastases display an affinity for red bone marrow. Consequently, upon 
the entry of tumor thrombi into the vertebral body, metabolic changes 
occur in the early stages, followed by morphological and structural al
terations that ultimately lead to pathological fractures [6,7]. 

Upon infiltration of the vertebral body by tumor thrombi, the initial 
damage manifests as the invasion of yellow bone marrow within the 
vascular wall or the interstitial space between cells, thereby giving rise 
to tumor tissue without disrupting the morphological structure of the 
vertebral body. In comparison to vertebral yellow bone marrow, tumor 
tissue exhibits a significant increase in water content, resulting in low 
signal intensity on T1WI, high signal intensity on T2WI, and high signal 
intensity on the short τ inversion recovery (STIR) sequence. These dis
tinctions distinctly differentiate tumor tissue from normal yellow bone 
marrow, exemplifying the fat replacement sign. As the disease pro
gresses, further structural damage ensues within the vertebral body, 
with compressive changes gradually extending to the surrounding soft 
tissues. Therefore, the present study aims to explore the potential of 
deep learning technology in augmenting the diagnostic accuracy of 
spinal metastases in CE-MRI scans [8]. 

2. Materials and methods 

2.1. Retrospective analysis of research objects 

From July 2020 to March 2022, the medical history of patients with 
spinal metastases admitted to Department of Orthopedics, the First 
Affiliated Hospital, Fujian Medical University included 81 patients with 
spinal metastases or primary malignant spinal bone tumor confirmed by 
pathology or clinical follow-up. CE-MRI was performed in each patient. 
Inclusion criteria: Patients with suspected spinal tumors before MRI, 
who did not undergo chemotherapy, radiotherapy, surgery, or needle 
biopsy, and who were diagnosed with spinal metastasis or primary 
malignant spinal bone tumor by pathological biopsy or clinical follow- 
up after MRI. Exclusion criteria: patients who had received treatment 
or needle biopsy prior to MRI examination, were unable to perform or 
refused enhanced MRI scan. The study included 81 patients, with a mean 
age of (60.2±11.4) years (range, 31–80 years), consisting of 42 males 
and 39 females. Among the patients, 36 had primary malignant spinal 
bone tumor and 45 had metastasis in other sites, including 14 cases of 
lung cancer, 9 cases of breast cancer, 7 cases of prostate cancer, 6 cases 

of thyroid cancer, 5 cases of liver cancer, and 4 cases of renal cancer. 

2.2. Instrument and scanning parameters 

A superconducting whole-body MR Scanner was used: Siemens
Trio3T and GEMR750.Sequences included sagittal T1WI, axial T2WI, 
sagittal T2WI, and fat-suppressed T2WI. When found on sagittal position 
lesions, using three-dimensional volume plaque gas check sequence 
(three-dimensional volumeinter polated breath- hold examination) to 
CE-axis a MRI lesions, Parameters: TR4. 1 ms, TE1. 4 ms, turning angle 
10◦, matrix 256×192, field of view 250 mm × 250 mm, layer thickness 
3 mm, time resolution 10–14 s, 12-layer image. Gadolinium speed- 
meglumine salt (Gd-DTPA) was injected with 0.1 mmol/kg through a 
high-pressure syringe at a flow rate of 2 ml/s, followed by 20 ml saline at 
the same flow rate. 

2.3. Lesion segmentation 

Region growing algorithm was used as a standard to perform seg
mentation [9], and the purpose of segmenting lesions was to further 
classify lesions by radiomics. Abnormal areas were found in sagittal 
view, and axial CE-MRI was performed, as shown in Fig. 1. 

2.4. Radiomics differential diagnosis 

Radiomics analysis was employed to extract and examine the texture 
features of contrast-enhanced magnetic resonance imaging (CE-MRI) 
parameters. The CE-MRI parameters were subjected to analysis based on 
the research conducted by Haralick and colleagues [10]. In total, 1316 
radiomic features were computed using a gray-level co-occurrence ma
trix (GLCM). To eliminate confounding factors, the maximum relevance 
minimum redundancy (mRMR) algorithm was employed. This algo
rithm aided in selecting the most informative features while minimizing 
redundancy. The relevance-redundancy indexes were used to index the 
extracted features accordingly. From the pool of features, the top ten 
were retained for further analysis. 

Subsequently, the least absolute shrinkage and selection operator 
(LASSO) logistic regression method was applied to identify the optimal 
features for constructing the radiomic signature. Through a ten-fold 
cross-validation process, features with nonzero coefficients were 
selected. These selected features were determined based on their pre
dictive relevance. To generate the radiomics score (Rad-score), a 
weighted sum of the chosen features was calculated. The Rad-score 
facilitated the assessment of the probability of bone metastasis. The 
radiomic signature was developed using the training cohort and subse
quently evaluated in the validation cohort. 

After the most relevant features was selected, a logistic regression 
classifier was then constructed based on these selected features. The 
accuracy of the classifier was evaluated using a 10-fold cross-validation 
method and the receiver operating characteristic (ROC) curve. After 
completing 10 tests and training the final diagnostic classifier, all case 
results were used to test the accuracy of the classifier. 

2.5. Deep learning for differential diagnosis 

This paper proposes a modification to the U-Net architecture by 
replacing two 3×3 convolutions with residual blocks [8] and adding an 
attention gate module to the skip connections (see Fig. 2). The model 
consists of an encoder on the left half, which extracts features of 
different dimensions of MRI images using residuals and pooling layers, 
and a decoder on the right half, which restores the high-level semantic 
feature map to the resolution of the original MRI image using residuals 
and up-sampling. The gate module combines the feature maps obtained 
from the encoder and decoder, allowing for the combination of more 
abstract features extracted through multiple convolutional layers with 
less abstract but higher resolution features. This results in a feature map 
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with a higher resolution while remaining abstract. The final output is 
obtained through convolution and classification. Overall, this modifi
cation improves the U-Net architecture for better segmentation perfor
mance in medical image analysis. 

This model takes grayscale images of size 512×512 as input with one 
channel. The MRI images were preprocessed with bilinear interpolation 
method to 512×512. 

The number of channels is increased from 1 to 16 after passing 
through a residual block. Then, a maximum pooling layer is used to 
halve the size of the feature map to 256×256. The decoder section of the 
model uses up-sampling to restore the feature map size from 32×32 back 
to the original size of 512×512. 

The residual block used in this model (see Fig. 3) employs a shortcut 
connection that directly maps the input to the output, allowing data to 

flow between different layers without negatively impacting the model’s 
learning ability. This avoids the problem of decreased prediction accu
racy due to gradient vanishing, while also avoiding an increase in 
computational complexity that can occur with the addition of 1×1 
convolution layers. Specifically, the input X to the residual block is the 
feature map obtained after maximum pooling or up-sampling at each 
stage of the model structure. The input X is then transformed into a 
residual map through two convolution layers with Batch Norm and 
ReLU activation. The shortcut connection uses a 1×1 convolution layer 
to match the feature dimensions, and the input X and output Y are added 
together for feature fusion. 

The gate module [11] used in this model is designed to enhance the 
feature maps obtained from low-level and high-level layers (see Fig. 4). 
As the low-level feature maps contain more location information and the 

Fig. 1. Region growth algorithm based on 
sagittal T2WI images for normalized axial 
CE-MRI segmentation. The lesion was found 
in the (A) sagittal position and was manually 
divided. Axial CE scan was performed on the 
(B) focal vertebra. The focal region outlined 
in the sagittal position (C) was transformed 
into the focal region in the axial position, and 
the red line region was used as the initial 
region of the region growth algorithm for 
segmentation. As shown in (D), in order to 
cover all lesions, the region growth algo
rithm expanded the initial region by five 
times and divided the image into several 
different partitions represented by different 
colors. (E) is reserved for and shows the 
partition that overlaps the red line area. (F) 
is a 3D area where the remaining partitions 
in all layers are fused. The pixel with the 
highest degree of enhancement in the (G) 3D 
region is the result shown by the seed region 
growth algorithm of the region, and the red 
region is the segmented tumor region. (For 
interpretation of the references to colour in 
this figure legend, the reader is referred to 
the web version of this article.)   
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high-level feature maps contain rich category information, the module 
uses the semantic information from the high-level feature maps to 
reinforce the feature weights of the brain tumor regions in the low-level 
feature maps. This helps to incorporate more detailed information into 
the low-level feature maps, thereby improving the segmentation accu
racy of the model. The module uses a calculation method as follows: 

ti = σ1(WT xi + WT gm(gi) + b1),

αi = σ2(WT ti + b2),

yi(c) = xi(c)⋅αi,

(2) 

In the formula, i is the pixel space size, c is the channel size, xi and gi 
are low-level and high-level feature maps respectively, Wx, Wg and W 
are linear transformation parameters, m is maximum poolization, b1 and 
b2 are offset terms, σ1 and σ2 are Relu activation function and Sigmoid 
activation function respectively. Since the sizes of xi and gi are incon
sistent, gi needs to go through a maximum pooling layer first to obtain 
more detailed information. The obtained results and xi are converted to 
the same size by a simple convolutional network respectively. The two 
matrices obtained after conversion are added to obtain intermediate 
output ti, which is then compressed by Relu and convolutional neural 
network. Then add nonlinearity using Sigmoid[12] to obtain attention 
weight αi(0 αi I 1). Finally, multiply the attention weight with the 
encoding matrix to obtain the weighted feature graph yi(c). Attention 

Fig. 2. Model structure diagram of the convolutional neural network.  

Fig. 3. Residual block of the deep learning model.  

Fig. 4. Attention gate block.  
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weight can play a role in the selection of low-level feature maps, so that 
low-level feature maps can have rich category information as well as 
more accurate location information.[13]. 

Following the fully connected layer, the Softmax activation function 
is employed for the classification of the input images [14]. To train our 
model, we utilized the Inception-ResNet-v2 convolutional neural 
network (CNN) architecture, employing the vast ImageNet dataset, 
which encompasses more than 1 million images. With a total of 164 
layers, this network demonstrates its ability to classify images into 
approximately 1000 object categories [29]. Consequently, the model 
becomes proficient in learning comprehensive attribute representations 
across a diverse range of images. Our selection of the architecture was 
based on thorough experimental evaluations and comparative analyses 
conducted with other prominent deep learning models. 

The initial ResNet block of our model incorporates convolutional 
filters and residual connections of varying sizes [30]. We specifically 
opted for the Inception-ResNet-v2 model due to its exceptional balance 
between model performance (accuracy) and resource requirements. 
Given the intended deployment of this model in edge environments, we 
deliberately avoided selecting extensive and bulky models that would 
hinder practical implementation. For a visual representation, refer to 
Fig. 5, illustrating the architecture of our custom model. The final 
structure of the Inception-ResNet-v2 network is depicted within the 
same figure [31]. 

Within the combined network, the stem network assumes the role of 
a shallow feature extraction module. It incorporates various types of 
convolutions in parallel, employing an asymmetric approach that in
volves splitting large convolution kernels into multiple smaller ones, 
such as 1×7 and 7×1 kernels. This unique configuration enables 
enhanced extraction of multi-level structural features, thereby aug
menting their diversity. Fig. 6 visually depicts the architecture of the 
stem network, providing a clear representation of its structure. 

Our workflow comprises image acquisition, data preparation, DL 
model building, and diagnostic feedback. Data preparation is a crucial 
step that influences the accuracy of the results. It involves operations 
such as equalizing the number of images in each class, simple filtering, 
and denoising. The datasets are divided into ten groups, for 10-fold 
cross-validation. The allocation of training set and test set was consis
tent with that of the previous radiomics to ensure the scientific validity 
of performance comparison later. Tuning experiments are conducted 
during the training process to optimize the network parameters. As the 
model learns, its classification output becomes more accurate. Finally, 
after aggregating and deploying the experiments, the DL network is 

tested on the unseen images in the test set. Fig. 7 provides a more 
detailed overview of the proposed system network. 

To enhance Inception-ResNet’s classification ability, a self-attention 
mechanism is introduced. To achieve this, a process known as channel 
attention is employed. This entails compressing each channel of the 
output feature map by performing global average pooling, resulting in a 
feature vector. Subsequently, the feature weight of each channel is 
learned through an excitation mechanism. This learned feature weight is 
then utilized to generate a weighted feature map, effectively adjusting 
the relative strengths of different channels within the feature map. This 
process enables the network to emphasize important channels and 
suppress less relevant ones, enhancing the discriminative power of the 
model. The self-attention mechanism considers inter-channel de
pendencies, leading to improved performance. Experimental results 
show that the computational overhead is acceptable compared to the 
performance improvement. [34,35]. 

In order to enhance the classification accuracy of primary malignant 
spinal bone tumor using contrast-enhanced magnetic resonance imaging 
(CE-MRI), a novel approach is employed. Instead of using 2D images, 3D 
cubes are utilized as input, as CE-MRI inherently consist of natural 3D 
image sequences. Previous research has demonstrated that utilizing 3D 

Fig. 5. Structure of Inception-ResNet-v2 network.  

Fig. 6. Structure of stem.  
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cubes yields improved classification performance, primarily due to the 
presence of dependencies between consecutive slices within the CE-MRI. 
To extract image features at a deeper level, a 3D convolutional neural 
network (CNN) is employed. This deep learning architecture enables the 
extraction of intricate and discriminative features from the 3D cubes, 
ultimately leading to enhanced classification accuracy. By considering 
the spatial information across the 3D data, the 3D CNN can effectively 
capture and utilize the contextual relationships between slices, resulting 
in more accurate classification of primary malignant spinal bone tumor 
in CE-MRI. The Inception-ResNet model is a decision tree-based 
ensemble model that, in this study, is intended to be used for the final 
classification. In order to control overfitting, a bootstrapping technique 
with replacement is applied to the data set, and each tree in the forest is 
trained on a randomly selected subset of features [15]. The output re
sults were represented by spinal metastases and primary malignant 
spinal bone tumor, the test results were cross-validated by 10- fold, and 
the accuracy was represented by the average value and range.[16]. 

3. Results 

3.1. Radiomics 

After applying the LASSO algorithm, the ten most significant features 
were selected to construct the radiomic model. The names of these 
features, along with their corresponding coefficients, are presented in 
Fig. 8. Moreover, Fig. 9 illustrates how the LASSO algorithm eliminated 
radiomics signatures in higher dimensions, ultimately retaining the ten 
most relevant features for further analysis. [17,18]. 

3.2. Deep learning 

To evaluate the performance of the proposed Inception-ResNet, we 
use several commonly used classification evaluation metrics, including 
accuracy (ACC), precision (PRE), recall (REC), F1 score and ROC. The 
evaluation process involves labeling and classification, and the in
dicators are calculated based on true positives (TP), false negatives (FN), 
false positives (FP), and true negatives (TN). The equations used to 
calculate ACC, PRE, REC, F1 score are shown in Eqs. (6) to (9). [19,20] 

Fig. 7. The total model architecture.  

Fig. 8. Selected radiomic features and their corresponding coefficients.  
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ACC =
TP + TN

TP + TN + FP + FN
(6)  

PRE =
TP

TP + FP
(7)  

REC =
TP

TP + FN
(8)  

F1score =
2 × PRE × REC

PRE + REC
(9) 

Table 1 contains additional information regarding the performance 
of the radiomic signature. In the training cohort, the radiomic signature 
achieved an area under the receiver operating characteristic curve 
(AUC) of 0.78, indicating a reasonably good discriminative ability. 
Similarly, in the test cohort, the radiomic signature exhibited an AUC of 
0.76, suggesting consistent performance in an independent dataset. The 
performance metrics used for segmentation model evaluation include 
pixel precision (PA), Intersection-Over-Union (IoU) and Dice. The 
related formula as follows in Eqs. (10) to (12). 

PA =
TP + TN

TP + TN + FP + FN
(10)  

IoU =
TP

TP + FN + FP
(11)  

Dice =
2 × TP

(TP + FN) + (TP + FP)
(12) 

TP, TN, FP and FN denote the number of true positives, true nega
tives, false positives and false negatives, respectively. The average pre
cision is the area enclosed by the recall-precision curve and the 
coordinate axis, and n represents the number of categories in the clas
sification. The calculation of average precision is complex, and single- 
valued limits for precision and recall can be set. 

3.3. Performance comparison of segmented MRI 

Table 2 presents the performance comparison of the two models. 
From Fig. 3, we can see that our model has high PA, IoU, and Dice values 
of 98.001%, 96.819%, and 98.384%, respectively, which is a better 

performance compared to egion growing algorithm. 
In Fig. 10, the red curve indicates the ROC curve of Improved U-Net 

method and the blue indicates the ROC curve of Radiomics model. The 
area between the curve and the lower right corner is the AUC, and the 
value of AUC represents the diagnostic performance. From Fig. 10, we 
can see that our method has superior diagnostic performance than 
Radiomics model. 

The experimental findings are exhibited in Table 3, delineating the 
Area Under the Curve (AUC), accuracy, precision, recall, and F1 score of 
the enhanced U-Net approach for the dataset, aiming to facilitate an 
exhaustive evaluation of its performance. 

4. Discussion 

4.1. Significance of this study 

Due to metastasis or complications, a large number of patients died. 
Early detection of the primary lesion can lead to active treatment. The 
most common place for cancer to metastasize is the liver, followed by 
the lungs and the bones. The spine is the most common site of bone 
metastasis, accounting for about 68% of bone metastases. Some studies 
have shown that 86% of cancer patients have found spinal metastases in 
autopsy [1–3]. Although CT-guided spinal puncture can be used to 
perform pathological biopsy of metastases, this high-risk invasive pro
cedure is a last resort. Under the condition of the patients with no clear 
primary focal history, usually as the preferred imaging examination 
project, but spinal metastases lack of specificity in morphology, can 
show the osseous or dissolve into osseous changes, also can be single or 
multiple, identify a lot of difficulties, so often clinically for possible 
primary focal place for screening a variety of imaging methods one by 
one, this includes expensive PET-CT. The search for primary lesions is 
time-consuming and time-consuming. If CE-MRI, a low-risk noninvasive 
means of spinal metastasis, can be used alone to predict the most likely 
source of primary lesions, and certain sites can be examined preferen
tially, the cost and time will be greatly reduced compared with the 
screening system one by one. CE-MRI is a highly useful diagnostic tool 

Fig. 9. Trace plot of coefficients of LASSO.  

Table 1 
Prediction accuracy of Radiomics model.   

AUC (%) ACC (%) PRE (%) REC (%) F1 score (%) 

Radiomics  0.76  0.74  0.71  0.70  0.72  

Table 2 
Shows the performance comparison of the two model segmentations.  

Model PA (%) IoU (%) Dice (%) 

Improved U-Net method  98.001  96.819  98.384 
Region growing algorithm  91.445  87.007  93.052  

Fig. 10. Comparison of the ROC curves of Improved U-Net and Radio
mics model. 
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for evaluating tumor angiogenesis, and has been extensively utilized in 
the diagnosis and preoperative staging of various types of cancers. 
Moreover, CE-MRI has been increasingly used in the diagnosis of spinal 
diseases, including primary spinal tumors such as myeloma, chordoma, 
and lymphoma [16–19]. In addition, it has also been found to be 
effective in diagnosing benign lesions such as spinal tuberculosis and 
giant cell tumor of bone [16,20], as well as in comparing spinal me
tastases between different cancer types, such as renal cancer with rich 
blood supply and prostate cancer with poor blood supply [21], and 
spinal metastases from other sources [22,23]. 

Radiomics can extract massive information in high-throughput im
ages and excavate high-level and deep-level features, which provide far 
more value for differential diagnosis of spinal tumors than morpholog
ical manifestations, and have been widely used to identify cancer sub
types and predict treatment effects and prognosis [24]. Radiomics 
requires the segmentation of tumors to extract features based on pixel 
histograms and advanced texture features. 

These parameters are combined for feature selection to construct the 
optimal diagnostic and predictive classifiers. Radiomics is usually used 
to analyze some conventional magnetic resonance sequence images, 
such as T1WI, T2WI, DWI, etc., but there are many studies on CE-MRI. 
For example, Wu et al. [25] used CE-MRI-based radiomics to judge 
breast cancer classification. There are also studies exploring the corre
lation between radiomics features based on CE-MRI and Ki-67 antigen 
expression in other forms of cancer [26,27]. There are no other studies 
on spinal metastasis at present. 

In this study, features were extracted and analyzed from CE param
eter maps: inflow, outflow, and peak. The region growing algorithm was 
used to standardize the 3D segmentation of lesions. Histogram features 
were analyzed first, and texture features were added to observe whether 
the diagnosis results were improved. The rapid development of deep 
learning depends on the breakthrough of algorithm theory in recent 
years, the expansion of data samples and powerful image processing 
hardware equipment. Deep learning has the ability to extract complex 
features from data, without requiring manual feature engineering, and 
can be trained using input data to achieve the goal of diagnosis. How
ever, there is a limited amount of research on using CE-MRI as input for 
deep learning models. One notable study on this topic involves the 
classification of breast cancer as benign or malignant using deep 
learning techniques [28]. 

In this study, 12 layers of CE-MRI images were collected and 12 
groups of images were uniformly planned. U-Net segments the image, 
and then evaluates it with the corresponding evaluation method, such as 
DICE. 

4.2. Analysis of research results 

In this study, CE-MRI parameters were calculated to obtain the CE- 
MRI parameter map. The diagnostic accuracy of radiomics is 0.7445, 
and the results showed that adding texture features did not have much 
value in improving the diagnostic accuracy. In order to compare deep 
learning model with radiomics model, same CE-MRI data were used to 
validate the deep learning performance. The diagnostic accuracy of deep 
learning model was 0.9856. The results show that using deep learning 
model and CE-MRI can achieve high accuracy. 

Machine learning technology [29] for AI based medical image 
diagnosis [30] and physiological assessment of spinal metastases can be 
implemented to enhance medical analysis. It may be worthwhile noting 
that medical image segmentation using deep neural networks [31,32] is 

also vital in medical image analysis. Furthermore, modelling of spine 
related cells coupled with an understanding of the cellular interactions 
[33] may be of high medical informatics value in understanding tumor 
development and how it affects spinal structures, and other spinal 
related issues in orthopedics [34]. 

The use of advanced deep learning segmentation techniques has the 
potential to enhance medical diagnosis, particularly in the evaluation of 
spinal metastases. This in turn could have a significant impact on the 
effectiveness of deep learning for physiological analysis in this area of 
research. 

Using machine intelligence applied to advanced medical diagnostics 
[35,36] specifically based on biomedical imaging [37], the accuracy of 
expert diagnosis can be enhanced, which can help save lives. 

The main limitations of the study were the size and diversity of the 
sample. The study only included 81 patients, 36 of whom were primary 
malignant spinal bone tumor and 45 had metastasis, and the small 
sample size may affect the stability and reliability of the study results. In 
addition, the diversity of the sample is also limited and may not fully 
reflect the situation of different populations. Therefore, the conclusions 
of this study need to be further studied and verified. 

5. Conclusion 

The use of CE-MRI in diagnosing spinal metastases is crucial due to 
its ability to provide detailed information about tumor angiogenesis and 
enhance the visualization of lesions. The developed segmentation model 
demonstrated its potential in assisting radiologists and clinicians in 
identifying and delineating metastatic lesions, which is essential for 
treatment planning and monitoring disease progression., this study 
focused on contrast-enhanced magnetic resonance image (CE-MRI) 
segmentation for the diagnosis of spinal metastases using an improved 
U-Net and Inception-ResNet architecture. In conclusion, the results 
demonstrated the effectiveness of the proposed method in accurately 
segmenting metastatic lesions in the spine. By incorporating the U-Net 
and Inception-ResNet networks, the model achieved improved perfor
mance in terms of segmentation accuracy and efficiency. The applica
tion of an improved U-Net and Inception-ResNet for CE-MRI 
segmentation in the diagnosis of spinal metastases shows promising 
results and potential for further advancements in computer-aided 
diagnosis and treatment planning for patients with spinal metastases. 
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