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Despite the large volume and extensive range of obesity research, there is
substantial disagreement on the causes and effective preventative strategies.
We suggest the field will benefit from greater emphasis on integrative
approaches that examine how various potential contributors interact,
rather than regarding them as competing explanations. We demonstrate
the application of nutritional geometry, a multi-nutrient integrative frame-
work developed in the ecological sciences, to obesity research. Such
studies have shown that humans, like many other species, regulate protein
intake more strongly than other dietary components, and consequently if
dietary protein is diluted there is a compensatory increase in food
intake—a process called protein leverage. The protein leverage hypothesis
(PLH) proposes that the dilution of protein in modern food supplies by fat
and carbohydrate-rich highly processed foods has resulted in increased
energy intake through protein leverage. We present evidence for the PLH
from a variety of sources (mechanistic, experimental and observational),
and show that this mechanism is compatible with many other findings
and theories in obesity research.

This article is part of a discussion meeting issue ‘Causes of obesity:
theories, conjectures and evidence (Part II)’.
1. Introduction
The global rise in obesity is both among the simplest and most complex of
issues in public health. It is, on the one hand, straightforwardly true that
excess body fat can accumulate only if more energy is eaten than is expended.
On the other hand, an immense amount of research has produced a plethora of
information and theories, but there is little consensus about why such energy
imbalance develops or what to do about it [1].

The breadth spanned by the papers in this special issue, and other perspec-
tives, attests to a vibrant, multi-disciplinary obesity research community.
However, the lack of consensus and failure to tackle what has been described
by the World Health Organization as the largest health threat facing mankind
raises the question of what is limiting progress in the field. It is, of course, inevi-
table that some results cannot be replicated, some theories will turn out not to
be useful, and that important discoveries await further research. We believe,
however, that a more fundamental issue is a tendency to regard existing per-
spectives on obesity as separate, unrelated or even competing explanations
[2], rather than potentially inter-related co-contributors to the problem in a com-
plex ecosystem of interacting biological, behavioural, cultural and societal
factors.

An overarching aim in this paper is to advocate for the more widespread
and explicit adoption of integrative perspectives in obesity research. Integrative
perspectives reflect the reality of a problem that has emerged from a complex
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system comprising components from the molecular to behav-
iour, culture, global trade and geopolitics, and emphasize
potential connections and interactions among the many rel-
evant research approaches, rather than their differences and
incompatibilities. Importantly, integrative framing can help
deal with the fundamental but vexatious issue in obesity
research of defining the key concept of ‘causation’ [3,4],
through recognizing that systems outcomes have many inter-
acting causes and what is considered ‘the cause’ or ‘primary
driver’ of obesity depends both on the question being asked
and the context for asking it. For example, it is equally true
that obesity is ‘caused’ by energy imbalance and the aggres-
sive marketing of ultra-processed foods (UPF) [5] and it
would be futile to argue that one or the other is ‘responsible’.
However, it would not be futile to consider which cause
is most relevant to the rise of the obesity epidemic, or to
inter-individual variation in susceptibility to obesity.

We present an integrative framework derived from the
ecological sciences, nutritional ecology, and a specific integra-
tive tool, nutritional geometry, and demonstrate how these
have been applied to examine the causes of obesity. A core
contribution of nutritional ecology to obesity research is the
phenomenon of protein leverage, in which the strong
human appetite for protein drives increased intake when
dietary protein is diluted [6,7]. We will first introduce our
ecological systems framework and then review evidence for
protein leverage and its relevance for obesity. The fact that
this evidence is consistent across cellular signalling mechan-
isms, randomized control trials and population studies
suggests the capacity of protein leverage to integrate across
organizational levels and scales within the obesity system.
In the final section, we explicitly demonstrate this integrative
capacity through examining potential links between protein
leverage and diverse issues in obesity research, including
several of the issues and perspectives discussed in other
contributions to this volume.
2. Nutritional ecology and nutritional geometry
The field of nutritional ecology is an integration of nutritional
and ecological sciences that developed explicitly to focus on
the interface between biological and ecological aspects of
nutrition [8–10]. To deal with the complexity of this interface,
nutritional ecology has been framed in systems thinking
where the core entities are the organism, the environment,
diet and their respective components and interactions [11].
Developed in the context of non-human animals, the nutri-
tional ecology framework is increasingly being applied to
humans [12,13].

Nutritional geometry is an analytical framework (hence-
forth NGF) for examining how biology interfaces with food
environments via nutrition [10,14]. Since the general logic
of NGF has been described in several publications (most
recently [15]), here we restrict our discussion to some key
points that predispose this approach to integrative analysis.
At the core of NGF models is a geometric representation of
nutrients and other dietary components, which is multi-
dimensional (i.e. mixture-based) and can thus partition the
individual and interactive (e.g. synergistic or modulating)
effects of these components. In addition to this horizontal
integration of dietary components, mixtures are modelled
hierarchically in that components can be decomposed into
sub-components (e.g. dietary carbohydrate into its sub-cat-
egories) [16] or integrated into higher-level mixtures (e.g.
macronutrients into foods, foods into meals, meals into diet
and ultimately dietary patterns) [12]. Adjunct variables that
are nominally associated with dietary mixtures but are
expressed in different units (e.g. expression levels of a gene,
titres of a hormone, energy intakes or body composition)
can be represented in geometric models as response surfaces,
where the topography describes the parameters of the associ-
ation. These properties—horizontal integration, vertical
integration and incorporation of adjunct variables—make
NGF well suited to building integrative models that en-
compass interactions among nutrients and biological and
environmental factors relevant to nutrition.
3. The power of protein
NGF studies have demonstrated that protein is a particularly
influential component in the nutritional ecology of taxa from
insects to primates [14]. Many species of non-human pri-
mates, for example, maintain daily protein intakes within
narrow limits, allowing fat and carbohydrate to vary more
widely with ecologically imposed variation in the macronu-
trient ratios of available diets—a pattern of macronutrient
regulation termed ‘protein prioritization’ (figure 1a,b).
Known instances include spider monkeys [19], black howler
monkeys [20], golden snub-nosed monkeys [17] (figure 1d ),
Kenyan blue monkeys [18] (figure 1d), black-and-white
ruffed lemurs [21], orangutans [22] and chimpanzees [23].

Parenthetically, as shown in figure 1a,c versus b,d, two
graphical formats are used for examining protein priori-
tization, which are interconvertible but provide different
insights. Bi-coordinate intake plots (figure 1a,c) are especially
helpful in demonstrating asymmetrical intake patterns, for
example where protein prioritization occurs on one side of
the intake target but not on the other (discussed in [7]). We
have documented numerous examples of asymmetrical prior-
itization patterns previously in comparative studies across
species [14]. Fitting a power function across the range of diet-
ary percentage protein (figure 1b,d) shows the nonlinear
relationship between dietary protein density and absolute
intakes and provides a graphical depiction of the power
regression model used to test the strength of protein prioritiza-
tion [7,24]. In figure 1b,d, absolute intakes of macronutrient
energy are plotted on the y-axis, but it is also instructive to
plot absolute intakes in relation to food bulk (g). As discussed
further below, this enables the interactive effect of protein regu-
lation and energy density on energy intake to be modelled.

In humans, the rising prevalence of obesity across the past
60 years has been attributed principally to excess energy
intake rather than a decline in energy expenditure (although
see [25]). Fats and carbohydrates have provided the major
source of these excess calories, with the relative contributions
of these two macronutrients varying across populations.
Meanwhile, whereas the food sources of dietary protein
have changed over time, protein intake has remained much
more stable, both as a percentage of total energy intake and
in terms of absolute amounts eaten [6,24,26–28]. In the
most proximate sense, therefore, excess calories from protein
have not caused global obesity. Paradoxically, however, an
integrative systems perspective suggests that the very
constancy of protein intake indicates that protein may have
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Figure 1. Theoretical depiction of the protein prioritization pattern of macronutrient regulation and empirical examples from non-human primates. (a) The red target
(intake target) represents the macronutrient composition of the diet which the feeding regulatory systems compose in balanced food environments, and the red radial
line shows the macronutrient ratio of a food that contains the nutrients in the target balance. Black radials show macronutrient imbalanced diets that are too low
(top left) or too high (bottom right) in energy from protein relative to fat and carbohydrates. The vertical dashed red line shows ‘protein prioritization’, in which the regulatory
systems maintain protein intake constant at the target level when eating macronutrient imbalanced diets, and consequently over-eat or undereat fat and carbohydrate (hence
total energy) relative to the target intakes on low- and high-protein diets (protein leverage). The black diagonal dashed line shows the regulatory pattern in which there is no
protein leverage—in this case, energy intake is maintained constant across the range of dietary macronutrient ratios. Protein leverage need not be complete (protein intake
constant), but partial, in which there are smaller energy excesses (green area) and deficits (pink area) (modified from [7]). (b) A different depiction of complete protein
leverage, shows that if protein intake is maintained constant (complete protein leverage) energy intake increases exponentially with decreasing dietary percentage protein
(modified from [6]). (c) Captive golden snub-nosed monkeys (Rhinopithecus roxellana) show protein prioritization both across seasons (colours) and within seasons (from
[17]). (d ) In Kenyan blue monkeys (Cercopithecus mitis) macronutrient intakes conform closely to the predictions of complete protein prioritization. Blue symbols, observed
daily protein intakes; red symbols, observed daily non-protein energy intake; black exponential curve, predicted non-protein energy intake under complete protein leverage;
red exponential curve, regression for observed non-protein intakes. Vertical dashed line represents the mean proportion of protein to non-protein energy (modified from [18]).
Credit goes to: Charles J. Sharp/Wikimedia Commons.
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played a fundamental role in causing obesity via its
interaction with other system components.

Constancy is a hallmark of physiological regulation [11]. If
intake of protein is both regulated and its regulation is prior-
itized over (i.e. stronger than) regulation of other dietary
components, then excess energy intake will result when
protein becomes diluted in the food supply by fats and carbo-
hydrates [6] (figure 1a,b). Because protein typically comprises
around 15% of total energy intake (e.g. [26,28]), regulating
absolute protein intake requires that even a small decline
in the proportion of protein in the diet ‘leverages’ a dispro-
portionately large increase in food intake (figure 2a). If
protein is diluted with low-energy fibre and/or water, then
such leveraging of food intake will not result in excess
energy consumption, but when protein is diluted by
energy-dense fats and carbohydrates, increased food intake
will translate into excess calorie intake, with attendant
increased risks of overweight and obesity (figure 2b,c).

There are thus three features necessary to demonstrate
that protein leverage has contributed to variation in energy
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intake: (i) that the intake of protein is regulated, i.e. that there
is a specific appetite for protein; (ii) that the regulation of
protein is prioritized over the regulation of fat and carbo-
hydrate intake (figure 1a,b); and (iii) that in relevant
ecological settings variation in the dietary concentration of
protein relative to fat and carbohydrate correlates negatively
with energy intake. We discuss these in turn.
(a) Specific appetite for protein
The concerted study of nutrient-specific appetites began with
Curt Richter’s work in the early 1900s [35], but the major
focus in the field of appetite control has been on the control
of energy intake rather than specific nutrients. Nonetheless,
there is now abundant behavioural evidence that nutrient-
specific appetites for protein, carbohydrate, fat and at least
two mineral micronutrients, sodium and calcium, are
widespread, being demonstrated in organisms spanning
acellular slime moulds, insects, fishes and mammals (e.g.
[14,36–40]). Laboratory experiments and field observations
using nutritional geometry have shown that animals can
regulate and defend multi-nutrient intake targets by a combi-
nation of selecting among foods differing in nutrient balance
and adjusting the amounts of each food consumed [14,41].

Such studies indicate that nutrient-specific appetites work
together to guide nutrient balancing in appropriate food
environments, but also that nutrient-specific appetites and
their mechanisms compete for access to the behavioural
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final common path [42] when the food environment con-
strains or subverts nutrient balancing. The perspective of
competing nutrient-specific appetites casts a different light
on phenomena such as leptin and insulin resistance in the
brain. Where energy intake is excessive on low-protein,
high-energy diets despite elevated anorexic signals such as
leptin and insulin, perhaps this reflects neuronal competition
from stronger protein signals, rather than a pathological fail-
ure of response to the ineffective signals; hence, ‘ignoring’
rather than ‘resistance’.

There has only been one experimental study designed using
NGF principles to test for nutrient balancing in humans ([34],
discussed further below), showing target regulation for protein
and carbohydrate during a 3-dayperiod inwhich subjects could
select between an array of foods comprising three protein-to-
carbohydrate ratios. Griffioen-Roose et al. [43] demonstrated in
a randomized crossover experiment that a 14-day pre-treatment
on a low-protein diet (5%) subsequently elicited specific selec-
tion of high-protein, savoury-flavoured foods from a large
array of foods offered ad libitum, leading to a compensatory
increase in protein intake without a change in total energy
intake. This increased preference for savoury food cues after
low-protein feeding was accompanied by increased brain
activity, measured by functional magnetic resonance imaging,
in the reward-related inferior orbitofrontal cortex specifically
in response to stimulation with savoury food cues [44].

Whereas nutrient-specific appetites are well character-
ized behaviourally and appear to be universal, less is
understood about their mechanisms, although this situation
is changing with active research underway in model systems
such as Drosophila and rodents. Mechanisms underlying
nutrient-specific appetites involve both learned and innate
responses, the latter including sensory modulation, dedi-
cated central neural pathways and peripheral feedbacks
(e.g. [39,40,45–48]).

Circulating levels of amino acids are the principal nutrient
signals of the protein need state, acting via the brain [48–50].
Endocrine signals of protein state are also expected to play a
role in protein appetite control, probably deriving from lean
tissues and being related to some combination of protein
breakdown and disposal [14,50]. The idea that a powerful
and hitherto underappreciated appetite signal derives from
lean mass is explored further by Hopkins et al. [51].

Fibroblast growth factor 21 (FGF21) was the first discov-
ered endocrine signal of low-protein state (protein hunger)
[52]. Circulating FGF21 is elevated in mice in response to
protein restriction independently of total energy intake [53].
FGF21 is secreted primarily by the liver and crosses
the blood–brain barrier where it acts centrally to regulate
feeding behaviour and metabolic physiology [54,55]. Under
pharmacological administration of FGF21, mice and rats
increase total food intake on a fixed diet, and exhibit a shift
in macronutrient selection when offered a choice of foods,
selectively increasing protein intake and demonstrating
reduced sweet preference (at least when animals are simul-
taneously carbohydrate replete) [56–63]). When mice can
select between foods of different macronutrient compositions,
FGF21 administration has little or no effect on total energy
intake, indicating that increased intake on no-choice,
low-protein diets is driven by compensatory feeding for
protein, rather than being a secondary response to FGF21-
induced elevated energy expenditure [57,58,62,64]. Rather,
it would appear that elevation of energy expenditure is a
mechanism for voiding excess ingested calories driven by
protein leverage, thereby maintaining body composition
despite hyperphagia.

Results from rodents are consistent with experimental and
genome-wide association data in humans, showing that FGF21
is elevated under low-protein intakes (e.g. [52,54,65]) and that
genetic variants are linked to macronutrient intake [66,67].

Whereas FGF21 is a likely candidate for a low-protein
endocrine signal, its dose–response characteristics indicate
that it cannot act as a signal for excess protein intake (protein
satiety). This follows because FGF21 increases below a low-
protein intake threshold, above which it is essentially
absent in circulation (fig. 1C in [53]). Given that protein
intake is regulated under both high and low-protein dietary
conditions, it follows that there are other protein appetite sig-
nals responsible for limiting excess protein intake. Proteomic
analysis guided by nutritional geometry in mice offers a
means to identify potential candidates with suitable dose–
response characteristics and macronutrient specificity [68].
Signals inhibiting high-protein intake may relate to the
search for unknown signals inhibiting overfeeding in general,
as discussed in this issue by Clemmensen and co-workers
[69]. Studies have shown differential effects of ingested
protein and carbohydrate on gastrointestinal hormones.
Protein ingestion preferentially favours gastrin and chole-
cystokinin, whereas carbohydrate ingestion preferentially
favours gastric inhibitory polypeptide and glucagon-like pep-
tide 1 (GLP-1). Interestingly, GLP-1 (and GLP-1 agonists) in
turn act on feeding centres in the brain, promoting hepatic
FGF21 production via mechanisms including adrenal cortex
production of glucocorticoids [70]. One potential candidate
as a systemic protein satiety hormone is glucagon, which
has been implicated in the control of macronutrient selection
[71] and contributes to a liver-islet alpha cell axis for the con-
trol of plasma amino acid levels, in which a high plasma
amino acid level induces alpha cell hyperplasia and, in
turn, increased glucagon production to stimulate amino
acid breakdown [72]. Another potential candidate is insulin,
which like amino acids, acts on orexigenic neuropeptide Y/
agouti-related peptide neurons to inhibit their activity [73].
(b) Protein prioritization
There have been three randomized control trials (RCTs) expli-
citly testing for protein prioritization as a mechanism in
leveraging energy intake in humans [32–34] (figure 2b,c).
Additionally, an earlier 6-day, in-house, single-blind pilot
study [74] provided results from 10 subjects that were consist-
ent with protein leverage but did not attempt to disguise the
nutritional composition of foods or match treatment menus
for variety and palatability.

Gosby et al. [32] measured food intake and hunger ratings
in 22 lean subjects studied over three, 4-day periods of single-
blind in-house dietary manipulation at a Sydney University
sleep centre. Each 4-day period provided a fixed menu con-
taining 10%, 15% or 25% energy as protein (fat was fixed at
30% and carbohydrate was varied to maintain equivalent
energy density), with these three macronutrient ratios allo-
cated in random order to each participant. Menus
comprised 28 foods, each of which had been designed in
three versions (10%, 15% or 25% protein) that were matched
for palatability [75]. Some foods were designed to be sweet
and others savoury independently of macronutrient content.
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As a result, energy density, palatability, availability, variety
and sensory quality were matched across macronutrient treat-
ments. Lowering the per cent protein of the diet from 15% to
10% resulted in 12% higher total energy intake, a difference
that was apparent from the first day of treatment and
remained consistent thereafter (figure 2c). Tellingly, 70% of
this increased calorie intake came from subjects snacking
between meals, favouring savoury-flavoured over sweet-fla-
voured snack foods. Such protein-seeking behaviour on
10% protein was consistent with the results of Griffioen-
Roose et al. [43,44] discussed above and was accompanied
by increased circulating FGF21 [65]. This result illustrates
the susceptibility to ‘protein decoys’—low-protein foods
designed with savoury flavour characteristics which can
trick people into ingesting calories while leaving the protein
appetite unsatisfied [6].

Increasing protein from 15% to 25% did not result in a
decline in energy intake (figure 2c), although on the fourth
day of the trial there was a greater increase in the hunger
score between 1 and 2 h after the 10% protein breakfast com-
pared with the 25% protein breakfast. Even though a
flattening of the relationship between intake and per cent
protein is expected at higher values of per cent protein
(owing to the nature of a power function; figure 1b), the lack
of a detectable difference in intake between 15% and 25%
was not as predicted.

Campbell et al. [34] elaborated upon the Sydney study
design in a single-blind, in-house trial conducted at the Uni-
versity of the West Indies in Jamaica. Sixty-three adult
survivors of marasmus and kwashiorkor were recruited to
the 2-phase trial. In the first phase, participants were free
to select for 3 days from foods containing 10%, 15% and
25% protein. Thirty-one culturally relevant experimental
foods were designed, each in one of three macronutrient ver-
sions [74]. Subjects were then randomized in the second
phase to one of three diets with protein fixed at 10%, 15%
or 25% for 5 days. During the self-selection phase, both mar-
asmus and kwashiorkor groups selected a similar diet
composition, comprising 14.7% protein, which differed
highly statistically significantly from the null expectation
(16.7%) if subjects had chosen indiscriminately. This result
indicates the selection of a target intake for both protein
and carbohydrate (fat was fixed at 30% energy). In the
second phase, energy intake increased with decreasing
dietary per cent protein, being greatest for 10% protein, inter-
mediate for 15% protein and, unlike in the Sydney trial, least
for 25% protein diet (figure 2c). Again, survivors of
kwashiorkor and marasmus could not be distinguished.
Body weight changed across phase 2 as a positive function
of energy intake.

Martens et al. [33] conducted a randomized, single-blind
crossover study with 79 subjects provided with ready-made
main meals eaten at the University of Maastricht and ad libi-
tum access to low-protein (5%) snacks at home. Meals during
each 12-day treatment period comprised 5%, 15% or 30%
protein (fat was fixed at 35% of total energy) from dairy or
plant sources. Irrespective of protein type, total energy
intake was significantly lower in the 30% protein treatment,
but the 5% and 15% treatments did not differ (figure 2c).
The failure of subjects to increase energy intake on the 5%
protein diet, despite presumably being protein-hungry
[43,44], suggests that protein leverage does not operate at
very low dietary protein concentrations. As discussed
above, in the case of perfect leverage, maintaining absolute
protein intake constant would require food intake to increase
exponentially with decreasing per cent protein [6,7,24] which
must inevitably impose a break point for the protein leverage
response at some lower per cent protein. We have proposed
that this threshold lies somewhere below 10% protein in
humans, which coincides with the lowest level of protein
seen in the diets of food-sufficient populations and below
which protein intake is considered to be inadequate [76].
Similar break points at around 5% protein have been reported
repeatedly for rodents (e.g. [77–80]).

Collectively, the results of the RCTs suggest that protein
leverage occurs across the range from 10% to 30% protein,
with 5% protein falling below the break point (figure 2c).
Leverage for protein is not complete, with lambda values
for a fitted power function being around −0.3 (a value of
−1 indicating complete leverage) suggesting, as expected,
that other factors interact with protein leverage to influence
energy intake.

A common feature of the three studies is that intake
responses to dietary protein were apparent within 24 h and
remained consistent for at least 12 days (the longest period
tested). In this respect, the results accord with an earlier
study by Weigle et al. [81], in which 19 subjects were tested
in sequence on a 15% protein weight maintenance diet for
two weeks, a 30% protein diet for two weeks matched in cal-
orie intake to the weight maintenance diet and then an ad
libitum 30% protein diet for 12 weeks. Carbohydrate was
fixed at 50% in all diets, which were also matched for
energy density. Energy intake decreased within 24 h on the
high-protein, ad libitum diet and remained depressed
across 12 weeks, even though orexigenic signals were elev-
ated (reduced leptin levels, increased ghrelin).

Although not testing protein leverage explicitly, numerous
studies in addition to Weigle et al. [81] have manipulated dietary
protein and estimated ad libitum intake using various exper-
imental methodologies over periods from several days up to 12
months. In an apparent exception where energy intake did not
vary inversely with dietary protein density Blatt et al. [82]
measured intakes over 24 h of subjects fed two meals (lunch
and dinner) manipulated to contain 10%, 15%, 20%, 25% or
30% energy from protein. The authors suggest that more sus-
tained changes in protein may be needed to see the effects of
adjusting protein intake, a conclusion consistent with the effect
reported in other experimental studies.

To explore the relationship between dietary per cent
protein and ad libitum intake more broadly, Gosby et al.
[30] compiled data from 38 published experimental trials,
comprising 116 dietary compositions. Collectively, these
trials encompass variation in per cent protein spanning 8–
54% of total energy, 2–72% carbohydrate and 11–66% fat.
The compiled data provided an opportunity to describe the
individual and interactive effects of dietary protein, carbo-
hydrate and fat on total energy intake. After controlling for
confounders such as experimental methodology, body mass
index and sex of subjects, per cent dietary protein was nega-
tively associated with total energy intake, irrespective of
whether carbohydrate or fat was the diluent of protein. This
relationship was strongly apparent from 10% to 30% protein,
the range which includes all known healthy human diets.
Further studies with 22 extra diet compositions were
included in an updated analysis by Raubenheimer et al. [31]
(figure 2b).
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(c) Variation in dietary protein
The third feature necessary for examining a role for protein lever-
age in energy intake—that ecological variation in the percentage
of energy contributed by protein is negatively associated with
energy intake—differs in an important respect from the previous
two. Both the existence of a protein-specific appetite and its dom-
inance (protein prioritization) are properties of the organism and
best examined in controlled experimental settings using specifi-
cally manipulated dietary compositions. The question of how
these properties engage with variation in real food environments
cannot, however, be examined in laboratory settings alone, but
requires studies of how appetite systems interact with the
many dimensions of dietary and other sources of variation in
relevant ecological settings.

Several studies have tested, or provided data capable of
retrospectively testing, predictions of the protein leverage
hypothesis (PLH) in ecological settings. The DioGenes and
PREVIEW large randomized controlled trials demonstrated
improved weight loss maintenance over a 24-week period
and reduced hunger scores over 148 weeks, respectively, in
individuals prescribed high-protein, low-glycaemic index
diets [83,84]. Austin et al. [85] examined longitudinal trends
in macronutrient and energy intakes using 24 h recall data
from the USA National Health and Nutrition Examination
Survey conducted in the periods 1971–1975 and 2005–2006.
While not specifically testing PLH, the finding that dietary
percentage energy from protein decreased and energy
intake and adiposity increased over the survey period is con-
sistent with the hypothesis [30]. Martinez-Cordero et al. [86]
examined data for 2031 women from the Cebu Longitudinal
Health and Nutrition Survey to test the prediction that
protein intake remained more constant over time than fat
and carbohydrate across five consecutive 24 h recall measures
(1986, 1994, 1998, 2002 and 2005). As predicted, the rate of
change in protein intake was lower than fat and carbo-
hydrate, even when controlling statistically for household
income and urbanicity index. Bekelman et al. [87] used
cross-sectional data from 135 women in Costa Rica to exam-
ine whether protein leverage could explain socioeconomic
(SES) variation in obesity. Consistent with PLH, absolute
protein intake did not vary by SES; in middle and high-SES
groups protein intake was less variable than fat and carbo-
hydrate; and percentage of energy from protein (%EP) was
inversely associated with total energy intake (TEI) across
the full sample and among middle and high-SES groups.
Not consistent with PLH, is there was no relationship
between %EP and TEI among low SES women. However,
variation in energy intakes was highest among low-SES
women, as was the proportion who failed to meet protein
requirements, leading the authors to suggest that food
insufficiency might explain the difference in this group.

Recent studies have explicitly tested the prediction of
PLH that energy intake varies inversely with dietary protein
in population settings. Saner et al. [88] examined data for 137
adolescents with obesity from the Childhood Overweight
BioRepository of Australia cohort. Results showed that total
energy intake correlated negatively with dietary percentage
protein, following a power function as predicted by PLH
[6,7,24]. A similar analysis was done by Saner et al. [89], for
a sample of children participating in the Physical Activity
and Nutrition in Children (PANIC) study. In this case, data
were collected longitudinally at average (s.d.) age 7.56 (0.4),
9.8 (0.4) and 15.8 (0.4). Dietary data taken from 4-day food
records showed that at all time points energy intakes were
inversely related to per cent energy from protein following
power functions. Likewise, Blumfield et al. [90] showed in a
prospective cohort study that protein leverage during
pregnancy might explain differences in neonate body compo-
sition. Recently, Kebbe et al. [91] reported finding no strong
evidence for protein leverage during pregnancy in another
cohort study. However, this conclusion was not based on
analysis of the relationship between energy intake and the
proportion of energy as protein in the diet, as is required to
test for protein leverage (see figure 1).

Grech et al. [13] performed amore detailed ecological analy-
sis on the Australian National Nutrition and Physical Activity
Survey using proportions-based nutritional geometry, which
allows the effects of variation in three-component macronutri-
ent mixtures to be examined in two-dimensional plots [92,93].
Energy intake increased with decreasing dietary protein, as
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predicted by PLH (figure 3a). This effect was strongest on diets
in which fat diluted protein, suggesting that high energy den-
sity might interact with protein leverage to drive excess
energy intakes. Energy density alone cannot account for high
energy intakes, however, because energy intakes increased
with decreasing protein also on diets low in fat where the pre-
dominant macronutrient diluent of protein was carbohydrate
(fig. 2C in Grech et al. [13]). Furthermore, the dry weight of
food eaten also increased with decreasing dietary protein
(figure 3b), which as explained above is indicative of protein
leverage. These results suggest that protein dilution leverages
food intake, and the consequences for energy intake are depen-
dent on both the percentage protein and energy density of
the diet.

The same effect was seen in a recent human clinical trial
comparing a low-fat, low-energy density (0.96 kcal g−1),
plant-based diet with a high-fat, high-energy (1.9 kcal g−1)
animal-based ketogenic diet [29] (figure 2a). In terms of per
cent energy, protein was matched at approximately 14.5%
between the diets, but because of the difference in energy
density between the two diets, protein concentration differed
per gram of food (3.5% protein by wet weight in the plant-
based diet versus 7.5% in the ketogenic diet). Indicative of
protein leverage in response to this dilution of protein
within the food matrix, ad libitum food intake was 1.45
times (667 g) higher on the plant-based diet, yet owing to
the lower energy density, total calorie intake was lower on
the low-fat diet. Had food intake doubled on the plant-
based diet (i.e. 1.3 kg more food eaten each day), protein
and energy intakes would have been the same as on the keto-
genic diet. Because food intake did not double, energy intake
was greater on the ketogenic than the plant-based diet, pro-
viding an important illustration of how protein leverage
and dietary energy density interact. A similar phenomenon
has been reported in rodents [94], where, for example,
dilution of protein with indigestible fibre stimulates a com-
pensatory increase in food intake without a commensurate
increase in energy intake, whereas dilution of protein by fat
results in increased food intake and maximal energy intake.

Since the analysis of diet surveillance and other sources of
population dietary data continues to attract criticism, some-
times vehemently, it is worth mentioning the limitations
and benefits of ecological studies such as those discussed
above. A common error is to infer that such studies are
weak attempts at testing for protein leverage because obser-
vational data can only establish correlation, not causation,
and population data are riven with confounds. This is true,
but we stress that the primary purpose of these studies is
not to test protein leverage; that is done in experimental set-
tings (as above). Their purpose is to test predictions of the
specific hypothesis that in relevant ecological settings protein
leverage contributes to variation in energy intake (the PLH),
and identify potential mediators, moderators and modulators
(e.g. energy density, other dietary components, physical
activity, food insecurity [95]) for further examination in con-
trolled experimental settings. It is, nonetheless, true that
detecting the predicted relationship between dietary protein
density and energy intake does supplement evidence from
RCTs for the existence of protein leverage, especially if poten-
tial confounds are critically examined using statistical and
modelling procedures (e.g. [96]).

Perhaps the greatest benefit of population studies is that
they enable potential ecological drivers and interventions to
be identified, for example, the foods responsible for diluting
dietary protein and the environmental factors that lead to
excessive consumption of such foods.
4. Ecological analysis: what is causing protein
dilution?

Two recent studies have tested the predictions of PLH in
population settings and simultaneously examined potential
ecological drivers. Martínez-Steele et al. [97] analysed
NHANES 2009–2010 dietary recall data to test the hypothesis
that consumption of UPF is associated with dietary protein
dilution and drives energy over-consumption via protein
leverage. Results showed that dietary protein decreased
across quintiles of increasing per cent UPF contribution to
daily energy intake, supporting the prediction that highly
processed industrial foods are associated with the dilution
of dietary protein with fats and carbohydrates (figure 4a).
Absolute macronutrient intakes tightly conformed to the
predictions of PLH, with protein varying little but fat,
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carbohydrate and total energy increasing with decreasing
percentage energy from protein.

Similar results were obtained in the analysis mentioned
above of 24 h recall data from the Australian National Nutri-
tion and Physical Activity Survey [13] (figure 4b). This
analysis, however, went further, using mixture geometry to
construct a model that examined relationships between the
macronutrient compositions of specific food groups, dietary
macronutrient ratios and energy intakes. Strikingly, themacro-
nutrient compositions of discretionary foods (the equivalent of
UPF in the Australian diet classification system) (shown in
figure 5a) conformed closely with the compositions of the
diets associated with maximum energy intake (figure 3a)—
having low-protein and intermediate fat-to-carbohydrate
ratios. Examination of the separate contributions to energy
intake of discretionary foods and foods that fall within the
‘five food groups’ recommended in the dietary guidelines
showed that the peak in total energy intake was specifically
associated with high intakes of discretionary foods, with the
relative contribution to energy intake of the ‘five food
groups’ being low in that region of the macronutrient space.

Overall, these results implicate highly processed foods as
drivers of increased energy intake via their effect on protein
dilution and protein leverage, in interaction with factors
such as palatability and energy density. While there has
been no study that explicitly tested this association in an
experimental setting, one randomized control trial compared
energy intakes and weight gain associated with a 14-day
exposure to an ultra-processed diet or a whole food diet
partly matched for macronutrients and presented calories
[98]. Consistent with the population studies, results showed
that calorie intakes and weight gain were higher on the pro-
cessed than the whole food diet. Although the study was not
designed to test the mechanisms involved, the fact that
protein intakes did not differ, but fat and carbohydrate
intakes were higher on the ultra-processed diet, led the
authors to suggest that protein leverage could partially
explain the results (up to 50% of the increased intake on the
ultra-processed diet treatment). This conclusion was based
on the composition of the experimental diets as presented
to the subjects (14 versus 15.6%). However, participants
actually consumed 16.4 versus 19.9% protein of total energy
and virtually the same absolute intake of protein (figure 4c,
from fig. 2 in [29]). As the authors indicate, the unanswered
question is why did subjects ingest a different per cent
protein to that provided in the menus? This must indicate
the selection of foods from within meals and perhaps the con-
tribution of snack foods offered. If subjects were relatively
more prone to selecting palatable, lower-protein items
within the ultra-processed diet, or higher-protein items
within the whole food menus, this would exacerbate the
per cent protein difference between the treatments and
engage protein leverage more strongly. Our point is that
protein appetite, protein leverage and other factors such a
palatability interact, potentially yielding positive feedbacks
driving excess energy intake. A difference in energy density
between the treatments was not a factor in this experiment,
but it too would interact and amplify the effects of protein
leverage, as discussed above.

Having identified the food groups implicated in driving
energy over-consumption, the next step is to examine why
these foods are eaten over alternatives that support balanced,
healthier, diets. Several reasons have been suggested, includ-
ing their aggressive marketing, convenience, relatively cheap
price and the fact that they are engineered to be ‘hyperpala-
table’. Such factors can readily be integrated into geometric
models, as illustrated in figure 5.
5. Moving targets: using protein leverage to
generate new hypotheses

Among the benefits of integrative models is that they provide
a framework for going beyond existing data to generate new
testable hypotheses for unexplained phenomena, even resol-
ving apparent paradoxes. To this point, we have discussed
the dilution of protein in the diet as a driver which interacts
with dietary energy density to explain excess energy intake.
We next show that by incorporating differences in protein
and energy requirements and levels of energy expenditure,
protein leverage theory can potentially illuminate several
unexplained phenomena.
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Because of the power law relationship between dietary
per cent protein and food intake (figure 1b), protein leverage
is amplified if the protein target increases relative to non-
protein energy (nPE) requirements. This is because, as the
protein target increases linearly, the number of extra calories
that must be eaten to attain the higher target on a given low-
protein diet will increase exponentially. For example, a dis-
proportionate increase in protein to nPE requirements may
explain body weight gain, increased fat mass and decreased
lean body mass with age in both sexes [15] and across the
menopause transition in women [101] (figure 6). Ageing
and menopause are associated with reduced skeletal muscle
mass and net bone resorption, increased protein catabolism,
impaired protein synthesis and elevated FGF21.

Additionally, if obesity results in increased protein
requirements and/or reduced energy expenditure, then
protein leverage theory predicts that susceptibility to obesity
will accelerate unless dietary macronutrient ratios change
commensurately towards a higher protein: nPE. This might
provide a mechanism to explain the observation that as
body fat increases it becomes increasingly difficult to lose
weight and sustain weight loss (e.g. [102]).

There is, indeed, evidence that protein requirements
increase disproportionately relative to energy requirements
with obesity and the metabolic syndrome and are associated
with elevated FGF21 [103]. Insulin resistance disinhibits
protein catabolism in muscle and hepatic gluconeogenesis,
both of which result in decreased protein efficiency and
thus a need to eat more protein to meet requirements. The
kidneys provide another route for protein loss via proteinuria
and albuminuria, which are associated with obesity and
metabolic syndrome [104,105]. Elevated FGF21 accompanies
chronic kidney disease, increasing during its early stages
and predicting progression in diabetes [106].

Another circumstance in which there may be a relative
increase in protein to nPE requirements is when there is a
decline in energy expenditure accompanying a change in life-
style, as seen particularly markedly in retired athletes (e.g.
[107]) and more generally in young adults transitioning to
less active lifestyles. The protein leverage effect would be
exacerbated if in addition to reduced energy expenditure
protein needs are set higher in response to a habitually
high-protein diet or an anabolic exercise regime.

An increased protein requirement might reflect diet
during early life and even preconception. High-protein
infant formula feeding increases susceptibility to obesity in
subsequent years [108–110], an effect we hypothesized
might reflect protein leverage interacting with the early
development of an increased protein requirement in a low-
protein, high-energy food environment [111]. As discussed
above, based on analyses of population cohorts, children
and adolescents do appear to show protein leverage [88,89].

Yet another source of variation in protein requirements
arises from the gut microbiota. Some bacterial species serve
as a net source of essential amino acids in the host system,
whereas other species use protein as an energy source and
thus act as a protein sink, thereby increasing host protein
need and resulting in elevated FGF21 [112,113]. Elevated
intake of dietary fibre has the potential to increase the net
activity of amino acid-producing bacterial assemblages
[113], providing another potential mechanism linking protein
leverage and a diet high in fibre-poor, industrially processed
foods (see above).

Protein leverage may drive excess energy intake on a low-
protein, high-energy diet, but not everyone gains weight
under excess energy intakes, nor retains excess weight
when returned to energy balance after experimental over-
feeding [114]. Indeed, voiding excess ingested energy is
part of the homeostatic control of weight [115] and was
apparent at a population level in a cohort of predominantly
healthy, lean children demonstrating protein leverage [89].
Genetic factors play a role in increasing the susceptibility to
weight gain with overfeeding, as does insulin resistance
and previous obesity [1,114], but the mechanisms are not
fully understood. Variation in genetic loci involved in protein
metabolism and signalling, including FGF21, would be
expected to associate with variation in obesity risk, both
between individuals within a population and between
populations as a function of ancestral diet [6,111].
6. Conclusion
Obesity is a complex multifactorial condition that arises from
the dynamic interaction of biology and psychology with food
environments. We believe a priority is to identify the most
important sets of interactions for advancing the understand-
ing of obesity and moving closer towards solutions. We have
reviewed a body of work that has applied nutritional geome-
try, a tool for examining nutrient–nutrient interactions and
their interface with biology and food environments, to exam-
ine the problem. This work suggests an integrative model of
obesity, at the centre of which is the acute sensitivity to
protein deficiency or amino acid imbalance that humans
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share with many species. Protein imbalance is transduced
into corrective responses via signalling molecules such as
FGF21 which, behaviourally, triggers protein seeking through
increased protein appetite. If high-protein foods are eaten,
the protein imbalance is redressed and FGF21 release is
reduced. By contrast, if low-protein foods are engaged,
there is a compensatory increase in food intake to reduce
the protein deficit, which results in increased incidental
intake of the components diluting protein. Where the diluents
are non-caloric, such as water or fibre, there is no adverse
impact on energy balance. By contrast, where protein is
diluted by fats and carbohydrates, energy intake increases,
but is offset by a compensatory increase in FGF21-triggered
energy expenditure. However, where low-protein diets are
simultaneously high in fats and carbohydrates and low in
non-caloric diluents such as fibre and water, the homeostatic
mechanisms can be overwhelmed leading to positive
energy balance, particularly where carbohydrates are rapidly
digested non-resistant starches and sugars. If exposure is
chronic, this leads to increased adiposity which itself
can exacerbate the imbalance by decreasing protein efficiency
thus increasing its deficiency and triggering further intake—a
positive feedback. Other causes of decreased protein effi-
ciency, such as occurs in the menopausal transition and
possibly through early exposure to high-protein diets such
as some processed infant formulae, can likewise cause or
contribute to positive energy balance.

This biological model aligns closely with epidemiological
associations of positive energy imbalance and highly pro-
cessed industrial foods, which typically are high in fats and
simple carbohydrates relative to protein, with high energy
density. Simultaneously, these products have properties
that influence the likelihood that theywill be chosen over heal-
thier alternatives, such as umami flavouring (savoury snacks),
hyper-palatability and low cost. In integrating across levels
from molecular signalling to global food systems, this model
exposes a network of interactions which collectively explain
and predict the incidence and circumstances of increased
risk of obesity. Ultimately, this systems perspective suggests
that the excessively high incidence of obesity is as much an
issue of imbalances in societal systems as imbalance in biologi-
cal systems. The challenge ahead is to identify intervention
points in the complex system of factors that tip the balance
towards excessive consumption of obesogenic diets, such as
ubiquitous exposure highly processed foods.
How broad do we go? For problems like obesity, which
pay no respect to conventional disciplinary boundaries, we
need to do likewise and broaden the scope from human
health to the health of the planet on which our health ulti-
mately depends. Recent studies, not discussed in this
review, have begun this, by integrating nutritional geometry
with input–output analysis to examine the simultaneous
effects of various diets on nutritional, environmental and
economic indicators [116]. There, too, the protein appetite
has proven to be central, for example in directing diets
towards increasing consumption of animal proteins which
are associated with high global greenhouse emissions. Less
obviously, the models have demonstrated that reducing
animal proteins is likely to reduce emissions only in some cir-
cumstances, depending on what they are replaced by. If they
are replaced by highly processed industrially manufactured
foods, the emissions associated with the production costs of
excess energy consumed due to protein leverage cancel out
the gains from reducing animal protein. Ironically, studies
suggest that increasing atmospheric carbon dioxide reduces
both protein and fibre relative to carbohydrate in many
crop plants—the same effect as ultra-processing—potentially
providing another positive feedback that could exacerbate the
problem [111].

In conclusion, it is only through situating specific nutri-
ents and biological factors within their broader context that
we can hope to identify sustainable intervention points for
slowing and reversing the incidence of obesity and associated
complications. An immense amount of knowledge exists
around relevant factors but attempts to synthesize this infor-
mation into evidence-based coherent models are in their
infancy. For that, a diversity of perspectives is needed, such
as shown at this meeting, and systems perspectives to exam-
ine the connections and interactions among these factors.
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