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Abstract
Microbial strategies for resource use are an essential determinant of their fitness in complex habitats. When facing 
environments with multiple nutrients, microbes often use them sequentially according to a preference hierarchy, 
resulting in well-known patterns of diauxic growth. In theory, the evolutionary diversification of metabolic hierarch-
ies could represent a mechanism supporting coexistence and biodiversity by enabling temporal segregation of niches. 
Despite this ecologically critical role, the extent to which substrate preference hierarchies can evolve and diversify 
remains largely unexplored. Here, we used genome-scale metabolic modeling to systematically explore the evolution 
of metabolic hierarchies across a vast space of metabolic network genotypes. We find that only a limited number of 
metabolic hierarchies can readily evolve, corresponding to the most commonly observed hierarchies in genome-de-
rived models. We further show how the evolution of novel hierarchies is constrained by the architecture of central 
metabolism, which determines both the propensity to change ranks between pairs of substrates and the effect of 
specific reactions on hierarchy evolution. Our analysis sheds light on the genetic and mechanistic determinants of 
microbial metabolic hierarchies, opening new research avenues to understand their evolution, evolvability, and 
ecology.
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A
rticle Introduction

When presented with an environment with multiple nutri-
ents, many microbes tend to use them one at a time in a 
preferred order. This phenomenon of hierarchical sub-
strate use was famously characterized by Monod in the 
decade of 1940 (Monod 1942) when he coined the term 
“diauxie” to describe the experimentally observed double 
growth curve pattern. Despite the foundational role of 
Monod’s work in molecular biology (Jacob and Monod 
1961; Belliveau et al. 2018), we still know surprisingly little 
about the evolution and diversity of resource hierarchies 
across bacterial species (Perrin et al. 2020). For instance, 
are some hierarchies easier to evolve than others? And 
what determines how easy it is to evolve a preference 
for a given substrate?

The questions about the ecology and evolution of meta-
bolic hierarchies have received renewed attention in 

recent years (Bajic and Sanchez 2020; Okano et al. 2021), 
as part of the ongoing effort to understand the drivers 
of microbial community assembly and coexistence 
(Chang et al. 2022; Estrela et al. 2022; Gralka et al. 2022; 
Schäfer et al. 2023). Recent theoretical work (Posfai et al. 
2017; Goyal et al. 2018; Pacciani-Mori et al. 2020; Wang 
et al. 2021; Bloxham et al. 2023) and experiments with 
model communities (Pacciani-Mori et al. 2020; Bloxham 
et al. 2022) have shown that differences in metabolic hier-
archies can impact ecology, for example by allowing spe-
cies to segregate their metabolic niches and avoid 
competition. Although these studies carry the implicit as-
sumption that metabolic preferences will readily diversify 
provided the ecological opportunity (e.g., in an environ-
ment with multiple nutrients), it is unclear in which cases 
this assumption will hold true. Systematic empirical ana-
lyses are lacking, and available evidence remains scarce 
and anecdotal. For example, the deep conservation of 
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some preferences, for example the almost universal prefer-
ence for glucose in fermentative microbes (Görke and 
Stülke 2008), would suggest that metabolic hierarchies 
are hard to rewire. If this is the case, we would expect 
metabolic hierarchies to be deeply conserved in the phylo-
genetic tree and act as a mechanism of coexistence only 
between distantly related species. However, other studies 
report divergent resource preferences in closely related 
species (Tuncil et al. 2017), implying that metabolic hier-
archies can quickly diversify. In this scenario, we might 
expect resource hierarchies to promote the coexistence 
of closely related strains and possibly also lead to eco- 
evolutionary feedbacks (Bajić et al. 2018; Pacciani-Mori 
et al. 2020). Thus, in order to better understand the role 
of metabolic hierarchies in structuring coexistence within 
microbial communities, it is imperative to understand in a 
systematic way their potential to diversify.

A central determinant of the evolution of biological sys-
tems is the underlying genotype–phenotype (G–P) map 
(Fontana and Schuster 1998; Stadler et al. 2001). The archi-
tecture of this map determines the amount of phenotypic 
variation that can be accessed via mutations, which ultim-
ately fuels evolution. Even in the presence of selection, evo-
lution often follows lines of “least genetic resistance” 
(Schluter 1996), which are in principle determined by the 
G–P map. In the case of metabolic traits, the structure of 
the metabolic network is a central determinant of this 
map. The structure of metabolism has been shown to influ-
ence the evolution of individual enzymes (Papp et al. 2004; 
Vitkup et al. 2006; Notebaart et al. 2014; Aguilar-Rodríguez 
and Wagner 2018), metabolic innovation (Barve and 
Wagner 2013), or eco-evolutionary interactions (Bajić et al. 
2018). Importantly, recent work has demonstrated that 
the structure of the metabolic network is also a key deter-
minant of the strategy microbes adopt in mixed substrate 
environments, for example their choice to use them sequen-
tially versus simultaneously (Wang et al. 2019). Because pref-
erential substrate use represents an optimal metabolic 
strategy (Salvy and Hatzimanikatis 2021), the presence of 
one pathway or another will fundamentally determine 
which substrates an organism prefers, as different pathways 
have a different balance of benefits and costs when process-
ing a substrate (Noor et al. 2016; Waschina et al. 2016; 
Wortel et al. 2018). However, how precisely the structure 
of the metabolic networks determines and constrains the 
evolution of metabolic hierarchies remain unexplored.

Here, we asked how the metabolic G–P map determines 
the evolutionary flexibility of microbial metabolic hierarch-
ies using genome-scale metabolic modeling. Metabolic 
modeling techniques such as Flux Balance Analysis (FBA) 
enable accurate predictions of metabolic phenotypes 
from genotypes (Orth et al. 2011; Bordbar et al. 2014; 
O’Brien et al. 2015) and are widely used as a workhorse 
for the comprehensive exploration of metabolic G–P 
maps (Segrè et al. 2005; Barve and Wagner 2013; 
Notebaart et al. 2014; Szappanos et al. 2016; Goldford 
et al. 2017). Using FBA, we first show that a handful of “typ-
ical” resource hierarchies appear much more commonly 

across genotype space than other configurations. 
Hierarchies are easier to rewire for substrates that are 
more metabolically different. However, their evolutionary 
flexibility strongly depends on the presence or absence of 
a small number of central metabolic reactions that deter-
mine the behavior of the metabolic network across sub-
strates. Our study provides the first systematic analysis of 
how metabolic networks determine the evolution of meta-
bolic hierarchies, and we end by proposing new testable hy-
potheses, null expectations, and potential directions for 
future studies.

Results
How Easily Can Metabolic Hierarchies Evolve and 
Diversify?
We began by asking whether metabolic hierarchies could 
readily evolve and diversify through changes in the set of 
reactions encoded in a bacterial genome. To address this 
question, we employed the Markov chain Monte Carlo 
method, a widely used technique to uniformly sample 
multidimensional spaces (Metropolis and Rosenbluth 
1953) that has also been applied to sample G–P maps 
(Samal et al. 2010). Using this procedure, we obtained 
9,974 genotypes that are randomly and distributed across 
metabolic genotype space (see Materials and Methods). 
Briefly, to obtain each genotype, we started from the 
Escherichia coli metabolic model iJO1366 (Orth et al. 
2011) and performed 10,000 random reaction swaps, re-
moving a reaction from the model and adding another 
one from a universal set of prokaryotic reactions (fig. 1A; 
see Materials and Methods). We restricted our random 
walk to the space of genotypes capable of growth on seven 
sugars whose growth ranks are well predicted by perform-
ing FBA on the E. coli model (glucose, fructose, mannose, 
fucose, melibiose, galactose, and ribose; supplementary 
fig. S1A, Supplementary Material online; see Materials 
and Methods). Because sequential substrate use is an opti-
mal strategy aimed at maximizing the growth benefit from 
a substrate (Beg et al. 2007; Kremling et al. 2015; de Groot 
et al. 2019; Wang et al. 2019; Salvy and Hatzimanikatis 
2021), the preference hierarchy usually matches the hier-
archy in growth rates (Aidelberg et al. 2014). To confirm 
this point, we used a global resource allocation constraint 
(see Materials and Methods), which is known to reproduce 
experimentally observed patterns of sequential substrate 
use (Beg et al. 2007; Salvy and Hatzimanikatis 2021). This 
confirmed that our substrates are not coutilized but se-
quentially used according to their growth rate hierarchy 
(supplementary fig. S1B, Supplementary Material online). 
Thus, in the rest of the paper, we use the growth hierarchy 
as a proxy for resource use hierarchy in our seven sugars.

An important driver of the evolution of any trait is the 
availability of enough phenotypic variation accessible by 
mutations (Besnard et al. 2020). In our trajectories, in ab-
sence of selection, rewiring of hierarchies occurred on aver-
age fairly often, implying that there is substantial accessible 
phenotypic variation across the G–P map (fig. 1B and C). 
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FIG. 1. Some sugar hierarchies are easier to evolve than others. (A) A schematic of random walk trajectories through genotype space. At each 
step, a reaction from the model is exchanged by a new reaction from a universal bacterial reaction set (“universal model,” see Materials and 
Methods). (B) Large variation in metabolic hierarchy rewiring among random walk trajectories. The histogram shows the frequency of total 
rank flip events (rtotal) during random walks in the 9,974 trajectories. (C ) Changes in metabolic hierarchy along an example random-walks tra-
jectory. We show two cases, where the rank swaps rarely (left) or frequently (right) occurred. The preference rank of each sugar at each mu-
tational distance is shown as a heatmap. (D) Convergence of the preference rank to small subsets among all possible preference ranks after 
random walks. The histogram shows the frequency of each preference rank at the end of the random walks in the 9,974 evolutionary trajectories. 
The line shows the cumulative distribution of the frequency of preference rank. (E) Zoom of the top 15 most frequent metabolic hierarchies, 
representing the final point of 3,068 of 9,974 trajectories (histogram), or about ∼30% of the total. We displayed the number of a real organism’s 
models whose preference rank matches each rank configuration. (F) Correlation between the average rank of seven sugars and the average ATP 
yields at the end of random walks (n = 1,000 genotypes; see Materials and Methods). (G) Correlation between Gibbs free energy of a sugar and 
the average ranks at the end point in seven sugars. Gibbs free energy was normalized by the number of carbons. In both panels, Pearson’s correla-
tions were displayed with P-value obtained using a permutation test (see Materials and Methods). (H ) Average number of rank flip events be-
tween pairs of sugars during random walks in 9,974 evolutionary trajectories. Sugars are ordered by their initial preference rank in the E. coli 
model.
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However, the outcomes of our trajectories were quite non-
uniformly distributed. Namely, 3,068 trajectories (≈30% of 
all trajectories, N = 9,974) ended in 1 of ∼15 configurations, 
of the 7! = 5,040 theoretically possible (fig. 1D). To give a 
sense of the magnitude of this bias, under a null model in 
which every hierarchy has equal chance to appear, the 
top 15 most frequent hierarchies would be expected to ap-
pear in only 51.5 ± 1.95 (SD) trajectories (N = 10,000; 
supplementary fig. S2, Supplementary Material online).

The most frequent outcomes among our randomly 
sampled genotypes were strongly reminiscent of established 
empirical observations. For instance, glucose was among the 
top ranked substrates in many of these frequently occurring 
hierarchy configurations. In addition, we found that 
these typical hierarchies also appeared recurrently in 
genome-derived models of real organisms (fig. 1E and 
supplementary fig. S3, Supplementary Material online). For 
example, 73 of 81 genome-derived models correspond to 1 
of the 14 hierarchies most frequently found in randomly 
sampled metabolic genotypes (supplementary fig. S3, 
Supplementary Material online). In addition, a phylogenetic 
analysis of genome-derived models revealed a striking degree 
of conservation in metabolic hierarchies (supplementary fig. 
S4, Supplementary Material online). For the most phylogen-
etically distant species in our dataset (belonging to different 
phyla), the Spearman correlation coefficient was on average 
0.73 (supplementary fig. S5A, Supplementary Material on-
line). This contrasted with the comparatively low conserva-
tion of growth rates in individual sugars (supplementary 
fig. S5B, Supplementary Material online). The preference 
rank of three taxonomically distant bacterial groups also ex-
hibited common trends, for example glucose and fructose 
were universally preferred to galactose or ribose 
(supplementary fig. S4, Supplementary Material online). 
Altogether, these results suggest that the metabolic G–P 
map is strongly biased toward a reduced number of resource 
hierarchy configurations.

Is there a possible biochemical explanation to the ob-
served conservation of metabolic hierarchies? To address 
this question, we computed the average ATP yield of 
each sugar across genotypes. This typical ATP yield was 
strongly correlated to the average rank of the sugars in 
the hierarchy across genotypes (fig. 1F). However, the en-
ergy of formation of the different sugars (ΔfG’m) was not 
correlated to the hierarchy rank (fig. 1G). The fact that su-
gars with very similar ΔfG’m, for example glucose, fructose, 
or mannose, have a different average rank, suggests that 
stoichiometry (i.e., the ability to transform ΔG into ATP) 
plays a dominant role in determining resource hierarchies.

A particularly important aspect of hierarchy evolution is 
the ability of two substrates to switch their ranks in the hier-
archy. If two substrates’ ranks can be easily switched, this 
would allow an easy evolution of metabolic specialization 
through differential resource preference. When we exam-
ined the evolutionary flexibility in the ranks of specific sub-
strate pairs, we found again a very biased distribution in 
which some sugar pairs swapped their ranks much more of-
ten than others in our mutational trajectories (fig. 1H).

Finally, we also noticed that different trajectories give 
distinctly idiosyncratic growth rate changes during ran-
dom walks among seven sugars (supplementary fig. S6A, 
Supplementary Material online), which resulted in mark-
edly different degrees of metabolic hierarchy rewiring 
(mean = 233.2 total hierarchy changes per trajectory, 
SD = 73.5; fig. 1B and C and supplementary fig. S7, 
Supplementary Material online). This suggests that specific 
characteristics of the genetic background could modify the 
amount of accessible variation and thus the evolutionary 
flexibility of metabolic hierarchies (Rutherford and Lindquist 
1998; Bergman and Siegal 2003; Richardson et al. 2013; 
Geiler-Samerotte et al. 2019; Poyatos 2020).

Overall, these patterns suggest that the architecture of 
metabolic networks strongly affects the evolution of meta-
bolic hierarchies by 1) biasing the outcomes of metabolic 
rewiring toward specific hierarchy configurations, 2) mak-
ing the rewiring easier for some pairs of substrates than 
others, and 3) modifying the amount of phenotypic vari-
ation accessible to mutations. In the following sections, 
we study the structural and mechanistic determinants of 
these patterns.

Metabolic Dissimilarity Predicts Hierarchy Swaps in 
Pairs of Substrates
Why are the ranks in some pairs of substrates more easy to 
change than in others? We reasoned that a primary require-
ment for two substrates to flip their ranks is the existence of 
mutations that will affect each of them independently. If 
two substrates are processed largely by the same pathways, 
the same mutations should affect their growth similarly 
(e.g., glucose/melibiose, fig. 2A) resulting in a lower propen-
sity to flip their ranks (fig. 2B). In contrast, substrates that 
are processed by different pathways have more opportun-
ities to evolve independently and thus swap their hierarchy 
(e.g., glucose/fucose, fig. 2C and D). Thus, we hypothesized 
that the metabolic distance between two substrates will 
predict their propensity to swap their ranks.

To test this hypothesis, we first need to quantify the 
metabolic distances between substrate pairs. Because 
two substrates partially share the pathways and reactions 
through which they are catabolized, we computed meta-
bolic distance using a weighted Jaccard distance between 
the sets of reactions used by each metabolite (fig. 2E; see 
Materials and Methods). Although this distance will be 
genotype-specific (supplementary fig. S8A, Supplementary 
Material online), we observed that the distances between 
two substrates quickly converged to a typical value across 
genotypes during random walks (supplementary fig. S8, 
Supplementary Material online). Confirming our hypoth-
esis, these “typical” pairwise metabolic distances predicted 
the propensity of two substrates to rewire their ranks 
(fig. 2F). Note that some of the outliers of this correlation 
(e.g., the glucose–ribose pair, supplementary fig. S6B, 
Supplementary Material online) can be explained by their 
large difference in average growth rates, leading to infre-
quent rank flips despite a large metabolic dissimilarity. 
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However, in contrast to metabolic dissimilarity, this 
effect showed no explanatory power across all pairs 
(supplementary fig. S6C, Supplementary Material online). 
Thus, we conclude that the evolutionary flexibility in the 
hierarchy of two substrates is fundamentally determined 
by their metabolic dissimilarity.

The Architecture of Central Metabolism Controls the 
Evolutionary Flexibility of Metabolic Hierarchies
As shown in figure 1B and C, our random walk trajectories 
differed markedly in the frequency of shifts in metabolic 
hierarchies. Although part of this variation is expected be-
cause of stochastic sampling of mutations, the presence of 
specific reactions could also affect the evolvability of meta-
bolic hierarchies by either buffering (capacitors) or po-
tentiating (potentiators) the phenotypic effect of other 
mutations (Rutherford and Lindquist 1998; Bergman and 
Siegal 2003; Richardson et al. 2013; Geiler-Samerotte 
et al. 2019; Poyatos 2020). Can we pinpoint the observed 
differences in the evolutionary flexibility of metabolic hier-
archies to the presence or absence of specific metabolic re-
actions in the genetic background?

To examine this question, we first compared the num-
ber of rank shifts (ri) between trajectories in which a focal 
reaction was present (TR+) or absent (TR−) along the most 
part of the trajectory (fig. 3A; see Materials and Methods). 
Our analysis revealed 43 reactions, which were associated 
with differences in the evolvability of the metabolic rank of 
at least one sugar (P < 0.01, Wilcoxon test with false dis-
covery rate [FDR] correction, fig. 3B). To test whether 
these reactions did indeed alter the phenotypic variation 
in metabolic hierarchies, we ran two additional sets of 
500 random walks, starting from a model either lacking ca-
pacitors (“del C”) or potentiators (“del P,” see Materials 
and Methods). As expected, these trajectories exhibited 
an opposite trend in terms of the number of rank swap 
events (fig. 3C). Thus, the presence of specific metabolic re-
actions critically determines the evolvability of metabolic 
hierarchies in our trajectories.

The Mechanisms Controlling the Evolutionary 
Flexibility of Metabolic Hierarchies
How do specific reactions modify the evolutionary flexibil-
ity of metabolic hierarchies? We hypothesized that 
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modifiers (i.e., capacitors and potentiators) act by dispropor-
tionately impacting metabolites used by multiple sugars. By 
doing this, mutations in modifiers can decouple and recon-
nect sugars with one another, allowing them to evolve more 
or less independently. This hypothesis is supported by the 
fact that modifiers generally belong to central metabolism, 
for example glycolysis, tricarboxylic acid (TCA) cycle, or pen-
tose phosphate pathway (PPP, fig. 4A). These reactions tend 
to carry flux across genotypes and resources (fig. 4B–C), and 
their disruption heavily alters the distribution of fluxes across 
the rest of the network (fig. 4D–E).

To investigate more in detail which specific fluxes are af-
fected by modifiers, we devised a score φR, m quantifying 
the effect of a mutation in reaction R on the flux of a me-
tabolite m (fig. 4F). As expected, metabolites associated 
with central metabolic pathways (glycolysis, PPP, or TCA 
cycle) were strongly affected (fig. 4G), especially in the 
case of capacitors (fig. 4G). As these pathways are in gen-
eral the most efficient routes for sugar use, their disruption 
surfaces other alternatives that might be different for each 
sugar, thus revealing new mutational targets for the rewir-
ing of metabolic hierarchies. Our analysis also revealed the 
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FIG. 3. Propensity of rank flips 
strongly depends on the genet-
ic background. (A) A schematic 
of the mutational effect of evo-
lutionary capacitors and po-
tentiators on growth-rate 
trajectories and propensity of 
rank flips. If the presence of 
the reaction of interest caused 
little effect on growth rate 
and the preference rank (top 
left) but its deletion caused 
their frequent changes (bot-
tom left), such reaction was re-
garded as a “capacitor.” On the 
other hand, if the growth rate 
changes and rank flips were 
prevented by the deletion of 
the reaction (bottom right) 
but promoted in its presence, 
such reaction was regarded as 
a “potentiator.” Briefly, we 
screened those evolutionarily 
important reactions by com-
puting the difference in rank 
flips (ri) between its presence 
[ri (TR+)] or absence [ri (TR−)] 
(Δri, see Materials and 
Methods). (B) Screened evolu-
tionary capacitors and poten-
tiators in metabolic networks 
by statistical analysis (P-value 
<0.01, FDR corrected). Δri in 
each metabolic reaction was 
shown as a heatmap. We put 
asterisks for significant reac-
tion–sugar pairs. The shown 
metabolic reaction IDs corres-
pond to BiGG ID. (C ) 
Opposite effect on the propen-
sity of rank flips between the 
deletions of capacitors or po-
tentiators. We deleted 5 poten-
tiators (“del P”) or capacitors 
(“del C”) from iJO1366 and per-
formed 10,000 random walks 
by starting from each of them. 
Box and strip plots show the 
number of total rank flip 
events across 7 sugars during 
random walks (N = 500) in 
the displayed genetic back-
grounds. Bold black lines indi-
cate medians of each data.
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metabolism of glycine/serine/threonine as an important 
pathway modulating the flexibility of metabolic hierarch-
ies (fig. 4A and G). Because this pathway can serve as an 
alternative route from 3-phosphoglycerate to the TCA cy-
cle in our models, its disruption limits the available meta-
bolic alternatives. For this reason, metabolites in the 
glycine/serine/threonine pathway appear in general 

associated with potentiator reactions (fig. 4G and 
supplementary fig. S9, Supplementary Material online). 
The above logic also suggests that capacitors will more of-
ten tend to carry flux than potentiators, and they will also 
more strongly modify fluxes across the rest of the metabol-
ic network when mutated. This was indeed the case 
(supplementary fig. S10, Supplementary Material online).
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glycolysis, glycine/serine/threonine pathway, and TCA cycle, where many of those are involved. Metabolites that were more strongly affected by 
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Altogether, these results suggest that by shaping the 
available metabolic alternatives for different substrates 
and/or their efficiency, the architecture of central metab-
olism critically determines the evolutionary flexibility of 
metabolic hierarchies.

Discussion
The strategies that microorganisms use to metabolize re-
sources have a significant impact on their interactions 
and coexistence (Bajic and Sanchez 2020; Estrela et al. 
2022). Theoretically, having different preferences for the 
same substrates could enhance biodiversity by allowing 
temporal niche segregation (Goyal et al. 2018; Bloxham 
et al. 2023). However, how easily microbial populations 
evolve alternative metabolic hierarchies remains unclear. 
In this study, we utilized genome-scale metabolic model-
ing to investigate how the structure of empirical metabolic 
G–P maps affects the evolution and diversity in the hier-
archical use of sugars by microbes. Our findings indicate 
that the architecture of the metabolic network only per-
mits the evolution of a limited set of hierarchy configura-
tions. Moreover, the evolution of alternative strategies is 
restricted to substrates that can be processed through 
substantially different reactions and pathways. Overall, 
these findings suggest that the diversity of optimal meta-
bolic hierarchies in natural populations may be in general 
limited.

The evolutionary flexibility of metabolic hierarchies 
(within the available alternatives) depended on a small 
set of reactions belonging to central metabolic pathways. 
From a genetic point of view, these reactions appear as 
strongly pleiotropic, as they are often active across differ-
ent sugars. Because of this, they introduce strong genetic 
correlations in the growth of different sugars (Falconer 
and Mackay 1996), preventing to an extent the independ-
ent variation in their growth rates and thus “locking” the 
evolution of metabolic hierarchies. At the same time, these 
central metabolic reactions act as evolutionary modifiers 
—capacitors and potentiators that modulate the ability 
of the genetic system to generate variability and fuel evo-
lution (Rutherford and Lindquist 1998; Bergman and Siegal 
2003; Richardson et al. 2013; Geiler-Samerotte et al. 2019; 
Poyatos 2020). One prediction of this result is that sugar 
hierarchies will show different degrees of conservation 
across different clades, depending on the architecture of 
their central carbon metabolism. This suggests a possible 
explanation to why some phylogenetically distant species 
show similar metabolic preferences (e.g., the almost uni-
versal preference for glucose over other sugars [Monod 
1942; Görke and Stülke 2008]), whereas at the same time 
for some species and substrates, we find differences be-
tween closely related species (Tuncil et al. 2017). Going be-
yond these anecdotal cases and understanding the 
evolution and conservation of resource hierarchies will re-
quire a more systematic empirical approach. From an eco-
logical standpoint, our observation that some pairs of 
resources (e.g., glucose–fructose) are much more easily 

rewired than others (e.g., glucose–galactose), leads to the 
experimentally testable prediction that coexistence will 
evolve more often in environments containing the former 
than the latter (Bloxham et al. 2022; Bloxham et al. 2023). 
Altogether, we believe that our computational results pro-
vide a useful guide and well-defined set of expectations for 
future empirical studies.

A key assumption of our study is related to optimality in 
cell behavior. First, FBA operates under a strong assump-
tion of optimality: phenotypes are predicted by assuming 
that the kinetic parameters of the metabolic enzymes and 
their regulation are optimal in a particular environment. 
Although this is generally accepted as a valid approxima-
tion (Dykhuizen et al. 1987; Elena and Lenski 2003; Dekel 
and Alon 2005; Schuetz et al. 2007; Schuetz et al. 2012), 
it might not be accurate across all conditions (Towbin 
et al. 2017). Additionally, we assumed that metabolic hier-
archies mirror the hierarchy of growth rates. This is reason-
able given previous empirical studies (Aidelberg et al. 
2014) and, more generally, fits the established view that se-
quential substrate use represents an optimal “economic” 
strategy that maximizes the benefit obtained from the in-
vestment of costly cellular resources in processing a sub-
strate (Beg et al. 2007; Kremling et al. 2015; de Groot 
et al. 2019; Wang et al. 2019; Salvy and Hatzimanikatis 
2021). However, there are possible exceptions to this rule 
(Okano et al. 2021), for example if cells have evolved me-
chanisms to “prepare” for environmental uncertainty at 
the cost of optimality in certain environments (Schmidt 
et al. 2016; Balakrishnan et al. 2021). Deviations from opti-
mality might be especially strong in organisms in which 
nonmetabolic functions (e.g., motility, biofilm formation, 
persistence) constitute major components of fitness.

An important caveat of our method is the inability to 
consider the effect of regulatory mutations. For example, 
E. coli implements the preference of some substrates 
over others through repression of their respective operons 
at different cAMP (cyclic adenosine monophosphate) con-
centration thresholds (Okano et al. 2020). Mutations in 
this regulatory system, for example promoter mutations 
changing the binding strength of the repressor, could 
therefore represent targets in the evolution of metabolic 
hierarchies. However, these repression thresholds typically 
evolve to implement a hierarchy matching the growth 
rates supported by the substrate. In other words, regula-
tion does not define which metabolic strategy is optimal 
but evolves as a means to implement it. We might there-
fore expect that regulatory mutations driving the hierarchy 
away from growth optimality will be typically purged by se-
lection (given that regulatory mechanisms evolve fast com-
pared with their regulation targets (Lozada-Chávez et al. 
2006; Price et al. 2008; Aguilar-Rodríguez et al. 2017). 
However, exceptions to this rule may emerge under certain 
ecological contexts. For example, regulatory rewiring to 
prefer suboptimal resources may evolve when resources 
are supplied sequentially in a nonoptimal order, or when 
an ecological competitor is able to monopolize the most 
optimal resource.
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We want to note that a core result of this work, the 
strong bias toward a specific set of hierarchies in the geno-
type, was obtained using a method that relies only on stoi-
chiometry. Our intuition is that other factors (e.g., 
thermodynamics, regulatory suboptimality) should overall 
only additionally constrain the available phenotypes but 
never “free” them from the yoke imposed by stoichiom-
etry. If this logic is true, our work is providing only a null 
baseline for phenotypic bias in metabolic hierarchies, 
which might be in reality even stronger.

In summary, our study describes with mechanistic detail 
how the metabolic G–P map influences and constrains the 
evolution of microbial metabolic hierarchies. This mechan-
istic perspective has proven to be essential in advancing 
the field of evolutionary biology, as well as other disciplines 
(Wagner et al. 2000; de Visser et al. 2003). Future research 
will be required to explore how the patterns and mechan-
isms outlined in our study contribute to the phylogenetic 
and ecological distribution of microbial metabolic hier-
archies, as well as their implications for natural and syn-
thetic communities.

Materials and Methods
Reconstruction of the Genome-Scale Metabolic 
Model with Constrained Allocation
We used E. coli genome-scale metabolic model iJO1366 as a 
reference (Orth et al. 2011). For random walks of metabol-
ic models through genotype space, we constructed bacter-
ial “universal” models as previously described (Bajić et al. 
2018). Briefly, we assembled metabolic reactions in pro-
karyotic metabolic models posted on the BiGG database, 
which consist of potential novel reactions in addition to 
the originally existing reactions in the E. coli model. We 
modified the directionality of metabolic reactions and re-
moved erroneous energy-generating cycles as previously 
described. This generates the “universal” prokaryotic mod-
el, consisting of 5,584 reactions and 3,476 metabolites.

Because the cell has limited internal resources, ineffi-
cient but “cheap” pathways result in a higher growth 
rate than more efficient but expensive ones, by allowing 
for allocation of larger fractions of the proteome to 
uptake (Basan et al. 2015). We partially account for this 
using a global resource allocation constraint (CAFBA, 
“Constrained Allocation Flux Balance Analysis”, [Mori 
et al. 2016]) and saturating sugar concentrations. To this 
end, we implemented the CAFBA constraint as in the ori-
ginal paper. Briefly, partitioning of cellular resources (i.e., 
proteome) associated with ribosome, biosynthetic en-
zymes, carbon transport, and basic biological processes 
(i.e., housekeeping reactions) was introduced as φR, φE, 
φC, and φQ, respectively. The sum of those proteome frac-
tions should be 1 (i.e., φR + φE + φC + φQ = 1), and each 
fraction except for φQ can be altered by environmental 
conditions and physiological states. Previous studies phe-
nomenologically demonstrated dependencies of each frac-
tion on environmental factors: ribosome sector φR is 

proportionally changed by the growth rate λ (i.e., ΔφR =  
wRλ); biosynthetic enzymes sector φE changes proportional 
to the metabolic flux vi such that ΔφE = ∑iwi|vi|; carbon 
transport sector φC alters proportional to the carbon in-
take flux vc (i.e., Δφc = wcvc). CAFBA maximizes objective 
function while optimally partitioning those flexible prote-
ome fractions, φmax = ΔφR + ΔφE + ΔφC. By incorporating 
those schemes into FBA, we computed flux distribution 
to maximize growth rate λ with optimally allocating cellu-
lar resources to those three partitions. Then, the optimiza-
tion problem of CAFBA is formulated as follows:

λmax = maxvb′v 

subject to Sv = 0 

vlb ≤ vi ≤ vub 

wcvc +


i

wi|vi| + wRλ = φmax 

where λmax denotes the maximum growth rate, and v is a 
metabolic flux vector with the lower and upper bounds 
(i.e., vlb and vub). b is the vector of objective function. S de-
notes the stoichiometric matrix of metabolic networks. wR 

and wc are coefficients for φR and φC, respectively. ∑wi|vi| 
is the sum of metabolic flux catalyzed by enzymes except 
for transport and exchange reactions.

Metabolic Simulation of Growth
All FBA simulations were performed using the COBRApy 
package (Ebrahim et al. 2013). To simulate the growth of 
bacteria where the limiting factor is only the carbon 
source, we ran all the simulations under the condition 
that inorganic ions and gases (ca2_e, cl_e, cobalt2_e, 
cu2_e, fe2_e, fe3_e, h2O_e, h_e, k_e, mg2_e, mn2_e, 
mobd_e, na1_e, nh4_e, ni2_e, pi_e, so4_e, zn2_e, o2_e) 
were present in excess (i.e., the lower bound for exchange 
reactions for those metabolites was set to −1,000 mmol ×  
gDW−1 × h−1). The lower bound of the exchange reaction 
for each sugar is set, so that the influx in C atoms is 
−120 mmol × gDW−1 × h−1 (i.e., if the given sugar is a hex-
ose such as glucose, there are six carbon atoms per mol-
ecule, so the lower limit is set to −20 mmol × gDW−1 ×  
h−1). In all simulations, the objective function is the bio-
mass function of iJO1366 (i.e., BIOMASS_Ec_iJO1366_ 
core_53p95M). Optimization problems were solved with 
Gurobi or CPLEX optimizer.

Simulation of the Repressive Effect on Sugar Influx by 
Metabolic Hierarchy
The repressive effect on the influx of sugar (i.e., flux in ex-
change reaction) by the presence of other sugar was simu-
lated by parsimonious FBA (pFBA, supplementary fig. S1, 
Supplementary Material online) (Lewis et al. 2010). The in-
flux of sugar i, where no other sugars are present is first 
computed, which is denoted as Ji. Then, the influx in sugar 
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i in the presence of sugar j, denoted as Ji,j, is simulated. The 
repressive effect of sugar j on the influx of sugar i, which is 
denoted as Ri,j is formulated as follows:

Ri,j = Ji.j/Ji 

Ji should always be larger than Ji,j, because the influx of su-
gar generally should be maximal when that sugar is used as 
a sole carbon source for the growth. Then, Ri,j < 1. If Ri,j ≈ 1, 
the influx in sugar i was barely affected by sugar j, indicat-
ing that sugar i is ranked higher than sugar j in metabolic 
hierarchy. On the other hand, if Ri,j ≈ 0, the influx of sugar i 
is strongly repressed by the presence of sugar j, indicating 
that sugar i is ranked lower than sugar j. The lower bound 
of the exchange reaction for sugars is set, so that the influx 
in Catoms is −120 mmol × gDW−1 × h−1.

Random Walks in Genotype Map
To explore the evolvability of metabolic hierarchy in su-
gars, we performed random walks by deleting and adding 
metabolic reactions one by one starting from the iJO1366 
model. Because we focused on the effect of mutations in 
the intracellular metabolic network, we did not add or de-
lete transport reactions. Exchange and sink reactions were 
also excluded as possible mutations. Starting from the 
iJO1366 model, in each step of a random walk, we random-
ly deleted an existing metabolic reaction and then ran-
domly selected one from the universal model to be 
added one novel reaction from the universal model. This 
method, known as Markov chain Monte Carlo sampling, 
is a widely used technique to uniformly sample multidi-
mensional spaces (Metropolis and Rosenbluth 1953) and 
has also been used in the past to sample G–P maps 
(Samal et al. 2010).

Once the reaction-swap event was accomplished, the 
deleted reaction from a model was added to the members 
of the prokaryotic reaction pool and regarded as a possible 
novel reaction that could be added at later steps. Similarly, 
the reaction appended to the model was removed from 
the prokaryotic reaction pool (fig. 1A). This random 
swap was performed 5,000 times, resulting in 10,000 addi-
tions and deletions of reactions. During random walks, the 
coexistence of following pairs of reactions was avoided: 
SHSL2 and SHSL2r, DHORD_NAD and DHORDi, ENO 
and HADPCOADH, LEUTA and LLEUDr, and P5CRx and 
PRO1y, because it leads to CO2 or H2 limitation (Bajić 
et al. 2018).

To prevent our random walks to end up in genotypes 
that have lost the ability to grow on most sugars, we im-
posed the constraint that every step during the random 
walk should result in a model that is still able to grow 
on all seven sugars. This constraint could however intro-
duce bias in our sampling of genotype space. To relax 
this constraint, we performed an additional set of 21,000 
simulations, this time constraining the models to grow 
on just two sugars at a time (1,000 random walks per 
pair of sugars). These simulations reproduce figure 1H to 

a large extent (supplementary fig. S11, Supplementary 
Material online), suggesting that our results are robust 
to changes in this constraint.

Estimation of the Rank in Metabolic Hierarchy by 
Growth Rate
Since the ranks of seven sugars in the metabolic hierarchy 
correspond to the ranks in growth rate when each sugar is 
used as a sole carbon source (for details, see supplementary 
fig. S1 and supplementary text, Supplementary Material on-
line), we computed the growth rate on every seven sugars 
during random walks and used this metric for estimating 
the rank in the hierarchy. We compared the growth rate 
on each sugar and regarded that sugar i is ranked higher 
than sugar j if the log10 ratio of the growth rate on sugar i 
(denoted as gi) and j (denoted as gj) is more than 10−5 as 
follows:

For sugar i, j, i > j in the metabolic hierarchy,
if log10(gi /gj) > 10−5

Estimation of Gibbs Free Energy of Formation for 
Substrates
Estimation of Gibbs free energy of formation (ΔfG’m) for su-
gars was done using eQuilibrator (Flamholz et al. 2012), a 
web interface for calculating thermodynamic properties of 
biochemical compounds. The estimated ΔfG’m for each su-
gar was normalized by the number of carbons.

Estimation of ATP Yields for Substrates
For estimating ATP yields, we first computed flux distribu-
tions for 1,000 randomly evolved models when each of 7 
sugars is used by pFBA. Then, we estimated ATP yields 
for sugars by calculating total flux of metabolic reactions 
involving ATP except for transport, sink, and biomass reac-
tions as follows:

JATP =
n

k

jk,ATP · εk,ATP 

Here, jk, ATP is the flux in reaction k, and ϵk, ATP is the coef-
ficient of ATP in reaction k. Positive or negative value for 
this coefficient means that ATP is produced or consumed 
through that reaction, respectively. For figure 1F, we calcu-
lated the average of the ATP yield (JATP) in 1,000 randomly 
evolved models for each sugar.

Computation of Preference Ranks in 
Genome-Derived Models
Using the same criteria as above, we computed the rank in 
the metabolic hierarchy in the prokaryotic metabolic models 
constructed by the CarveMe pipeline (Machado et al. 2018). 
We started from a sample of 5,587 metabolic models avail-
able at https://github.com/cdanielmachado/embl_gems
(Machado et al. 2018). To obtain a meaningful statistical sam-
ple, we searched for the set of sugars able to individually sup-
port the growth of a maximum number of models. This 
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resulted in 5 sugars (glucose, fructose, mannose, galactose, ri-
bose) that were able to support the growth of 81 models in 
total (glucose, fructose, mannose, galactose, ribose). These 
models are taxonomically broad, spanning three phyla: 
Bacillota (Firmicutes), Pseudomonadota (Proteobacteria), 
and Actinomycetota (Actinobacteria).

For the construction of a maximum likelihood phylo-
genetic tree, we first performed a multiple sequencing 
alignment (MSA) of the bacterial marker genes by align 
command in GTDB-tk (version 1.5.0) (Chaumeil et al. 
2019). The resulting MSA file from GTDB-tk was further 
used for a reconstruction of a phylogenetic tree by iqtree 
(version 2.0.3) (Nguyen et al. 2015) with ModelFinder 
(Kalyaanamoorthy et al. 2017) for searching the best-fit 
model (we used “LG + F + I + G4,” here). We used the 
ETE toolkit (Huerta-Cepas et al. 2016) for visualizing the es-
timated phylogenetic tree.

Permutation Test for Pearson’s Correlation
To check the statistical significance level of a correlation 
between two parameters, for example supplementary 
Figure S3B, Supplementary Material online, we performed 
a random permutation test to check the statistical signifi-
cance levels of Pearson’s correlation. We shuffled two para-
meters and computed Pearson’s correlation using those 
shuffled data for 100,000 times. The displayed P-value is 
the probability that the correlations between shuffled 
data were larger than that observed in the original data.

Computation of Dissimilarity between Pairs of Sugars 
in Processing Metabolic Pathways
We estimated dissimilarity in used metabolic pathways be-
tween two sugars by calculating Jaccard distance in the set 
of active reactions where the sugar of interest is used for 
growth as a sole carbon source. We first simulated the 
flux distribution in intracellular metabolic reactions (i.e., 
transport reactions were not included) when the model 
grows on sugar i by pFBA. Then, the set of active reactions 
Ri, whose flux is more than 10−6 mmol × gDW −1 × h−1, 
was picked out. The Jaccard distance between sugar i 
and j in the processing pathways [Jdist(i, j)] was formulated 
as follows:

Jdist(i, j) = 1 −
Ri ∩ Rj

Ri ∪ Rj 

Screening of evolutionary modifiers
To screen the reactions whose presence or absence greatly 
affects the evolvability of the hierarchy during random 
walks, we selected two types of random walk trajectories: 
TR+, where the reaction of interest R is present in over 
70% of genotypes among first 7,000 mutations; TR−, where 
the reaction of interest was not present in over 70% of gen-
otypes among last 7,000 mutations. Then, we statistically 
tested whether ri (propensity of rank flips) was significant-
ly different between TR+ and TR− for each reaction R by 
t-test using scipy.stats.ttest_ind function with P-value 

correction for multiple tests by Holm–Sidak method using 
statsmodels.stats.multitest.multipletests. We screened the 
reaction showing P-value < 10−6 after correction. We 
also calculated the magnitude of changes in ri between 
TR+ and TR− as follows:

Δri = ri(TR−) − ri(TR+) 

If Δri is positive, the absence of reaction R increases the 
evolutionary flexibility of metabolic hierarchies of the hier-
archy by mutations, which means that the reaction R, as it 
were, masks the effect of mutations during its presence. 
Then, such a reaction is defined as a “capacitor” for rewir-
ing the metabolic hierarchy. On the other hand, if Δri is 
negative, the presence of reaction R increases the propen-
sity of rewiring the hierarchy and thus is defined as a “po-
tentiator”. We screened such reactions for two metrics and 
for each seven sugars. Of note, changing the threshold for 
TR+ and TR− to 50% or 90% did not produce substantial 
differences in the score of Δri (supplementary fig. S12A, 
Supplementary Material online) and the screened reac-
tions as evolutionary modifiers (supplementary fig. S12B, 
Supplementary Material online), indicating that this ana-
lysis is robust to the imposed threshold.

Random Walks Using the Models Lacking Capacitors 
or Potentiators
To confirm the effect of modifiers on the evolutionary 
flexibility of the metabolic hierarchy, we removed five rep-
resentative capacitors or five potentiators from the origin-
al iJO1366 before performing additional random walks. We 
first selected reactions which solely work as either capaci-
tor or potentiator (i.e., not dual ways like “ENO,” which 
works as a potentiator for glucose but also works as a cap-
acitor for fructose). In each case of potentiator or capaci-
tor, the reactions were sorted by the number of 
significantly affected substrates. Then the reactions were 
deleted from the iJO1366 continuously from the top of 
the list up to five as long as the model can grow on all se-
ven sugars. (i.e., If the reaction is essential for the growth on 
either of seven sugars, that deletion is canceled.) This gives 
us the models lacking five capacitors, “PGM,” “PGI,” “TPI,” 
“L_LACD2,” and “LCARS,” (“del C” in fig. 3C) or five poten-
tiators, “PSERT,” “PGCD,” “PSP_L,” “FUM,” and “MALS” 
(“del P” in fig. 3C) and being capable of utilizing all seven 
sugars. Then, we performed 500 independent random 
walks in each case.

Flux Sensitivity Analysis
The impact of mutation to reaction i (i.e., deletion or add-
ition of the reaction) on the intracellular metabolic flux is 
estimated by calculating cosine similarity in the flux distri-
bution between before and after the mutation. For ran-
domly mutated models (i.e., models after 10,000 random 
walks in genotype space), we added or deleted the reaction 
of interest (denoted as R) if that reaction is absent or pre-
sent, respectively. We first computed the intracellular flux 
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distribution by pFBA before or after the mutation to R, 
which is denoted as JR+ or JR−, and normalized it by the 
growth rate (i.e., the magnitude of biomass flux) as follows:

JR+ = JR+/gR+ , JR− = JR−/gR− 

Here, gR + and gR− are growth rates in the presence or ab-
sence of reaction R, respectively. Then, we computed the 
cosine similarity between those normalized flux distribu-
tion matrices as follows:

ΔJR = (JR+ · JR−)/‖JR+‖ ‖JR−‖

As a metric of the distance, we used θR (degree). ΔJR is con-
verted to θR as follows:

θR = arccos(ΔJR) ·
180
π

(degree) 

We computed θR across seven sugars, and the average va-
lue of that is used as the metric for flux sensitivity.

For computing the impact on the metabolic flux in a 
specific metabolite, we picked out fluxes of reactions 
where the target metabolite m is involved from the nor-
malized intracellular metabolic flux, which are denoted 
as JR+,m and JR−,m, respectively. Then the impact of muta-
tion to reaction R on the flux in metabolite m is as fol-
lows:

ΔJR = (JR+,m · JR−,m)/‖JR+,m‖ ‖JR−,m‖

φR,m = arccos(ΔJR,m) ·
180
π

(degree) 

Experimental Quantification of Growth Hierarchy in 
E. Coli
E. coli MG1655 was streaked from glycerol on a TSA plate 
and grown at 37 °C for 24 h. A single colony was used to 
inoculate 5 mL of TSB medium in a 50 mL Falcon tube. 
After 24 h incubation at 37 °C, this preculture was then di-
luted 1:1,000 in M9 minimal medium supplemented with 
each of 7 carbon sources (glucose, fructose, mannose, fu-
cose, melibiose, galactose, and ribose), at a final concentra-
tion of 0.07 moles of carbon per liter. E. coli growth was 
monitored in a 384-well plate (100 μL/well, 6 replicates 
each) at 37 °C by optical density (OD) measurements. 
The maximal exponential growth rate was computed by 
first smoothing the log(OD620) with a generalized additive 
model with an adaptive smoother, using the gam function 
from the mgcv package in R. This method allows for ex-
traction of estimates of growth rate that are not biased 
by underlying assumptions when fitting parametric mod-
els such as logistic or Gompertz. The maximum of the de-
rivative was taken as the exponential growth rate. The first 
1 h of growth as well as all of the timepoints in the begin-
ning of the curve that showed an OD < 0.01 were excluded 
to avoid artifacts derived from measurement and fitting 
noise.

Supplementary material
Supplementary data are available at Molecular Biology and 
Evolution online.
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