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ABSTRACT: Cerebrospinal fluid (CSF) is an essential matrix for the discovery of
neurological disease biomarkers. However, the high dynamic range of protein concentrations
in CSF hinders the detection of the least abundant protein biomarkers by untargeted mass
spectrometry. It is thus beneficial to gain a deeper understanding of the secretion processes
within the brain. Here, we aim to explore if and how the secretion of brain proteins to the
CSF can be predicted. By combining a curated CSF proteome and the brain elevated
proteome of the Human Protein Atlas, brain proteins were classified as CSF or non-CSF
secreted. A machine learning model was trained on a range of sequence-based features to
differentiate between CSF and non-CSF groups and effectively predict the brain origin of
proteins. The classification model achieves an area under the curve of 0.89 if using high
confidence CSF proteins. The most important prediction features include the subcellular
localization, signal peptides, and transmembrane regions. The classifier generalized well to
the larger brain detected proteome and is able to correctly predict novel CSF proteins
identified by affinity proteomics. In addition to elucidating the underlying mechanisms of
protein secretion, the trained classification model can support biomarker candidate selection.
KEYWORDS: brain proteome, cerebrospinal fluid, fluid biomarker, machine learning, protein secretion

■ INTRODUCTION
Neurological diseases urgently require novel biomarkers to
permit patients an early diagnosis, a reliable prognosis, and the
appropriate inclusion in clinical trials.1 While many biomarker
candidates have been identified, very few have reached the end
of the biomarker development pipeline and are used in clinical
practice.2 Additionally, identification of novel biomarkers can
support hypothesis generation regarding disease causality and
pathogenesis, which for many neurological diseases is still not
fully understood.3

For the discovery of central nervous system (CNS) fluid
biomarkers, cerebrospinal fluid (CSF) is the preferred matrix as
it is in close contact with the brain tissue,4 yet it can be relatively
easily and safely sampled via lumbar puncture.5 Nevertheless,
several challenges must be considered within CSF biomarker
discovery. CSF contains thousands of proteins with a highly
dynamic concentration range of an estimated 9 orders of
magnitude.4 Further, only an estimated 20% of CSF proteins
originate from the brain and are able to provide insight into
pathological processes of the CNS.6

Multiple studies have probed the CSF proteome in healthy
humans via discovery proteomics.7 These studies are based on
“bottom up” mass spectrometry�a hypothesis-free and
untargeted method able to identify a high number of unique
peptides and subsequently proteins within a sample.8 This
renders mass spectrometry the most suitable approach to build
the proteome of a fluid or tissue of interest.2 However, inherent

limitations of this technology regarding proteome coverage have
to be considered during the biomarker discovery phase.2,9,10

While great advances have been made in recent years that allow
researchers to overcome many issues, untargeted mass
spectrometry workflows still struggle to identify the least
abundant proteins in complex biological fluids.10,11 Importantly,
steps used to improve the detection of the low abundance
proteome, e.g., protein depletion and fractionation, have their
own drawbacks including decreased workflow reproducibility.9

This issue is of high importance as these difficult to detect
proteins are often of interest as biomarkers.4 It is thus beneficial
to exploit alternative approaches to identify low abundance CSF
proteins that might constitute novel biomarker candidates.

A way to augment the experimental study of body fluid
proteomes for biomarker discovery is in silico protein secretion
prediction.12 Machine learning-based approaches might help
predict proteins with the potential to be secreted to and thus be
present in a fluid of interest but that are not detectable by
untargeted mass spectrometry. These potential biomarkers
might subsequently be measured with more sensitive targeted
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approaches to confirm the prediction. In addition, machine
learning approaches to protein secretion can provide a deeper
understanding of the cellular processes.

Multiple protein secretion predictors have been developed,13

but only rarely was CSF-specific secretion prediction pursued. A
recent prediction model, DeepSec, reported an area under the
curve (AUC) of 0.9 demonstrating that the movement of
proteins to the CSF is encoded in the protein amino acid
sequence.14 This study and other recently published methods
have applied the increasingly popular approach of deep learning
to the task of secretion prediction.13 While reporting high model
accuracy, biological insight from these models is very limited;
the infamous “black box” character of deep learning hinders us to
understand how the model makes its decisions. Thus, if gaining
biological insights from a prediction model is an additional
research aim, use of “shallow” but interpretable models might be
more beneficiary.15

Accordingly, we were interested in developing a CSF
secretion predictor considering two important aspects: 1) By
limiting model training to likely CNS-originating proteins, our
study focuses on specifically distinguishing between proteins
secreted from the brain to CSF and those confined to the brain;
2) We prioritize model interpretability by utilizing an explain-
able machine learning model and biologically informative
features to investigate how the model makes its decisions and
to explore the biology behind CSF secretion. Note that while we
refer here and throughout this study to protein secretion, this

term is meant to include all physiological processes that lead to a
brain protein’s presence in CSF.

In this study, we integrated multiple CSF proteomics studies
to define and analyze the healthy human CSF proteome. Using
this comprehensive CSF proteome, we annotated the brain
elevated proteome of the Human Protein Atlas (HPA) regarding
CSF presence (Figure 1). We argue that if CSF proteins have an
elevated level of brain expression, it is likely that they originated
from the brain as opposed to other tissues. Thus, using only the
brain elevated proteome, we were able to focus this study on
likely CNS-derived proteins. We created numerous sequence-
based features for these proteins and trained two machine
learning models using CSF proteins of varying stringency
(Figure 1). These classification models were able to distinguish
between CSF secreted and non-CSF secreted brain proteins, and
major differences that elucidate the biological processes leading
to the secretion of brain proteins to its proximal fluid were
identified. Subsequently, we applied this novel model to the
larger brain detected HPA proteome as well as a set of CSF
proteins identified by targeted affinity proteomics instead of
mass spectrometry (Figure 1). We confirmed that a model
trained on healthy CSF proteomics data can be applied to
identify disease biomarkers by utilizing Alzheimer’s Disease
(AD) studies and known biomarkers as an example.

Figure 1. Workflow highlighting the curated data sets and trained classification models. The brain elevated HPA proteome was annotated regarding
protein presence in CSF. The resulting data set of CSF and non-CSF brain proteins was used to train the full CSF classification model. By following the
same data curation but only including CSF proteins detected in at least half the studies, a high confidence CSF model was trained. The models were
applied to two data sets: the brain detected HPA proteome and a set of novel CSF proteins identified by PEA. HPA − Human Protein Atlas; PEA −
proximity extension assay.

Table 1. Included CSF Proteomics Studies to Establish Healthy CSF Proteome

Study name
Reported CSF

proteins
Included CSF

proteins CSF sample source
Female:male subject

ratio
Median subject age in

years Ref.

Macron2018A 3379 3379 Commercial pool of “normal” CSF N.A. N.A. 7
Macron2020 3174 3174 Commercial pool of “normal” CSF N.A. N.A. 16
Zhang2015 3256 2513 Patients undergoing spinal

anesthesia
7:7 28 (24−50) 17

Guldbrandsen2014 3081 2484 Patients undergoing spinal
anesthesia

8:13 61 (19−87) 18

Macron2018B 2281 2281 Commercial pool of “normal” CSF N.A. N.A. 19
Schutzer2010 2630 2067 Healthy volunteers 8:3 28 (24−55) 20
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■ EXPERIMENTAL SECTION

Data Set Curation
Healthy CSF Proteome. To curate a comprehensive

proteome of healthy human CSF, previously published CSF
proteomics studies were searched and included based on the
following requirements: 1) Healthy CSF samples, i.e., without
any known diagnoses of neurological disease, were measured; 2)
The study was exploratory, not targeted; 3) The study provided
a high coverage of the CSF proteome by detecting a minimum of
1000 proteins; 4) The full data set and peptide count were
publicly available. These specifications led to the inclusion of six
CSF proteomics studies,7,16−20 which are summarized in Table
1. The combined list of unique proteins amounted to the full
CSF proteome. A high confidence CSF proteome was derived by
only including CSF proteins detected in at least half, i.e., three, of
the studies. Detailed information about data retrieval and
curation is provided in the supplement.

Alzheimer’s Disease CSF Proteome. A CSF proteome of
AD was curated to compare the CSF proteome in health and
disease and corroborate that neurological disease does not
systematically affect which set of proteins is present in the CSF,
but rather alters the abundance of proteins. As AD is a well-
researched neurological disease, multiple studies were available
that compared the CSF protein abundances of AD patients with
those of healthy controls. Three exploratory mass spectrometry
studies21−23 that respectively identified more than 1000 CSF
proteins were identified (Table S1). Further details on the data
retrieval can be found in the Supporting Information.

Annotated Brain Elevated Proteome. To focus the
development of our predictor on protein secretion from the
brain to CSF, we limited the included proteins of the healthy
CSF proteome to those present in the human brain elevated
proteome data set, which was downloaded from the HPA
(version 21.0).24,25 The HPA also provides information about
the average gene expression within the brain. Of the 2709
proteins of the brain elevated HPA proteome, 2546 proteins
with a known and unique Uniprot ID were kept. For entries that
mapped to more than one Uniprot ID, only the first identifier
was retained. Entries with no associated canonical protein
sequence or a sequence containing nonstandard amino acids
were discarded. Human proteins that have never been detected
by any mass spectrometry study according to the ProteomicsDB
were excluded as for these proteins it would not be possible to
conclude if they are not identified by mass spectrometry studies
because of their absence or undetectability.26,27 Subsequently,
2079 brain elevated proteins were retained. We annotated this
filtered brain elevated HPA proteome as CSF secreted (positive
class) and as non-CSF secreted (negative class) if the proteins
were present or absent in the CSF proteome (Figure 1). A
second annotation used the high confidence CSF protein set to
define the positive class correspondingly, while the negative
(non-CSF) class was kept the same.
Gene Ontology Term Enrichment Analysis
Gene ontology (GO) term enrichment analysis was performed
using PANTHER (http://www.pantherdb.org/).28 The list of
892 CSF proteins was used as the target set, and the filtered brain
elevated HPA proteome of 2079 proteins was used as the
background set to identify enriched and depleted GO terms in
the CSF brain protein set. PANTHER successfully mapped 884
and 2053 proteins of the target and background set, respectively.
Fisher’s Exact test was used to test for statistical significance. The
false discovery rate was set at .05.

Feature Generation

We generated a collection of protein (sequence) properties, so-
called features, to characterize the proteins in our data set and to
train a classifier on. We derived features directly from the
canonical amino acid sequence: proportions of each amino acid
type, the protein’s physicochemical properties, and instability
index.29 Additionally, the results of previously published,
sequence-based prediction tools for each protein regarding
secondary structure and disorder,30 signal peptides,31 glyco-
sylation sites,32,33 subcellular localization,34 transmembrane
regions,35 and glycophosphatidylinositol (GPI)-anchors36

were included. The PROSITE protein domain database and
the ScanProsite tool were used to identify group enriched
sequence pattern motifs and annotate the motif-containing
proteins.37,38 The use of sequence-based features largely
obtained from prediction tools was preferred over curated
database annotations to limit the annotation bias in our results.39

However, curated protein annotations of ectodomain shed-
ding40,41 and extracellular vesicle (EV) association27 were taken
from previous studies on these properties and investigated to
support the interpretation of our model’s findings. Note,
however, that these latter annotations were not included in
the feature data set used for training the machine learning model.
A detailed description of the feature generation process is
provided in the Supporting Information.
Training, Testing, and Interpreting the Predictor

The annotated brain elevated HPA proteome was used to build a
machine learning model for the CSF protein secretion
prediction. The entire model training workflow described
hereinafter was performed both for the full CSF and the high
confidence CSF annotations respectively and was carried out
using the Python module Scikit-learn.42 First, the data was
randomly split into a training (80%) and a hold-out test (20%)
set. All continuous features were scaled, and the training set was
balanced to ensure the same number of proteins in the CSF and
non-CSF class. We wished to exclude uninformative features to
attain a prediction model as simple as possible. Logistic
regression with L1 regularization was implemented, as this
model allows the weight of feature coefficients to be set to zero,
effectively performing feature selection. To determine the
optimal degree of regularization, 10-fold cross-validation of
the training set was used to find an optimal regularization
parameter C for the model. A C value of 0.5 led to the smallest
set of features without a drop in the model performance. The
entire training set was subsequently used to produce a trained
classifier that is able to distinguish between CSF and non-CSF
proteins based on the generated features. The held-back test set
provided an estimate how well the trained model would perform
on unseen proteins that were not considered during model
optimization and training.43 The classifier outputs a probability
score between 0 and 1 for each protein, with a higher value
indicating a stronger probability for this protein to belong to the
positive class, i.e., to be secreted from the brain to CSF. The
threshold of the model’s predicted probability to be scored as
positive (CSF secreted) is set at 0.5. A probability score between
0 and 0.5 indicates that a protein belongs to the negative class
and is thus predicted not to be secreted to CSF. Model
performance was measured by AUC. Feature importance was
studied by extracting the feature weight coefficients of the
trained models. A higher absolute coefficient value indicates a
higher importance for the model.
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Model Comparison

We compared the predictions on the hold-out test set from our
model to DeepSec,14 a body fluid-specific protein secretion
predictor utilizing neural networks. DeepSec was trained on
6260 CSF proteins collected from previous studies, while the
non-CSF proteins were collected from Pfam-defined protein
families that are not present in the positive CSF protein set. Note
that the training data used by DeepSec is not publicly available;
thus, potential overlap between the proteins DeepSec was
trained on and the proteins we tested on could not be removed.
Proteins for which we wished to compare model performance
were submitted to the DeepSec Web server (https://bmbl.bmi.
osumc.edu/deepsec/index.php/Home/Index/index.html), and
the predicted probability for CSF secretion was obtained for
each protein. The model performance was compared by the
AUC and sensitivity.
Application of the Prediction Model

Prediction on the Brain Detected Proteome of the
Human Protein Atlas. To evaluate how well the model
generalized toward all proteins known to be expressed in the
brain, features were also generated for the entire brain detected
proteome of the HPA (version 21.0).24,25 The proteome is
composed of 16,507 proteins, of which 16,021 were mapped
successfully to a known Uniprot ID. For a fair evaluation of our
model’s generalizability, we removed all proteins that are part of
the brain elevated HPA proteome from the brain detected HPA
proteome, as the model has already seen the brain elevated
proteins during training and testing. We removed non-mass
spectrometry detectable proteins according to ProteomicsDB;26

this left 12,583 proteins in the data set. The brain detected HPA
proteome was overlapped with our CSF proteome to count the
number of CSF studies in which a protein was found in the same
manner as described for the brain elevated HPA proteome. The
model was then applied to the brain detected HPA proteome to
receive predicted probabilities regarding CSF secretion. For
comparison of differences in abundance and expression
distribution, data from PaxDB44 was used to annotate proteins
regarding their average brain abundance; annotations regarding
RNA tissue distribution were taken from the HPA.

Prediction on CSF Proteins Detected by Affinity
Proteomics. We wished to confirm that the trained classifier
is able to identify CSF proteins that can only be detected by a
targeted approach despite being trained on protein annotations
from untargeted mass spectrometry. Successful prediction of
such CSF proteins would corroborate that the model truly
learned signals of CSF secretion instead of mass spectrometry
detectability. A recent study by Del Campo et al.45 measured
hundreds of CSF proteins in a large cohort of dementia patients
by proximity extension assay (PEA). PEA is an antibody-based
technology with high sensitivity and medium multiplex
capabilities46 which has previously been suggested to be used
complementarily with untargeted mass spectrometry for
biomarker discovery.47 We collected the study’s confidently
detected CSF proteins and examined our model’s predicted
probability for these proteins with a focus on the novel detected
CSF proteins, i.e., the proteins not found in the CSF proteome
collected from exploratory mass spectrometry studies.

Prediction on Established Alzheimer’s Disease Bio-
markers. To demonstrate the potential of a machine learning
approach to identify the presence of biomarker candidates in
CSF, we investigated whether known CSF biomarkers of AD
would be predicted as secreted with our approach. A
confirmation of established biomarkers would increase the
confidence in the model to be able to select novel biomarkers.
Seventeen AD biomarkers were collected from recent re-
views.48−50 We then removed these proteins from our brain
elevated proteome, if present, to allow for a fair evaluation of our
classifier. The classification model was retrained in the same way
as described above. The newly trained model was then used to
obtain the predicted probabilities for the AD biomarkers.

■ RESULTS
Studies of healthy CSF were combined to define the full and high
confidence CSF proteome. We annotated the brain elevated
HPA proteome regarding its presence in CSF, created relevant
features for these proteins, and trained a machine learning model
to correctly classify CSF and non-CSF secreted brain proteins.
To understand the processes of protein secretion to CSF,
features important for differentiation between the CSF and the

Figure 2. CSF brain proteome. (A) Integration of six different mass spectrometry studies leads to a CSF proteome composed of 5344 unique proteins.
Increasing the minimum number of CSF studies that a protein has to be found in leads to smaller but higher confidence CSF proteomes. (B) The
average expression of brain elevated proteins according to the HPA is significantly lower in the non-CSF protein group (red) compared with the CSF
proteins (CSF1+, light blue). Average expression is even higher in the CSF proteins present in all six studies (CSF6+, light green). HPA − Human
Protein Atlas.
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non-CSF class were identified. To illustrate our model’s utility,
we applied it to the brain detected HPA proteome and an affinity
proteomics detected protein set.
CSF Composition Variability

From the six included mass spectrometry studies of healthy CSF
(summarized in Table 1), 5344 unique proteins were identified
in at least one study and thus comprise our full CSF proteome
(Figure 2A). While we did not perform a systematic review
search, the comprehensiveness of the CSF proteome was
affirmed as no single study added more than 10% of novel
unique proteins to the full proteome. Note that 2017 proteins
were identified in only one of the six studies. Of those, 1125
(21.05% of the entire data set) were identified by a single
matched peptide, increasing the risk that these proteins were
falsely identified from mass spectrometry experiments. This
issue is especially prevalent when combining the results from
multiple proteomics studies.51 If only high confidence CSF
proteins that were detected in three or more studies were
included, the fraction of proteins identified by a single peptide
drops to 0.07%, starkly limiting the possibility of spurious
protein identifications. There is high interstudy variability with
overlaps of the identified proteins ranging between 61% and
90% (Figure S1A). Integration of multiple CSF proteomics
studies thus enables curation of a more comprehensive and high
confidence CSF proteome compared with single study results.

Further, we investigated if a systematic bias in CSF protein
presence exists in neuropathology, as it would limit the
application of a machine learning model trained on the healthy
CSF proteome for the selection of disease biomarker candidates.
We compared the composition of the healthy CSF proteome
with the AD CSF proteome (Figure S2A). The overlap increases
from 87.26% in the respective full CSF sets to 99.06% in the high
confidence CSF sets. A pairwise comparison of the relative
overlap of identified proteins for each study with the other
included healthy and AD CSF studies showed no systematic
difference in protein overlap between healthy CSF studies and
AD CSF studies (Figure S2B). These results indicate that the
CSF protein set is not systematically different in studies of
disease, and we thus continued with the healthy CSF proteome
for subsequent steps.
CSF Annotation of the Brain Elevated Proteome

The overlap between brain elevated and CSF proteome
increases when including only CSF proteins detected in multiple
studies (Figure S1B). This observation indicates that the
constant subset of the CSF is increasingly composed of CNS-
derived proteins, while the heterogeneity between CSF studies
stems from other sources, i.e., plasma-originating proteins.

The HPA provides brain expression levels based on mRNA
transcript detection for the brain elevated proteome.24 In Figure
2B the expression of different subsets of the brain elevated HPA
proteome is shown. The lower average expression of the non-
CSF proteins suggests that low abundance may impede
detection in mass spectrometry studies. Additionally, the
proteins detected in all six studies (CSF6+) show an even
higher average expression in comparison to the CSF proteins
found in any study (CSF1+). This finding is in line with the
known bias of mass spectrometry against lowly expressed
proteins.10

Gene Ontology Term Enrichment Analysis

Previous studies have performed a GO term enrichment analysis
of their CSF proteome.7,16 As the entire human proteome was

used as the background set in these studies, CNS-related terms
were significantly enriched. Here, we performed a GO
enrichment analysis using the brain elevated HPA proteome
as the background set to discover over- and under-represented
GO terms in the CSF secreted brain protein set. In summary, the
enrichment analysis suggests that CSF secreted brain proteins
are associated with adhesion function, the membrane, and the
extracellular space. Brain-confined proteins are more likely to be
located in the nucleus and perform a function related to
nucleotide-binding. The full results of the GO term enrichment
analysis can be found in Table S2.
Classification Model Performance

For each protein in our brain elevated HPA proteome an
expansive set of features was generated, which are described in
detail in the Experimental Section and the Supporting
Information. Based on the features, a logistic classifier (also
known as a logistic regression model) was trained to distinguish
between the positive (CSF secreted brain proteins) and negative
classes (non-CSF secreted brain proteins). Evaluation on a held-
out test set produced an AUC of 0.81, clearly indicating that
there is a discrepancy between the two classes to be learned from
the included features (Figure 3).

As stated earlier, the full CSF proteome might contain falsely
discovered proteins, because of the large fraction of single-
peptide identifications. Wrongly annotated proteins add “noise”
to the data, which hinders machine learning models from
discerning biologically relevant signals. Additionally, proteins
that cannot be detected routinely in CSF and require specific
conditions to be detected would not constitute good fluid
biomarkers. Thus, we investigated if limiting the model to learn
only from high confidence CSF proteins would improve the
accuracy. CSF proteins that were detected in only one or two
studies were removed from the data all together; thus, the non-
CSF secreted class remained unchanged. The AUC increased to
0.89 for the held-out test set using the high confidence CSF
model (Figure 3). The stronger discrepancy between non-CSF

Figure 3. Model performance on the test set. The ROC-AUC plot
illustrates how well the two trained prediction models perform on their
respective held-back test sets. The high confidence CSF model
performs better, indicating that ambiguous proteins were filtered out.
AUC − area under the curve; ROC − receiver operating characteristics.
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and CSF proteins indicates that ambiguous proteins were
removed when CSF proteins detected in a small number of
studies were excluded. Prediction of CSF secretion is evidently
possible with our approach, especially for high confidence
annotations.
Model Comparison with DeepSec
The performance of the high confidence CSF model and
DeepSec was compared for the 368 proteins used as the hold-out
test set (Table 2). Our model performs better on the held-out
test set with an AUC of 0.89 compared to an AUC of 0.82 of
DeepSec.

Analysis of the Most Important Classification Features

One major advantage of a simple classification algorithm is the
rather direct readout of a feature’s importance to the model’s
decision. In the case of a logistic classifier, the feature importance
is related to the learned feature coefficients: a higher absolute
coefficient value indicates a higher importance. A positive value
indicates correlation with the positive class (CSF secreted), and
a negative value indicates correlation with the negative class
(non-CSF secreted). The 20 most important features of the high
confidence CSF model are shown in Figure 4A.

The presence of a signal peptide within the protein’s sequence
is a highly important feature utilized by the high confidence CSF
model to identify secreted proteins (Figure 4A). This relevance
is expected as it is a cellular indicator to secrete the protein.
Glycosylation sites are also found more frequently in CSF
secreted proteins (Figure 4B), as glycosylation is part of the
conventional secretion pathway involving the endoplasmic
reticulum and the Golgi apparatus.52

The subcellular localization of a protein, e.g., in the nucleus,
the Golgi apparatus, or the extracellular space, is highly
important for correct classification of CSF and non-CSF brain
proteins. Examining the distribution of predicted subcellular
locations illustrates the differences between CSF secreted and
non-CSF secreted proteins (Figure 4C). The stronger

Table 2. Performance Comparison of the High Confidence
CSF Classification Model and DeepSec on the Held-Back
Test Set of the High Confidence CSF Trained Model and the
Novel Set of CSF Proteins Identified by PEA

Model
High confidence

CSF DeepSec

Accuracy metric AUC Sensitivity AUC Sensitivity

Hold-out test set (368 proteins) 0.89 76.00% 0.82 72.00%
PEA CSF proteins (197 proteins) − 75.13% − 71.57%

Figure 4. Features most important for classification. (A) The highest absolute feature coefficients of the high confidence CSF model indicate which
features are relevant for the model’s decision-making. (B) Features associated with the conventional secretion pathway of the cell, e.g., the presence of a
signal peptide and glycosylation sites in the protein sequence, are more common in CSF secreted proteins. (C) The proportions of predicted
subcellular localizations show clear differences between the CSF and non-CSF group. (D) While proteins with one predicted transmembrane region
are much more likely to be found in the CSF, the opposite is true for proteins with a high number of transmembrane proteins. HC-CSF − high
confidence CSF; TM − transmembrane.
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association of CSF proteins with the cell membrane, the
extracellular region, and the Golgi apparatus is evident, as the
trend becomes stronger in the high confidence CSF protein set.
In contrast, the CSF proteome contains only a small fraction of
proteins of the nucleus and the mitochondrion compared to the
non-CSF proteome.

Interestingly, the presence of transmembrane regions as a
binary feature is positively correlated with CSF secreted
proteins, while the number of transmembrane regions shows a
negative correlation. To understand this apparent paradox, we
investigated the fractions of CSF and non-CSF proteins per
number of transmembrane regions. Figure 4D illustrates three
observations: 1) Proteins without any transmembrane region
are slightly more often retained in the brain (i.e., non-CSF); 2)
One transmembrane region is strongly associated with the
protein’s presence in CSF; 3) If a protein has many
transmembrane regions, correlation with the non-CSF class
becomes stronger again. These observations are even more
evident in the higher confidence CSF. Although initially it might
seem intuitive that proteins with a transmembrane region are
restricted to the brain, our findings might be explained by
fragments of a membrane protein’s extracellular domain easily
leaking into the CSF, by ectodomain shedding, or by membrane
association with EVs that can be found in all body fluids. To
investigate the latter two circumstances, we utilized data sets on
ectodomain shedding and EV-associated proteins and examined
their overlap with CSF and non-CSF proteins. Both ectodomain
shedding and EV-associated proteins are highly over-repre-
sented in CSF secreted proteins, indicating that both processes
are relevant for presence of brain proteins in CSF (Figure S3).
Note that these annotations were not included in the prediction
model, as they cannot be considered sequence-based.

We identified three motifs that are enriched in CSF brain
elevated proteins and three motifs that are enriched in non-CSF
brain proteins. Associated with the CSF class are the EGF-like
domain signature 1, EGF-like domain signature 2, and the
Cadherin domain signature. In the non-CSF class, we identified
the G protein-coupled receptors family 1 signature, the Zinc
finger C2H2 type domain signature, and the “Homeobox”
domain signature. While none of these patterns are associated
with a great number of proteins, enrichment in their respective

protein group is strong and is still observed in the higher
stringency data sets (Figure S4). These motifs affirm the
properties of CSF and non-CSF brain proteins: EGF domains
are found in membrane-associated and extracellular proteins.53

Cadherins are known to be glycosylated and involved in cell−
cell adhesion processes through their extracellular domain.54,55

G protein-coupled receptors are firmly incorporated into the
membrane through their seven transmembrane regions.56 Both
the Zinc finger and “Homeobox” domain are involved in
nucleotide binding.57,58

Model Prediction on the Brain Detected Proteome

Machine learning approaches can be utilized to understand the
systematic differences between two groups of interest.
Ultimately, however, the aim of training a classification model
is to apply it to novel data and utilize the predictions to guide
future research.

We explored how well our model, which was trained on the
brain elevated HPA proteome (2079 proteins), performed on
the brain detected HPA proteome (14,662 proteins). Note that
while brain detected proteins are expressed in the brain, their
origin when detected in CSF is less certain, as these can be
expressed highly in other tissue(s) as well. Nevertheless, the
model should be able to identify the proteins with the potential
to be secreted from the brain to the CSF. To evaluate the
model’s performance more fairly, we removed the proteins
present in the brain elevated HPA proteome used during
training from the brain detected HPA proteome, leading to the
model being applied to 12,583 proteins with 3679 of these
overlapping with our full CSF proteome (Figure 1). In Figure 5
the predicted probability scores for the brain detected proteome
are displayed for the full and the high confidence CSF model,
respectively. The CSF proteins were partitioned based on the
number of studies of the healthy CSF proteome in which the
protein was found. Both models assign a higher probability to
CSF proteins than to non-CSF proteins. It is apparent that the
models are more confident about the proteins for which the
evidence of CSF presence is the strongest, i.e., the proteins that
are routinely found in CSF studies. Proteins that have been
identified in only one study are more often predicted as non-
CSF proteins, again indicating that this subset might contain

Figure 5. Model performance on the brain detected HPA proteome. Predicted probability of the full CSF and high confidence CSF model on proteins
detected in the human brain that have not been utilized for previous training and testing. Proteins with a probability score of >0.5 are predicted as CSF
secreted. Both models are most confident about proteins that have been detected in a higher number of CSF studies. Proteins not identified in CSF are
consistently predicted as brain confined. The high confidence model predicts a large fraction of ambiguous proteins (marked in gray) as brain-confined.
HPA − Human Protein Atlas.
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falsely identified proteins as well as proteins that are
inconsistently present in CSF and thus would not constitute
favorable biomarker candidates. Noticeably, the probability
score for proteins identified in one or two studies drops in the
high confidence CSF model (shown in gray in Figure 5). This
observation highlights that if ambiguous proteins are not
presented to the prediction model during learning, it classifies
them as negative. Many of the proteins that were identified in
only one or two studies thus show similar properties as non-CSF
proteins instead of CSF secreted proteins. This indicates that
many of these proteins are indeed false positive identifications in
the mass spectrometry experiments, only detectable under ideal
conditions, or blood-originating proteins instead of true CSF
secreted proteins. The classification model generalized well to
this larger brain proteome suggesting its use to guide biomarker
selection for proteins that were not part of the brain elevated
proteome.

To better understand misclassification of our model, we
investigated false negatively predicted proteins, i.e., proteins that
were detected in CSF by proteomics studies but with low
probability to be CSF secreted according to the prediction
model. We were able to retrieve average brain abundance values
for 7796 out of the 12,583 proteins from PaxDB; RNA tissue
distribution classification from the HPA was available for the full
protein set. Comparison of average abundance and RNA tissue
distribution suggests that the falsely negative predicted proteins
are highly abundant in the brain and expressed widely across all
human tissues (Figure S5). Thus, these proteins might have a
high chance to reach the CSF (and other body fluids) owing to
their high concentration levels and ubiquity, despite not carrying
the typical properties of CSF secretion according to the machine
learning model.

Of strong interest for CSF biomarker research is the false
positive predicted proteins with a high probability score. If a
protein has not yet been detected in exploratory mass
spectrometry studies and is thus annotated as a non-CSF
protein but is confidently predicted to be secreted to CSF by our
model, this might indicate that the protein is present in CSF but
is not easily detected by mass spectrometry. An obvious reason
might be low abundance, which would require ultrasensitive
methods to measure this protein in a complex matrix. We
provide the probability score of our models for almost every

protein in the human proteome including information on its
presence in the included CSF studies, the brain detected and the
brain elevated HPA proteome (Table S3).
Prediction on CSF Proteins Detected by Affinity Proteomics

As the CSF annotations that the model was trained on solely
derived from the results of untargeted mass spectrometry-based
proteomics studies, we examined if proteins identified by a
targeted affinity proteomics approach, especially those of low
abundance, are correctly predicted as well. Del Campo et al.
reported 642 proteins that were measured with high confidence
in CSF by PEA.45 All but a single protein could be matched to a
unique Uniprot ID and were retained. While some overlap exists
between this PEA set of CSF proteins with the high confidence
CSF set curated by mass spectrometry, the PEA-based workflow
identified 197 novel CSF proteins (30.73% of the full PEA
protein set) that are not part of the high confidence CSF set
(Figure 1). Using reported protein abundances of the integrated
brain data set of PaxDB, a clear difference in abundance between
CSF proteins identified by mass spectrometry and by PEA is
found (Figure 6A). PEA thus was able to identify part of the low
abundance CSF proteome. The full and high confidence CSF
models correctly identify 88.14% and 85.34% of the PEA CSF
proteins, respectively (Figure 6B). Importantly, the models still
perform well on the subset of novel CSF proteins, as the high
confidence CSF model still predicts 75.13% correctly. This
performance highlights that the machine learning approach can
predict the low abundance CSF proteins not detected by mass
spectrometry. Many of the false positive predicted proteins
according to the mass spectrometry-based CSF annotations will
be actual CSF proteins detectable by targeted approaches. Note
that because PEA measures a predefined subset of proteins, no
negative protein set can be defined to compare the model
prediction with. The performance of DeepSec on the novel PEA-
detected subset of CSF proteins was assessed as well (Table 2).
DeepSec correctly predicts 71.57% of these CSF proteins.
Prediction on Established Alzheimer’s Disease Biomarkers

To illustrate the potential to select biomarker candidates by
incorporating machine learning-based predictions regarding
protein secretion, we trained a model on the brain elevated HPA
proteome annotated in the same manner as described earlier but
with a list of 17 AD biomarkers removed before training. This

Figure 6. Model performance on proteins identified by affinity proteomics. (A) Proteins detected solely by PEA and not mass spectrometry have a
lower average brain abundance according to PaxDB. (B) The classification models perform well on the CSF proteins identified by affinity proteomics,
identifying the majority of them. Importantly, the models are able to correctly predict low abundance proteins that are potentially only identifiable by
targeted approaches. PEA − proximity extension assay; PPM − parts per million.
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new model was trained using the same features but has not
“seen” the AD biomarkers during training, which allows
determination of how well it predicts these proteins without
having knowledge about their presence in CSF beforehand. We
included 15 proteins that have been suggested as fluid CSF
biomarkers in AD, as well as two imaging protein biomarkers
that are detected in positron emission tomography (PET) scans
of the brain. Note that while these two proteins, SV2A and
TSPO, are protein biomarkers, they are not necessarily expected
to be present in CSF as they are not fluid biomarkers. The
predicted secretion scores for these 17 biomarkers are shown in
Figure 7. The model predicted the majority of fluid biomarkers
as CSF secreted, i.e., with a score of >0.5. Interestingly,
annotating the biomarkers regarding the cellular process they
reflect illustrates that the three fluid CSF biomarkers not
predicted correctly, Neurofilament light chain (NfL), GFAP and
VLP-1, are all associated with neuronal injury. This observation
indicates that the model will struggle to identify proteins that are
present in CSF because of brain cell death. This circumstance is
not surprising as apoptosis and disintegration of brain cells
would lead to a nonselective movement of proteins to the
surrounding fluids. The low secretion probability predicted for
the PET biomarkers emphasizes that this model could guide
identification of proteins that are recognized to be of interest in
brain tissue proteomics studies but are unsuitable to be
translated to fluid biomarkers. This use case of established
fluid biomarkers of AD confirms the utility to identify candidates
based on the model’s probability score. Thus, future studies with
the aim to select and validate novel proteins as biomarkers could
benefit from the incorporation of the model prediction scores.

■ DISCUSSION
To identify urgently needed novel CSF biomarkers, a deeper
knowledge of brain protein secretion and leakage processes will
be of great help. Interpretable machine learning is a valuable
approach to widen our understanding as well as to discover
novel biomarker candidates that might be difficult to detect by
the conventional workflow, i.e., using “bottom up” proteomics,
because of their low abundance in CSF. Utilizing information

gained from prediction tools as the one presented here is a rapid,
effortless and cost-effective approach to support biomarker
candidate identification and selection.12

Here, we built a CSF-specific protein secretion prediction
model, using a curated CSF proteome data set and the brain
elevated HPA proteome, which provides valuable insights for
fluid biomarker research. Our predictor is able to distinguish
between CSF secreted and non-CSF secreted proteins, with an
AUC between 0.81 and 0.89 depending on the stringency used
to define the CSF proteome. Our model outperformed the deep
learning-based DeepSec predictor on two independent test sets.
Interpretation of the model gave insights into the properties that
distinguish CSF and non-CSF proteins, including signal
peptides and subcellular localization. Finally, we demonstrated
the generalizability of this model for the brain detected
proteome and for proteins detected by targeted, sensitive
technology.

This study confirmed the high heterogeneity between
different CSF studies that can be explained by a manifold of
factors including differences in biology, sampling, and
technology.4,6,59 While we only included proteins of CSF
samples that were deemed healthy, the true absence of any
neurological disease from a CSF sample is difficult to determine.
Thus, it was essential to confirm that protein presence in CSF is
not systematically different in disease (Figure S2). We provide
the largest publicly available collection of healthy CSF proteins,
as the integration of several studies provides higher proteome
coverage. Note that while the CSF data set reported by DeepSec
is larger (6260 proteins), it has not been made publicly available.
Wrongly included proteins were less likely to appear in our high
confidence CSF set. The positive effect of data filtering on model
performance affirmed the importance of a clean data set for
successful implementation of machine learning approaches.
Correct predictions on a larger brain proteome (Figure 5), as
well as proteins identified by a workflow other than untargeted
mass spectrometry (Figure 6) indicate that our model
generalizes well and can thus be used to characterize new
proteins of interest regarding their suitability as a fluid CNS
biomarker. The provided model results could be used to exclude

Figure 7. Predicted CSF secretion probability of established biomarkers of Alzheimer’s Disease. A model was trained on the high confidence CSF data
set but with a list of 17 AD biomarkers removed. The model correctly predicts 12 out of 15 CSF biomarkers as being secreted to the CSF, many with a
very high probability. Colors indicate the process the biomarker is associated with, illustrating that the model struggles to identify biomarkers of
neuronal injury as CSF secreted. Two known PET biomarkers are predicted as non-CSF proteins. The prediction corroborates why for these two
imaging biomarkers no assay for measurement in CSF is established. AD − Alzheimer’s Disease; NfL − neurofilament light chain; Ng − neurogranin;
PET − positron emission tomography.
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unfavorable candidates and to identify very strong candidates
before moving to targeted, sensitive technologies to validate
these proteins.

While the conventional protein secretion pathway clearly
contributes highly to the content of the CNS-derived CSF
proteome (Figure 4), our results implicate additional mecha-
nisms, such as ectodomain shedding and association with
extracellular vesicles (Figure S3). While membrane-associated
proteins might initially not appear as good biomarker
candidates, this study strongly suggests otherwise. The results
are in line with reports on a few established membrane-
associated CSF biomarkers, e.g., the ectodomain shedding
protein TREM2.60 Adhesion proteins were also identified as a
specific group of interest based on GO term and motif
enrichment results. Their potential as biomarkers for neuro-
degenerative disease has already been reported.61,62 Our results
strongly imply that nucleotide-interacting proteins rarely
constitute good fluid CSF biomarkers, which may explain the
difficulty to develop fluid biomarker tests for the frontotemporal
dementia-related protein TDP-43.63

Limitations of our approach and thus of the model’s
applicability have to be considered when interpreting results.
The use of a simple machine learning approach as well as only
sequence-based features might limit the accuracy of the model.
It is important to keep in mind that while features derived from
other machine learning prediction tools are usually more
comprehensive, they might not be as accurate as observations,
e.g., from mass spectrometry studies. However, to circumvent
annotation bias and lost interpretability,15,39 we actively decided
against other strategies as the research aim included biological
interpretation. Nevertheless, as a deep learning-based predictor
did not perform better than our model, the prediction task
investigated here might not warrant the use of such sophisticated
models because of the limited amount of data available. Still, a
drawback of our approach is the extensive feature generation
required for the model. While we do provide the probability
scores for almost the full human proteome (Table S3),
prediction on a novel sequence would require effort beforehand
to engineer the features. The predictions for known AD
biomarkers (Figure 7) indicate that the model would struggle
to identify CSF proteins that reach the fluid because of general
cell disintegration during apoptosis. As this process would not be
selective for a specific protein group, the model is not able to
learn any signal. It is thus important to consider knowledge
about the pathological processes associated with the disease of
interest when inspecting the predicted probabilities.

A more in-depth analysis on the peptide, instead of protein,
level could give insights into the specific proteoforms present in
CSF, i.e., specific splicing isoforms or post-translationally
modified residues. As biomarkers can be proteoform-specific,
with phosphorylated tau presenting one of the hallmark AD
biomarkers,1 this detailed information would provide further
insights. The development of a fragment- or residue-specific
predictor of CSF presence would therefore be an interesting way
to build on this study.

The biological insights derived from the model can be easily
understood by biomarker researchers without the need for
strong machine learning domain knowledge. To the best of our
knowledge, such an in-depth analysis of the differences between
CSF-secreted and brain-confined proteins has not been done
previously.

■ CONCLUSIONS
While biomarker research has been able to make immense
progress in recent years because of advances in mass
spectrometry-based discovery proteomics, approaches to aug-
ment these results should still be pursued. Effort must be put
into identifying so far potentially overlooked candidates that
could improve the diagnosis and treatment of patients. This
study provides one approach to increasing our knowledge of
brain-to-CSF protein secretion and can support the search for
the next fluid CNS-derived biomarkers for neurological diseases.
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