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Abstract

Prenatal exposure to toxic metals is linked to numerous adverse birth and later-in-life outcomes. 

These outcomes are tied to disrupted biological processes in fetal-derived tissues including 

the placenta and umbilical cord yet the precise pathways are understudied in these target 

tissues. We set out to examine the relationship between metal concentrations in umbilical 

cord and altered gene expression networks in placental tissue. These novel relationships were 

investigated in a subset of the Extremely Low Gestational Age Newborn (ELGAN) cohort 
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(n=226). Prenatal exposure to 11 metals/metalloids was measured using inductively coupled 

plasma tandem-mass spectrometry (ICP-MS/MS) in cord tissue, ensuring passage through the 

placental barrier. RNA-sequencing was used to quantify >37,000 mRNA transcripts. Differentially 

expressed genes (DEGs) were identified with respect to each metal. Weighted gene co-expression 

analysis identified gene networks modulated by metals. Two innovative mixtures modeling 

techniques, namely principal components analysis and quantile-based g-computation, were 

employed to identify genes/gene networks associated with multi-metal exposure. Individually, 

lead was associated with the strongest genomic response of 191 DEGs. Joint lead and cadmium 

exposure was related to 657 DEGs, including DNA Methyl Transferase 1 (DNMT1). These 

genes were enriched for the Eukaryotic Initiation Factor 2 (EIF2) pathway. Four gene networks, 

each containing genes within a Nuclear Factor kappa-light-chain-enhancer of Activated B Cells 

(NFkB)-mediated network, were significantly increased in average expression level in relation to 

increases in all metal concentrations. All four of these metal mixture-associated gene networks 

were negatively correlated with important predictors of neonatal health including birth weight, 

placenta weight, and fetal growth. Bringing together novel methodologies from epidemiological 

mixtures analyses and toxicogenomics, applied to a unique cohort of extremely preterm children, 

the present study highlighted critical genes and pathways in the placenta dysregulated by prenatal 

metal mixtures. These represent potential mechanisms underlying the developmental origins of 

metal-induced disease.
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1. Introduction

Exposure to even trace amounts of toxic metals (e.g. cadmium (Cd), lead (Pb), and mercury 

(Hg)) and metalloids (e.g. arsenic (As)), during pregnancy is a major public health problem 

worldwide (Michelsen‑Correa et al. 2021). In the United States (U.S), toxic metals are 

ubiquitous contaminants. For example, among reproductively aged women, inorganic As 

(iAs) and Cd in urine, and Pb and Hg in blood were detected in 97.8, 87.9, 99.0 and 

86.9% of samples (Bulka et al. 2019). Prenatal exposure to metals is associated with 

acute adverse perinatal outcomes, such as preeclampsia, preterm birth, and low birth 

weight (Ferguson et al. 2013; Rosen et al. 2018; Rager et al. 2020). Early-life exposure 

to toxic metals is also implicated in the Developmental Origins of Health and Disease 
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(DOHaD) with long-lasting effects documented on growth and metabolic health (Gardner 

et al. 2013; Kupsco et al. 2019), immune regulation (Cao et al. 2016; Farzan et al. 2016), 

and cognitive function (Sanders et al. 2015). Notably, infants born extremely preterm are 

especially vulnerable to developing many of these later-in-life outcomes (Kuban et al. 

2016; Goedicke‑Fritz et al. 2017). Given the prevalence of metal exposure and the severity 

of the impacts, understanding the underlying biological mechanisms of metal-induced 

developmental effects remains an urgent public health need.

Dysregulation of critical biological pathways in the placenta, particularly pro-inflammatory 

pathways, represents one such potential mechanism. The placenta is the master regulator 

of the intrauterine environment, responsible for the transfer of nutrients, waste, and gases 

as well as hormonal regulation of the maintenance of pregnancy (Nelson and Myatt 2020). 

There are numerous, interconnected mechanisms by which trace metals may alter gene 

expression in the placenta. For instance, some trace metals may alter the conformation 

of critical proteins involved in transcription or translation, and/or upregulate transcription 

factors that have cascading effects, or influence epigenetic processes (Blanchard and 

Cousings 1997; Ryu et al. 2015). Among these mechanisms, metal-responsive placental 

epigenetic patterning, leading to upregulation/downregulation of key biological pathways 

is coming to the forefront as a mechanism of interest for both immediate neonatal health 

as well as DOHaD related outcomes (Marsit 2016). For example, prenatal exposure to As, 

Cd, Hg, and Pb exposure has been linked to CpG methylation in the placenta in human 

cohorts (Martin and Fry 2018; Tung et al. 2022). (Payton et al. 2020; Santos et al. 2020). 

In particular, inflammatory processes, which are in part under epigenetic control, are posited 

as one of the critical mediating biological mechanisms connecting metal exposure and 

associated adverse outcomes (Leviton et al. 2015; Ferguson and Chin 2017).

Over the last decade, improved analytical precision and capacity in the generation of high-

dimensional molecular data and statistical advancements in bioinformatics have made it 

more feasible to assess -OMICs data in relation to toxic exposures (Everson and Marsit 

2018; Martins et al. 2019). Mirroring the leaps in bioinformatics approaches, the field 

of environmental epidemiology has made recent strides to overcome statistical barriers to 

assessing the effects of multiple exposures (Hamra and Buckley 2018; Gibson et al. 2019). 

This is particularly critical when it comes to assessing the effects of metals because they 

frequently co-occur, especially in highly contaminated areas (Zota et al. 2011). Moreover, 

metals may act synergistically or antagonistically with one another to produce different 

biological effects in mixtures than those for single metals alone (Adebambo et al. 2015; 

Everson et al. 2017). However, environmental mixtures methods are not often utilized 

in the toxicogenomics setting, particularly in human cohort studies. This is related to 

the challenges of high dimensionality that exist both with regards to exposure measures 

as well as with the -OMICs data collected. Few studies have conducted mixtures-based 

toxicogenomic assessments in the placenta (Deyssenroth et al. 2018), and no study to our 

knowledge has done so utilizing cord tissue to measure trace metal exposures. Assessment in 

this biospecimen ensures the placenta was directly exposed to metals (Rager et al. 2020).

In the present study, we set out to test the hypothesis that inflammation-related genes 

in the placenta would display altered expression in relation to cord tissue metal 
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concentrations, both individually and in mixtures. Innovatively bringing together data 

dimension reduction techniques, mixtures modeling and toxicogenomics approaches, we 

examined the multidimensional relationship between 11 metals/metalloids and 30,000+ 

genes in placenta in a unique cohort of children born extremely preterm, a population 

particularly susceptible to the developmental effects of environmental chemicals. Our 

results confirm metal-associated inflammation-related gene expression in the placenta, thus 

providing critical information for understanding the role of placental molecular changes 

in the connection between early-life metal exposure and the developmental origins of metal-

associated disease.

2. Materials and Methods

2.1 The ELGAN cohort.

The Extremely Low Gestational Age Newborn (ELGAN) study is an ongoing, multi-site, 

prospective cohort study originally designed to assess developmental brain abnormalities 

in children born extremely preterm (O’Shea et al. 2009). Eligible infants were liveborn at 

less than 28 weeks’ gestation between 2002–2004 at one of the 14 participating sites in 5 

different states (North Carolina, Massachusetts, Michigan, Illinois, Connecticut). No specific 

exclusion criteria were applied and 83% of eligible infants were enrolled. The Institutional 

Review Board at each site approved the study procedures, and all mothers provided written 

informed consent. Gestational age was estimated using fetal ultrasound, self-reported last 

menstrual period, and/or neonatal intensive care unit records. At enrollment, a structured 

questionnaire collected self-reported information on sociodemographic data and medical 

information was obtained from medical records. Placental and umbilical cord samples 

were collected at delivery. Overall, n=1,249 mothers of n=1,506 infants were enrolled 

and constitute the parent ELGAN study. From this parent study, children were followed 

prospectively, and among those who survived to age 10, a representative sample of 411 

placental samples was selected for the measurement of gene expression. Of these, n=253 

also had umbilical cord tissue samples available that were analyzed for a suite of trace 

metals.

Due to the selection of extremely preterm infants, the ELGAN cohort has a large proportion 

of multiple births (e.g., twins, triplets). The inclusion of multiple infants born to the 

same mother would violate the independence of observations assumption required for 

later statistical modeling given the shared prenatal environment. Therefore, we selected all 

singletons for inclusion and then randomly selected one infant from each set of multiples 

to be included in the present study. This filtering removed n=27 subjects, leaving a study 

population of n=226 (Figure 1).

2.2 Umbilical cord tissue collection and measurement of trace metal concentrations.

A total of 8 metals (barium, (Ba), Cd, copper (Cu), Pb, manganese (Mn), Hg, strontium (Sr), 

zinc (Zn)) and 3 metalloids (As, antimony (Sb), selenium (Se)) were targeted for analysis 

and measured in cord tissue using inductively coupled plasma tandem-mass spectrometry 

(ICP-MS/MS). Note that while As, Sb, and Se are technically metalloids, with properties of 

both metals and non-metals, for ease of reading they will henceforth be referred to as part of 
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the collective term “metals.” Within an hour after delivery of the infant, two 1 cm segments 

of the umbilical cord were collected using sterile technique with a stainless-steel scalpel 

blade. These segments were placed into separate cryostorage vials and immersed into liquid 

nitrogen for transport to a −80 °C freezer before being shipped to the Wadsworth Center for 

analysis. On receipt at the Wadsworth Center, umbilical cord samples were accessioned per 

standard laboratory procedure and stored at −80 °C pending analysis. Samples were thawed 

and sectioned into ~0.4 g pieces using high-purity tantalum tools that were fabricated 

in-house for use in trace element analysis. All umbilical cords were rinsed with double-

deionized (DDI) water to remove superficial blood and placed in a 13 mL acid-washed 

tube. The samples were freeze-dried to constant mass using a slow 5-step program to ensure 

thorough removal of water content. Each batch of samples was digested in concentrated, 

double-distilled, HNO3 using a Microwave Assisted Reaction System (MARS 6, Matthews, 

NC) with closed “XPress” vessels and the “One-Touch Animal Tissue” method. Digests 

were diluted to ~10 g with DDI water and stored at 4 °C pending analysis. At the time 

of analysis, tissue digests were further diluted with a reagent containing internal standards 

with a final HNO3 concentration ~10% (v/v). A method was developed and optimized to 

analyze the cord tissue samples on an Agilent 8900 ICP-MS/MS equipped with a SPS 4 

autosampler and an Octopole Reaction System (ORS) with axial acceleration technology. A 

collision cell gas (He) was used to reduce polyatomic interferences on 65Cu, 66Zn, 78Se, and 
88Sr. The reaction gas O2 was used to mitigate interferences on 55Mn, 75As, 111Co, 121Sb, 
202Hg. In O2 gas mode the elements As and Sb were monitored as 75As16O and 121Sb16O, 

respectively, i.e., mass shifted. Pb was monitored as Σ206, 207, 208Pb, to account for the 

natural variation in the relative abundance of stable isotopes for Pb. The final optimized 

method was validated using two Standard Reference Materials (SRM) from the National 

Institute of Standards and Technology (NIST): NIST SRM 1577b Bovine Liver and NIST 

SRM 1577c Bovine Liver. Two other SRMs, NBS 1577 Bovine Liver and SRM 8414 Bovine 

Muscle, were used for additional quality control. The SRMs were freeze-dried, digested, 

and analyzed alongside the umbilical cord samples. In addition, recovery values for sample 

spikes (typically within ±20%), duplicates (typically agreement to within ±20%), blanks, 

and calibration curve robustness were all carefully monitored throughout the study. The 

method limit of detection (LOD) for each of the 11 trace metals measured was: As (0.42 

ng/g), Ba (8.5 ng/g), Cd (0.32 ng/g), Cu (0.074 μg/g), Hg (0.79 ng/g), Mn (0.010 μg/g), 

Pb (2.6 ng/g), Sb (0.88 ng/g), Se (0.10 μg/g), Sr (0.039 μg/g), Zn (1.4 μg/g). All samples 

had detectable levels for Mn, Cu, Zn, As, Se, Sr, Ba, and Pb. Detection frequency for Sb, 

Hg, and Cd was 94, 97, and 98%, respectively, for the 253 cord tissue samples analyzed. 

Samples at or below the LOD were imputed as LOD/ (2), as is commonly implemented in 

environmental chemistry data (EPA 2000).

2.3 Placental tissue collection and measurement of gene expression.

Methods for the collection of placental tissue samples and assessment of placental gene 

expression within the ELGAN cohort have been described in detail elsewhere (Payton et 

al. 2020). In summary, <1 g placental biopsy samples were removed from the base of the 

chorion and stored in sterile 2 mL cryovials in a −80 °C freezer. Segments (0.2 g) were 

extracted using a sterile dermal curette and were then washed in 1x PBS (Fisher Scientific, 

Waltham, MA) to reduce any potential blood contamination, snap frozen in homogenization 
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tubes and placed on dry ice. A sterile stainless-steel bead (Qiagen, Germantown, MD) 

in RLT + lysis buffer (Qiagen) with the TissueLyserII instrument (Qiagen) was used 

to homogenize the tissue segments, which were then stored at 80 °C until nucleic acid 

extraction. The AllPrep DNA/RNA/miRNA Universal kit (Qiagen) was used to extract RNA 

molecules 18 nucleotides and greater. RNA quality was determined using LabChip (Perkin 

Elmer, Waltham, MA) to generate RNA integrity numbers (RIN). Genome-wide mRNA 

expression was determined using QuantSeq 3′ mRNA-Seq Library Prep Kit (Lexogen, 

Vienna, Austria) and RNA-sequencing libraries were pooled and sequenced (single-end 50 

bp) on one lane of the Illumina Hiseq 2500 (Illumina, San Diego, CA). Libraries were 

prepared by automation on Sciclone G3 (Perkin Elmer, Waltham, MA) to avoid potential 

batch to batch artifacts. The counts of sequencing reads were aligned to the GENCODE 

database (v.30) and organized using Salmon (v0.11.3) to give a total of n=37,268 unique 

human RNA transcripts (Harrow et al. 2012; Patro et al. 2017).

2.4 Statistical analysis.

2.4.1 Metals data descriptive statistics.—All statistical analysis was conducted in 

R (v4.0.2) (R Core Team 2020). Descriptive statistics, both overall and stratified by key 

sociodemographic variables, were calculated to describe the distributions of metals. Shapiro-

Wilks tests were used to test for normality in the cord metals data. Since none of the 

metals were normally distributed, Spearman rank correlation was used to evaluate pairwise 

correlations between the metals.

2.4.2 Placental mRNA data processing.—Prior to modeling, count data were first 

filtered to exclude universally lowly expressed transcripts, requiring that > 25% of the 

samples be expressed at signals above the overall median signal intensity (Payton et al. 

2020). This resulted in a total of n=11,402 mRNA transcripts included in analyses. QA/QC 

was conducted on the count data using both calculation and visualization of principal 

components via the prcomp function and hierarchical clustering, including calculation of 

distance metrics and visualization, using the hclust function in the stats R package (v4.0.2) 

(R Core Team 2020). Two samples were deemed to be outliers and were thus removed, 

resulting in a final analytic sample of n=224 (Figure 1). Count data were normalized 

utilizing the DESeq2 R package (v1.30.1) using median signal intensity (Love et al. 2014). 

The SVA R package (v 3.38.0) was used to account for potential batch effects and sources of 

sample heterogeneity (e.g. cell type proportions) with control probes empirically estimated 

using default parameters (Leek et al. 2012, 2020; Leek 2014). Two surrogate variables were 

calculated and included as covariates in all subsequent models (Figure S1, Additional File 

1).

2.4.3 Covariate selection.—Covariates were chosen a priori based on a directed 

acyclic graph approach. Selected covariates included maternal pre-pregnancy BMI 

(underweight, normal, overweight, obese), maternal smoking during pregnancy (yes/no), 

maternal SES score and infant sex (male/female). Maternal SES score was derived as 

a summative count of: less than college education, single marital status, eligibility for 

Supplemental Nutrition Assistance Program (SNAP), and public health insurance, as this 

measure has previously shown utility for predicting molecular signatures within the placenta 
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in the ELGAN cohort (Santos et al. 2019). Data were missing on seven subjects for the 

maternal SES score, seven subjects for maternal pre-pregnancy BMI, and four subjects 

for maternal smoking during pregnancy. Random forest modeling was utilized to impute 

covariates where they were missing utilizing the missForest R package (v1.4)(Stekhoven and 

Bühlmann 2012; Stekhoven 2013). The out-of-bag imputation error value for the normalized 

root mean squared error was 0.006, indicating good performance of the random forest 

imputation (Stekhoven and Bühlmann 2012).

2.4.4 Evaluation of metals/metal-mixtures to single-gene expression.—Using 

the DESeq2 method, negative binomial generalized linear models were used to identify 

genes with differential expression based on individual metal concentrations (at or above 

median versus below median concentration) (Love et al. 2014). To account for multiple 

testing, p-values were adjusted using the Benjamini and Hochberg (BH) procedure 

(Benjamini and Hochberg 1995).

In addition to analyses of individual metals, two different approaches were utilized within 

the DESeq2 framework to evaluate whether individual genes were differentially expressed 

in relation to metal mixtures. First, a principal components analysis (PCA) approach was 

used and second, an a priori toxic/essential metals grouping approach was used. PCA 

produces linear combinations (principal components, “PC”) of the input dataset (in this case, 

11 metals) to describe as much of the information as possible in fewer variables (Jolliffe 

and Cadima 2016). Each PC has loading values for each of the metals. A higher loading 

value means that the metal contributes more to the variability represented in that PC, and 

a positive loading means that metal’s variability is positively correlated with that PC. PCA 

was conducted using the prcomp function in the stats R package (R Core Team 2020). The 

PCs were used as independent variables in models fit using DESeq2 (Love et al. 2014). 

The first four PCs were evaluated; however, only the first two PCs (PC1 and PC2) were 

ultimately included in the final results as PC3 was associated with only two genes and PC4 

was not associated with any gene.

Following the PCA-based analysis, two different groupings of metals based on a priori 
knowledge of their toxicity were generated. The toxic metal index was the sum of the 

z-score scaled concentrations of As, Ba, Cd, Hg, Pb, Mn, Sb, and Sr. The essential metal 

index was the sum of the z-score scaled concentrations of Cu, Se, and Zn. These two index 

variables were used as independent variables in models fit using DESeq2 (Love et al. 2014). 

In the DESeq2-based analyses, differentially expressed genes were defined as those with 

BH-adjusted p-value<0.1.

2.4.5 Examination of the relationship between metals/metal-mixtures and co-
expressed gene networks.—To derive the co-expressed gene networks, we utilized 

WGCNA within the WGCNA R package (v1.70–3) (Langfelder and Horvath 2008). 

WGCNA is a technique used to identify modules of genes with highly correlated expression 

and to describe these clusters by calculating module eigengenes, representing the first PC 

of each module (Langfelder and Horvath 2008). The application of WGCNA by our team 

has been described in detail elsewhere (Rager et al. 2017, 2021). The minimum module size 
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was set to 30, as is suggested in in the WGCNA tutorial to encourage larger module sizes 

(Langfelder 2014).

First, to assess the relationship between co-expressed gene networks and single-metal 

exposure, linear regression models with the eigengene as the dependent variable and each 

metal as the independent variable were fit. The metal variables were quantized so that the 

resulting beta estimates represented the expected change in the eigengene value for a quartile 

increase in the metal concentration.

To evaluate the relationship of the co-expressed gene networks with metal mixtures, two 

approaches were utilized. First, for comparison to the single-gene analysis, PCs, described 

above, were used as independent variables in linear regression models with the eigengene 

as the dependent variable. Second, quantile-based g-computation was employed utilizing the 

qgcomp R package (v2.8.0) (Keil et al. 2020; Keil 2021). Quantile-based g-computation 

is a recently developed statistical method that employs a generalized-linear-model based 

implementation of g-computation (Keil et al. 2020). It provides estimates of the effect of 

simultaneously increasing all exposures (in this case, 11 metals) within a mixture by one 

quartile, which we refer to as the “overall mixture” association. It also calculates a weighted 

index of the component exposures. The components of the index can have negative or 

positive weights (that sum to 1) which represent proportional contributions to negative or 

positive partial effects from an individual metal (Keil et al. 2020). To emulate the a priori 
defined toxic index and essential index approach used in the single gene analysis, described 

above, we also fit models within the quantile-based g-computation framework using only 

the toxic metals (“toxic only mixture”), and then only essential metals (“essential only 

mixtures”). Therefore, the association for the toxic only mixture/essential only mixture can 

be interpreted as the expected change in the module eigengene value when all toxic metals/

essential metals are increased by one quartile. Metalmixtures significantly associated with 

eigengene values were defined as those with model pvalues <0.05.

2.4.6 Biological pathway analysis.—Canonical pathway and network enrichment 

analyses were carried out utilizing the Ingenuity Knowledge Database (Ingenuity Pathway 

Analysis, Qiagen, Redwood City, USA). For any metal with differentially expressed genes 

identified, all differentially expressed genes were used as input data. For any co-expressed 

gene network associated with a metal mixture, all genes within the network were used as 

input data. Over-represented canonical pathways were defined as those containing more 

genes than expected by random chance, as based on q-value calculated from a right-tailed 

Fisher’s Exact Test (significance defined at p<0.05). Networks were constructed based on 

known protein-protein interactions and other molecular interactions and were ranked based 

on right-tailed Fisher’s Exact test p-values, indicating the likelihood of observing a network 

containing at least the same number of proteins encoded by differentially expressed genes/

gene networks by chance in comparison to random selections of other genes within the 

genome.

2.4.7 Correlation between metal mixture-associated genes/gene networks 
and neonatal phenotypes.—In order to understand the potential clinical implications 

of the metal mixture-associated genes and gene networks, we evaluated correlations with 
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four critical phenotypes indicative of neonatal health: placental weight (grams), birth weight 

(grams), fetal growth and gestational age (days). Fetal growth was calculated as the birth 

weight for gestational age, z score transformed among all ELGAN participants. Genes 

were assessed for correlation with phenotypes if they were significantly differentially 

expressed in relation to a PC. Normalized counts derived from DESeq2 were used in the 

correlation analysis. Gene networks were assessed for correlation if they were significantly 

associated with the metal mixture in the quantilebased g-computation analysis and PC-based 

analysis. For the gene networks, the module eigengene value was used to correlate with 

the phenotype values. Spearman rank correlation was used given the non-normality of the 

module eigengene data with a significance threshold of p<0.05.

2.5 Data Availability.

Code and data used in this analysis are publicly available from the UNC Superfund 

Research Program GitHub page (https://github.com/UNCSRP/Metal-mixtures-modeling-

BW-gene-networks-PTB-placentas). mRNA count data are publicly available from the 

National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) 

repository under GEO series GSE154829.

Results

3.1 Study population characteristics.

General characteristics of the ELGAN participants included in the present study are 

provided in Table 1. Within this group, 59.3% of the mothers self-identified as White, 

29.6% as Black. The majority of participants were non-Hispanic. Most mothers did not 

smoke during pregnancy (91.2%). The majority of the mothers were healthy weight (51.8%), 

with only 6.6% of mothers being underweight and the remaining 41.6% being overweight or 

obese. The majority of mothers were also either married or cohabitating (77.45%), had some 

college education or more (58.85%), did not use public insurance (66.4%), and were not 

eligible for SNAP (88.1%). The n=226 cohort used in this study did not vary significantly 

in the proportions of any key clinical or demographic variables from the cohort in which 

placental gene expression is characterized (n=411) or the parent ELGAN cohort (n=1506) 

(Table S1, Additional File 2).

Overall distributions of metal levels in umbilical cord tissue are detailed in Table 2. Metal 

levels varied by socio-demographic variables in bivariate assessments (Table S2, Additional 

File 2). As, Cd, Pb, and Zn varied significantly by maternal race with As and Zn displaying 

the highest levels in White mothers and Pb and Cd having the highest levels in mothers who 

self-identified as Asian, Native American, Mixed race or Other (grouped together as “Other” 

due to small sample size). As, Ba, Cd, Hg, Pb, Sr, and Zn concentrations all significantly 

increased with increasing maternal age. Cd levels were higher in mothers who smoked, 

although this difference was not statistically significant. Zn significantly varied by maternal 

pre-pregnancy BMI with lower concentrations at extremes (ie. underweight or obese). No 

significant differences in metal concentrations were observed by fetal sex or maternal SES 

score, and only Pb levels differed between singleton and multiple pregnancies.
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3.2 Correlations between cord metals.

Many metal pairs were significantly correlated (Table S3, Additional File 2; Figure S2, 

Additional File 1). Specifically, 38 pairings (69% of 55 pairings) were significantly 

correlated (p<0.05) in a Spearman correlations test. Nearly all of these significant 

correlations were positively correlated, potentially indicative of shared sources of exposure. 

Only one pairing was negatively correlated: Se and Sb (Spearman rank: −0.170, p=0.01).

3.3 Single metal and metal-mixture associations with individual genes.

In the single metal analysis, across the transcriptome, Pb, Hg, and Mn demonstrated the 

greatest genomic response with 191, 95, and 37 significantly differentially expressed genes 

(DEGs), respectively (Table 3; Table S4, Additional File 2; Figure S3, Additional File 1). 

For each of these, the majority of DEGs demonstrated decreased expression with increasing 

concentrations of the metal, defined as genes demonstrating a log2(Fold Change)<0. Ba, Cd, 

Cu, and As all had fewer than 15 DEGs and null associations were observed for Sb, Se, Sr, 

and Zn.

We then examined the relationship between individual genes and metal mixtures using a 

principal components (PC)-based approach and an a priori groupings approach. Two PCs 

were identified that captured the variability in the levels of the 11 metals. PC1 displayed 

a profile distinguished through an inverse association with only Cd and highest positive 

loadings for Cu, Mn, Se, and Zn, indicative of a metal profile predominated by high levels 

of essential metals (Mn being essential at low doses). PC1 was associated with 40 DEGs 

(Table 3). Notably, this number of genes exceeded the findings for some of the single 

metals alone. PC2 displayed a profile with more variability of the direction of loadings 

across metals, with several essential metals, including Mn, Se, and Zn all having negative 

loadings and the strongest positive loadings being for Cd, Pb, and Sb, all toxic metals; 

thus, representative of a profile of high toxic metals and low essential metals (Table S6, 

Additional File 2; Figure 2A). In comparison to the results for the single metals and PC1, 

PC2 demonstrated a substantially larger genomic response (16.4 times as many genes as 

PC1), with 657 associated DEGs (Table 2; Table S4, Additional File 2; Figure 2B). Among 

all DEGs identified in response to PC1 or PC2, 94% were differentially expressed in relation 

to PC2.

Notable genes that were differentially expressed in relation to the PC2 included DNA 

Methyltransferase 1 (DNMT1) (log2FC= 0.228, BH-adjusted p-value <0.001), Insulin 

Like Growth Factor Binding Protein-1 (IGFBP1) (log2FC= 0.602, BH-adjusted p-value= 

0.06), Insulin Like Growth Factor-2 Binding Protein-1 (IGF2BP1) (log2FC= 0.092, BH-

adjusted p-value =0.07), INSIGF2 readthrough (INS-IGF2) (log2FC= 0.083, BH-adjusted 

p-value =0.05), Eukaryotic Translation Initiation Factor 2A (EIF2A) (log2FC= −0.249, 

BH-adjusted p-value= 0.06), and Eukaryotic Translation Initiation Factor 3 Subunit I 

(EIF3I) (log2FC= 0.341, BH-adjusted p-value= 0.002) (Table S4, Additional File 2; Figure 

2). Through pathway analysis of PC2 associated DEGs, Eukaryotic Initiation Factor 2 

(EIF2) Signaling (p=6.20×10−09) was identified as the topmost enriched canonical pathway 

and Gene Expression was identified as the topmost enriched molecular and cellular 

function (p=3.48×10−14). Furthermore, a notable significant biological network among 
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these genes included Nuclear Factor kappa-light-chain-enhancer of Activated B Cells (NF-
kB) as a central node (Figure 2C). Among the notable genes listed above, INS-IGF2 
and IGF2BP1 were both significantly negatively correlated with birth weight (INS-IGF2: 
−0.29, p=1.05×10−5; IGF2BP1: −0.23, p=4.72×10−4); fetal growth (INS-IGF2: −0.19, 

p=5.14×10−3; IGF2BP1: −0.16, p=1.77×10−2), and placenta weight (INS-IGF2: −0.14, 

p=3.9×10−2; IGF2BP1: 0.16, p=2.02×10−2), (Table S5, Additional File 2). INS-IGF2 was 

also negatively correlated with gestational age (−0.21, p=1.81×10−3), but IGF2BP1 was not 

(Table S5, Additional File 2). EIF3I was negatively correlated with birth weight (−0.24, 

p=3.05×10−4), gestational age (−0.16, p=1.66×10−2) and fetal growth (−0.19, p=5.07×10−3) 

and EIF2A was negatively correlated with birth weight (−0.17, p=1.23×10−2) (Table S5, 

Additional File 2). Overall, of the 657 DEGs associated with PC2, 505 were significantly 

correlated with birth weight, 322 with fetal growth and 213 with placenta weight (Table S5, 

Additional File 2).

We also assessed genome-wide individual gene expression in relation to two a priori defined 

indices: a toxic metal index and an essential metal index. When examining the genes that 

were differentially expressed in response to these indices, 35.6% of them were differentially 

expressed in relation to the essential metals index (62 DEGs) and the remaining 64.4% were 

differentially expressed in relation to the toxic metal index (112 DEGs). This mirrors the 

findings from the PC-based analysis, in which the predominantly essential metal loaded PC1 

had a weaker response than the predominately toxic metal loaded PC2. However, overall, 

the toxic metals or essential metals only indices appeared to underestimate the genomic 

response to metal mixtures in comparison to the combined toxic and essential metal profiles 

captured by the PCs. For example, PC2 was associated with 5.87 times as many genes as the 

toxic metal index. All DEGs for single metal and multi-metal-based analyses are detailed in 

Table S4, Additional File 2.

3.4 Single metal and metal-mixture associations with co-expressed gene networks.

We are mindful that genes operate as co-expressed networks rather than as independent 

units and for this reason, we utilized WGCNA to identify a total of 25 co-expressed gene 

networks, which ranged from including 3249 to 38 genes (Table S7, Additional File 2). 

Table S8 (Additional File 2) details the gene to module assignments. These co-expressed 

gene networks were used to calculate module eigengenes (ME) which were assessed for 

associations with single metals and metal mixtures using two approaches, a principal 

components-based approach (evaluating the association with PC1 and PC2) and quantile-

based g-computation approach.

Overall, we identified more significant changes in co-expressed gene networks when 

evaluating the association with the metal mixture compared to single metals alone. 

Regarding associations with single metals, Pb and Sb were significantly associated with 

the expression of ME23; however, no other metals were associated with any gene networks 

(Table S9, Additional File 2; Figure S4, Additional File 1). In contrast, four gene networks 

were identified as having significantly associated expression levels in relation to metal 

mixtures. Specifically, ME2, ME6, ME13 and ME14 were all significantly associated with 

the overall mixture that included all 11 metals in the quantile-based g-computation analysis 
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(Table S9, Additional File 2; Figure 3). In other words, when all 11 metal concentrations 

increased by a quartile, the average gene expression level of each of these co-expressed gene 

networks increased. In addition, ME14 and ME22 were significantly associated with the 

essential only mixture (Table S9, Additional File 2). No gene networks were associated with 

the toxic only mixture.

The overall mixture associations with ME2, ME6, ME13 and ME14 can be broken down 

into the partial positive and negative contributions by the individual metal components of the 

mixture. In each of these cases, the mixture association is positive overall, with an increase 

by one quartile of all metals corresponding to an overall increase in gene expression (Figure 

S5, Additional File 1). For ME2 and ME6, As, Hg, and Ba contribute negatively to this 

effect, acting in opposition to the overall association’s direction (Figure S5, Additional File 

1). For ME13, As, Pb, and Ba contribute negatively to the overall effect, with Cd, Cu, and 

Mn contributing in the same direction as the overall effect (Figure S5, Additional File 1). 

For ME14, Ba, Zn, and Mn contribute in the opposing direction to the overall effect (Figure 

S5, Additional File 1).

When utilizing PC1 and PC2 in relation to the gene networks, PC1 was associated with 

ME14 and ME13 and PC2 was associated with ME2 and ME6 (Table S9, Additional 

File 2; Figure 3). Therefore, across two different methods, four gene networks were 

associated with metal mixtures (ME2, ME6, ME13, and ME14) and are thus termed 

metal mixture associated gene networks. Notably, ME2 contained DNMT1, and one of 

the topmost enriched molecular and cellular functions among ME2 genes was Gene 

Expression (p=1.38×10−5). Moreover, for ME6 the topmost enriched canonical pathway 

was EIF2 signaling (p=2.07×10−6), mirroring the findings from the PCA for individual gene 

expression. Strikingly, across all metal mixture-associated gene networks, genes within the 

networks contained significant sub-networks with NF-kB as a central node, similar to the 

enriched biological network in genes responsive to PC2 (Figure S6, Additional File 1). All 

of the metal mixture-associated gene networks were significantly negatively correlated with 

birth weight and fetal growth (Spearman rank correlation p<0.05) (Table S10, Additional 

File 2). Three of the networks, ME2, ME6, and ME14 were also significantly negatively 

correlated with placenta weight, and two were significantly negatively correlated with 

gestational age (Table S10, Additional File 2; Figure S7, Additional File 1). The strongest 

correlations were observed for birthweight, shown in Figure 4.

4. Discussion

Exposure to trace metals during pregnancy is associated with pregnancy complications, 

adverse neonatal outcomes, and later-in-life disease (Rager et al. 2020). The adverse 

health effects tied to metal exposure are tightly linked to the placenta, where dysregulated 

expression of genes, particularly those involved in inflammatory processes, represents a 

potential underlying mechanism (Marsit 2016; Bommarito et al. 2017). Few studies have 

compared trace metals exposure with placental gene expression directly in this target 

biospecimen. In the present study, we integrated chemical measurements in umbilical 

cord and placental transcriptomic data within a subsample of the ELGAN cohort to 

examine the multidimensional relationship between >37,000 placental transcripts and 11 
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metals/metalloids. Mixtures modeling approaches identified the altered expression of genes 

involved in epigenetic processing (DNMT1) as well as inflammation-related pathways 

including EIF2 and NF-kB signaling. These pathways represent key targets for future 

intervention.

One particularly striking finding in this study was that DNMT1 was upregulated in relation 

to PC2, characterized by high levels of Pb, Cd, and Sb. This gene was also a member of 

one of the metal mixture-associated gene networks, ME2, which was functionally enriched 

for gene expression processes. Interestingly, in the only other human cohort study that 

has evaluated metal mixtures and placental genome-wide gene expression, a gene network 

enriched for gene expression processes was also associated with multi-metal exposure 

(Deyssenroth et al. 2018). DNMT1 is responsible for maintaining and repairing established 

DNA methylation, an epigenetic process that is critical for healthy development of the fetus 

and placenta (Bianco‑Miotto et al. 2016). While individual metals have been associated 

with altered DNA methylation in the placenta, few studies have assessed metal mixtures 

(Marsit 2016; Bommarito et al. 2017). A recent study that assessed maternal blood levels of 

metal mixtures and newborn cord CpG methylation found a suggestive interaction between 

As and Hg (Weyde et al. 2021). This type of synergistic effect of multi-metal exposure 

on gene expression is supported by toxicologic in vitro studies assessing metal mixtures in 

placenta (Adebambo et al. 2015). The upregulation of DNMT1 found in this study provides 

evidence for the hypothesis that metal-responsive gene expression is partly mediated through 

epigenetic mechanisms. This activation of DNMT1 may also have implications for DOHaD, 

as epigenetic alterations are believed to be a major mechanism driving early life influences 

on later life health (Marsit 2016). In fact, there is a growing literature demonstrating the 

role of DNA methylation as a mediator that transduces the effects of metals into neonatal 

and developmental disease (Maccani et al. 2015; Bozack et al. 2018). Therefore, our results 

and others point to a potential role for DNMT1 as an epigenetic master regulator of gene 

expression modulation in the placenta in relation to metal mixtures.

The mixtures approach also identified increased expression of IGFBP1, IGF2BP1, and 

INS-IGF2, genes that are implicated in inflammation regulation, in relation to PC2 (Lee 

et al. 1997; Leviton et al. 2019). High levels of IGFBP1 or IGF2BP1 in the placenta may 

reduce levels of insulin like growth factor −1 and −2 (IGF1 and IGF2), important fetal and 

placental growth factors, leading to reduced growth. Indeed, we found that IGF2BP1 and 

INS-IGF2 were negatively correlated with birth weight, fetal growth, and placental weight. 

Furthermore, neonatal IGFBP1 protein concentrations have been tied in the ELGAN cohort 

to severe fetal growth restriction, medically indicated preterm delivery as well as elevated 

inflammation in the neonate (Leviton et al. 2019). Thus, IGFBP1, IGF2BP1, and INS-IGF2 
may represent critical biomarkers of placental and/or neonatal inflammatory response in 

response to metal exposure and may act as a mediating mechanism between metal exposure 

and birthweight/fetal growth.

Two biological pathways were identified among the metal mixture-responsive gene 

networks, namely the NF-kB signaling pathway and the EIF2 signaling pathway. NF-kB is a 

master regulator of inflammation that controls over 400 inflammation- and apoptosis-related 

genes. This pathway plays critical roles during the implantation, maintenance of pregnancy, 
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and labor (Sakowicz 2018). The upregulation of NF-kB may also represent an underlying 

mechanism driving more global gene expression changes through its signaling cascade. 

We have previously identified the NF-kB signaling pathway as induced in newborns of 

As-exposed mothers (Fry et al. 2007). Relevant to this cohort of extremely preterm infants, 

the maintenance of pregnancy depends on the inhibition of NF-kB and dysregulation of NF-
kB during pregnancy may be implicated in pregnancy complications, such as intrauterine 

growth restriction, preeclampsia and preterm birth (Aban et al. 2004; Lindström and Bennett 

2005; Sakowicz 2018). Moreover, NF-kB has been identified as a critical master regulator of 

the relationship between neonatal inflammation and early-life brain damage that can lead to 

later-in-life impaired neurocognition among those born extremely preterm, thus providing a 

potential link to DOHaD outcomes (Leviton et al. 2015).

The results also highlighted genes that are part of the EIF2 signaling pathway in relation 

to multi-metal exposure. EIF2 signaling pathway is one of the main ways in which cells 

regulate translation initiation in response to stress (Shrestha et al. 2012). Importantly, EIF2 
signaling has been shown to be downregulated in response to toxic metal exposure in vitro, 

corresponding with our finding of downregulated expression of EIF2A with respect to the 

multi-metal PC (Shrestha et al. 2012). Importantly, alterations in EIF2 phosphorylation 

have been linked to placental inflammation, reduced cellular proliferation (required for 

healthy placentation) and intrauterine growth restriction and preeclampsia (Yung et al. 2008; 

Gaccioli et al. 2013). Thus, the finding of dysregulation of EIF2 and NF-kB signaling in 

response to prenatal metal mixtures has implications for both perinatal and developmental 

outcomes.

While this study is among the first to identify metals-mixture associated transcriptomic 

changes in the placenta, it is not without limitations. First, the ELGAN cohort is comprised 

of infants born extremely preterm. While this is a critical population to study given their 

vulnerability to environmentally-induced disease, the findings may not be generalizable to 

children born at term. Second, cord tissue is a powerful yet underutilized biospecimen 

for assessing prenatal chemical exposures making it challenging to make comparisons of 

the exposure levels recorded in this study to other populations. Nevertheless, from studies 

that have assessed cord tissue levels of trace metals, the levels in ELGAN are somewhat 

comparable, although our sample did have lower Pb and higher Zn levels overall compared 

to the literature (Sakamoto et al. 2013; Ni et al. 2018). Third, the ELGAN study did 

not record data on maternal diet during pregnancy which could represent a source of 

exposure to both metals and critical nutrients, particularly for certain food groups, such as 

seafood. Therefore, lack of nutritional data could represent a source of residual confounding. 

Lastly, selection bias is a possibility within this study given that a subsample of the overall 

parent cohort was used herein. Only infants who survived to age 10 have been included 

in the subsample used in this study, thus selecting for infants with perhaps less extreme 

pathologies.

5. Conclusions

In the present study, we used novel mixtures-based methodologies and toxicogenomics 

approaches to identify critical metal mixture-associated genes and biological pathways 
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in the placenta. Future research will investigate the relationships among these metals, 

placental pathways identified herein and health effects of the children in this prospective 

cohort, for whom there is now data up to 18 years of age. Of particular relevance to the 

DOHaD framework, the findings of disrupted genes and biological pathways involved in 

epigenetic processing (DNMT1) and inflammation (EIF2-signalling, NF-kB signaling and 

IGFBP1/IGF2BP1) provide plausible underlying mechanisms connecting metals and adverse 

perinatal and later-in-life outcomes.
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BH Benjamini-Hochberg

DEG(s) differentially expressed gene(s)

DNMT1 DNA Methyl Transferase 1

EIF2(A) Eukaryotic Initiation Factor 2 (A)

IGFBP1 Insulin Like Growth Factor Binding Protein 1

NF-kB Nuclear Factor kappa-light-chain-enhancer of Activated B Cells 

(“Nuclear Factor kappa B”)

ME module eigengene

MM metal mixture

WGCNA weighted gene expression analysis

PC(A) principal component (analysis)
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Highlights

• 37,000+ placental genes evaluated in response to 11 cord tissue metal 

concentrations

• Pb was associated with strongest genomic response in single-metals analysis

• Pro-inflammatory pathways, EIF2- and NF-kB, enriched in response to metal 

mixtures

• Expression of DNMT1, IGF2BP1, IGFBP1 was associated with multi-metal 

exposure

• Metal mixture-associated gene networks were correlated with birth weight
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Figure 1. 
Flow diagram illustrating the selection of analytic sample used for this study, a subgroup of 

the ELGAN study.
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Figure 2. 
The multi-metal PC (PC2) was associated with the expression of NF-kB enriched genes. 

(A) Plot demonstrating the individual loading values of metals onto the principal component 

2 (PC2) eigenvector, (B) Volcano plot demonstrating differentially expressed (BH p-value 

<0.1) genes in relation to the multi-metal PC, adjusted for maternal pre-pregnancy BMI, 

maternal smoking, maternal SES score and infant sex, with select significant genes 

highlighted, (C) a significantly enriched biological network identified in pathway analysis of 

genes that were differentially expressed in response to the multi-metal PC.
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Figure 3. 
Metal mixture associations with placental co-expressed gene networks. Beta estimates 

correspond to the expected average change in each module eigengene (ME) value for 

each placental co-expressed gene network with (1) a one quartile increase in the entire 

metal mixture (MM), (2) one unit increase in principal component 1 (PC1), and (3) one 

unit increase in principal component 2 (PC2). All estimates are adjusted for maternal 

pre-pregnancy BMI, maternal smoking, maternal SES score and infant sex. *= significant 

estimates (p<0.05).
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Figure 4. 
Spearman correlations between four metal mixture-associated gene networks and birth 

weight. Spearman’s rho and p-value are listed on each plot.
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Table 1.

Socio-demographic characteristics of the ELGAN sub-cohort analyzed in this study (n=226).

N (%)

Maternal race

White 134 (59.3)

Black 68 (30.1)

Other 21 (9.3)

Missing 3 (1.3)

Maternal ethnicity

Non-Hispanic 207 (91.6)

Hispanic 19 (8.4)

Maternal age

<21 25 (11.1)

21–35 155 (68.6)

>35 46 (20.4)

Maternal BMI a

Underweight (<18.5) 15 (6.6)

Normal weight (18.5 =< BMI <25) 117 (51.8)

Overweight (15.0 =< BMI <30) 41 (18.1)

Obese (>30) 53 (23.5)

Maternal smoking while pregnant a

No 206 (91.2)

Yes 20 (8.8)

Maternal marital status

Married or cohabitating 175 (77.4)

Single 51 (22.6)

Maternal education level

Less than college education 88 (38.9)

Some college education or more 133 (58.8)

Missing 5 (2.2)

Maternal public insurance use

No 150 (66.4)

Yes 73 (32.3)

Missing 3 (1.3)

Maternal eligibility for SNAP

No 199 (88.1)

Yes 24 (10.6)

Missing 3 (1.3)

Infant sex
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N (%)

Male 123 (54.4)

Female 103 (45.6)

Singleton pregnancy

No 70 (31)

Yes 156 (69)

Gestational age in weeks, (median (min, max)) 26.3 (23, 27.9)

a
based on imputed values following random forest modeling imputation. Pre-imputation, there was data missing on seven subjects for the maternal 

SES score, seven subjects for maternal pre-pregnancy BMI, and four subjects for maternal smoking during pregnancy.

Chemosphere. Author manuscript; available in PMC 2024 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Eaves et al. Page 27

Table 2.

Distributions of the concentrations of the 11 metals measured in cord tissue among the samples used in this 

analysis (n=226).

Metal Units Median Interquartile Range 25th percentile 75th percentile Minimum Maximum

As ng/g 4.59 4.10 3.30 7.40 1.28 70.65

Ba ng/g 81.05 73.35 55.95 129.30 17.50 3131.90

Cd ng/g 1.22 2.13 0.73 2.86 <0.32 4057.21

Cu μg/g 3.54 1.46 3.01 4.47 1.85 14.31

Hg ng/g 7.72 12.03 3.62 15.65 <0.79 96.36

Mn μg/g 0.34 0.12 0.29 0.42 0.10 1.70

Pb ng/g 15.75 20.55 9.20 29.75 <2.6 708.70

Sb ng/g 3.24 3.90 1.93 5.83 <0.88 360.93

Se μg/g 0.86 0.19 0.78 0.97 0.44 1.98

Sr μg/g 0.55 0.44 0.39 0.83 0.17 3.33

Zn μg/g 59.40 18.38 52.20 70.58 29.90 487.50
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Table 3.

Summary of differential expression analyses in relation to individual metals and mixtures, PC1, and PC2.

Metal Total number of DEGs Number of up-regulated DEGs Number of down-regulated DEGs

Arsenic 1 0 1

Barium 12 5 7

Cadmium 2 1 1

Copper 2 1 1

Mercury 95 5 90

Manganese 37 6 31

Lead 191 45 146

Antimony 0 0 0

Selenium 0 0 0

Strontium 0 0 0

Zinc 0 0 0

PC1 40 29 11

PC2 657 646 11

Toxic index 112 88 24

Essential index 62 56 6
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