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Bioinformatics led discovery of biomarkers related 
to immune infiltration in diabetes nephropathy
Shuo Wang, MDa,b, Shengwu Chen, PhDc, Yixuan Gao, MDc  , Hongli Zhou, PhDa,d,*

Abstract 
Background: The leading cause of end-stage renal disease is diabetic nephropathy (DN). A key factor in DN is immune cell 
infiltration (ICI). It has been shown that immune-related genes play a significant role in inflammation and immune cell recruitment. 
However, neither the underlying mechanisms nor immune-related biomarkers have been identified in DNs. Using bioinformatics, 
this study investigated biomarkers associated with immunity in DN.

Methods: Using bioinformatic methods, this study aimed to identify biomarkers and immune infiltration associated with DN. 
Gene expression profiles (GSE30528, GSE47183, and GSE104948) were selected from the Gene Expression Omnibus database. 
First, we identified 23 differentially expressed immune-related genes and 7 signature genes, LYZ, CCL5, ALB, IGF1, CXCL2, 
NR4A2, and RBP4. Subsequently, protein–protein interaction networks were created, and functional enrichment analysis and 
genome enrichment analysis were performed using the gene ontology and Kyoto Encyclopedia of Genes and Genome databases. 
In the R software, the ConsensusClusterPlus package identified 2 different immune modes (cluster A and cluster B) following the 
consistent clustering method. The infiltration of immune cells between the 2 clusters was analyzed by applying the CIBERSORT 
method. And preliminarily verified the characteristic genes through in vitro experiments.

Results: In this study, the samples of diabetes nephropathy were classified based on immune related genes, and the Hub genes 
LYZ, CCL5, ALB, IGF1, CXCL2, NR4A2 and RBP4 related to immune infiltration of diabetes nephropathy were obtained through 
the analysis of gene expression differences between different subtypes.

Conclusions: This study was based on bioinformatics technology to analyze the biomarkers of immune related genes in 
diabetes nephropathy. To analyze the pathogenesis of diabetes nephropathy at the RNA level, and ultimately provide guidance for 
disease diagnosis, treatment, and prognosis.

Abbreviations: DN = diabetic nephropathy, ESRD = end-stage renal failure, Imm-DEG = immune-related genes, KEGG = Kyoto 
encyclopedia of genes and genomes, LASSO = least absolute shrinkage and selection operator, MCs = mesangial cells, PPI = 
protein–protein interaction network, RAAS = renin–angiotensin–aldosterone system, SVA = alternative variable analysis, UACR = 
urinary microalbumin/creatinine ratio.
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1. Introduction
Diabetic nephropathy (DN), a microvascular condition 
linked to the development of diabetes, affects 30% to 40% 
of diabetic individuals. It is currently the main contributor 
to end-stage renal failure (ESRD).[1] Even with expensive 
treatments, such as dialysis and kidney transplantation, it 
is still feasible to live a long and healthy life. Patients with 
ESRD are at a higher risk of contracting various infec-
tions, anemia, mineral and bone abnormalities, and car-
diovascular issues.[2,3] Microalbuminuria, serum creatinine 

levels, estimated glomerular filtration rate, and urinary 
microalbumin/creatinine ratio are currently used to diag-
nose DN.[4] At the same time, other substances in the serum 
are also used to evaluate diseases. However, despite these 
strategies, diabetes nephropathy is still progressing relent-
lessly. The urgent demand for new treatment methods 
has prompted us to further investigate their underlying 
pathogenesis.[5,6]

Research has shown that DN is mainly caused by met-
abolic and hemodynamic variables.[7] However, inflam-
mation and immune cell infiltration have been shown to 
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be important factors in DN’s development of DN. Some 
researchers believe that some immune and inflammatory 
genes in the kidney cells of patients with diabetes and in 
animal models of the disease are upregulated. The increase of 
intracellular adhesion molecule-1 (ICAM-1), tumor necrosis 
factor (TNF), interleukin-1 and interleukin -6 and the infil-
tration and functional activity of macrophages, neutrophils, 
fibrosis and mast cell in the kidney and their functional activ-
ity are important driving factors of renal inflammation and 
fibrosis.[8–10] Over the past decade, many potential diagnostic 
markers have been discovered for this condition.[11] Serum 
TNF receptors 1 and 2 are significantly correlated with cer-
tain inflammation-related DN precocious glomerular lesion 
types.[12] Certain signaling pathways, such as MAP kinase 
and p38, can trigger an inflammatory response.[13,14] Urinary 
microalbumin/creatinine ratio and estimated glomerular fil-
tration rate are the only diagnostic markers that have been 
clinically useful.[15]

Bioinformatics has made it increasingly clear that human 
diseases are not caused solely by defects in one molecule. 
Instead, complex interactions between the molecules drive 
them. These complex interactions include various types of 
information.[16] They range from protein–protein interactions 
at the cellular-molecular level to related studies of gene reg-
ulation and metabolism, disease pathways, and drug–disease 
relationships.

This study aimed to identify the key genes and pathways asso-
ciated with immune infiltration in patients with DN. We will be 
able to better understand the molecular mechanisms behind DN 
at the system biology level by identifying key biomarkers for 
immune infiltration.

2. Materials and methods

2.1. Microarray data source

Five DN-related genetic datasets were obtained from the 
Gene Expression Omnibus database (GEO). They are 
GSE30528, GSE47183-GPL11670, GSE47183-GPL14663, 

GSE104948-GPL22945, and GSE104948-GPL24120. These 
5 datasets were combined to obtain average expression values 
when different probes pointed to the same gene. Batch effects 
can be eliminated using alternative variable analysis, which is 
available in R environments. 2D principal component analysis 
(second-degree principal component analysis) was used to ana-
lyze DN and normal samples, as well as distribution patterns in 
the microarray data.

2.2. Screening for differentially expressed immune-related 
genes (Imm-DEG)

The Immport database contains the Imm-DEG. |log2FC| >1.2 
to show differential gene expression results (P < .05), volcano 
map, and heat map were used. Identification of Imm-DEGs 
using cross DEG and immune genes.

2.3. Forest model and nomogram model construction

To predict the likelihood of DN, the model was trained using the 
least absolute shrinkage and selection operator (LASSO).[17] The 
model included candidate DEIRGs, and the LASSO algorithm 
was used to analyze the characteristic genes associated with DN. 
Equation (1) is a risk-score formula that predicts the likelihood 
of DN. This is based on a forest model.

2.4. Consistency cluster analysis

Consistent clustering is a resampling-based technique for iden-
tifying each member, its subgroup number, and validating the 
clustering. ConsensusClusterPlus was used to reliably cluster 
disease samples based on the DN expression data. This method 
allows for the discovery of immunological patterns based only 
on Imm-DEG. Clustering starts with number 2 being set and 
then increases one by one until the maximum number of cate-
gories is reached. The best number of clusters for the heat map 
is then selected.

Figure 1.  GEO data de-batching. (A) Gene expression level statistics of the dataset before de-batching. (B) Gene expression level statistics of the integrated 
dataset after de-batching. (C) Uniform manifold approximation and projection (UMAP) between datasets before de-batching. (D) UMAP between integrated 
datasets after de-batching.
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2.5. Different immunological models allow for the 
determination of DEG

R limma-pack was employed to screen differential genes within 
different immune mode subgroups to investigate the effects of 
immune mode on DN. Volcano and heat maps were used to 
determine the differential gene expression (|log2FC| >1.2 and 
P < .05).

2.6. Analysis of pathways and biological functions by 
enrichment

Gene ontology, is the most common method for large-scale 
functional enrichment research that covers biological pro-
cesses, molecular functions, and cellular components. The 
Kyoto encyclopedia of genes and genomes (KEGG) is a 
popular database that stores information about genes, 

Figure 2.  Immune-related genes and differentially expressed immune genes (Imm-DEGs). (A) DN related differentially expressed genes (DEGs) volcano plot 
with log2FoldChange in the horizontal coordinate and –log10(P-value) in the vertical coordinate. Red nodes indicate upregulated DEGs, blue nodes indicate 
downregulated DEGs, and gray nodes indicate genes that are not significantly differentially expressed. (B) Heat map of DN related DEG expression levels. (C) 
Immune gene versus DEG Venn diagram: blue represents immune genes, red represents DEGs. (D) Venn diagram of immune genes and upregulated DEGs: blue 
represents immune genes, red represents upregulated DEGs. (E) Venn diagram of immune genes and downregulated DEGs: blue represents immune genes, 
red represents downregulated DEGs. DN = diabetic nephropathy.

Figure 3.  Expression levels of Imm-DEGs in DN. Overall expression histogram of immune-related genes in DN patients: blue for control samples, red for dis-
ease samples, horizontal axis indicates genes, vertical axis indicates gene expression levels (**P < .01, ***P < .001, ****P < .0001). DN = diabetic nephropathy, 
Imm-DEGs = immune-related genes.
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biological pathways, diseases, and drugs. GO annotation 
analysis and KEGG pathway enrichment analyses of differ-
entially expressed genes using R’s clusterProfiler package pro-
duced a threshold of false discovery rate (P < .05) that was 
statistically significant.

2.7. Protein–protein interaction network (PPI)

To build a PPI network that was associated with differentially 
expressed genes (Imm-DEGs) and the determination of DEGs, 
we used the STRING database. To draw the PPI network model, 
use Cytoscape (v3.7.2).

Figure 4.  Construction of DN model. (A and B) Screening of gene signatures from Imm-DEGs using the LASSO algorithm. (C) Forest plot of gene signatures 
in DN patients. (D) Receiver operating characteristic (ROC) curve of predicted risk scores in DN diagnosis. (E) ROC curve of 7 gene signatures in DN diagnosis. 
DN = diabetic nephropathy, Imm-DEGs = immune-related genes, LASSO= least absolute shrinkage and selection operator.
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2.8. Identification and correlation between immune 
infiltrating cell types in diseases

RNA sequencing data can be used by CIBERSORT software to 
determine the number of immune cells in a sample. To calcu-
late 22 immune cell types from patients with different immune 
systems, we used CIBERSORT software in R software. The 
Wilcoxon rank-sum test was used to assess differences in the 
percentage of immune cells. Statistical significance was set at P 
< .05.

2.9. Western blot analysis

Radioimmunoprecipitation experiment lysis buffer compris-
ing 50 mmol/L Tris–HCl, pH 7.5, 150 mmol/L NaCl, 0.5% 
deoxycholate, 1% Nonidet P-40, 0.1% sodium dodecyl 
sulfate, 1 mmol/L phenylmethylsulfonyl fluoride and 1 μg/
mL protease cocktail was used to extract protein from cells 
and tissues. The protein content was determined using a 
bicinchoninic acid test kit. Protein samples (80 g/lane) were 
placed onto gels, separated using polyacrylamide gel elec-
trophoresis with 10% sodium dodecyl sulfate, and then 
transferred to polyvinylidene difluoride membranes. The 
membranes were then treated with anti-LYZ, anti-CCL5, 
anti-ALB, anti-IGF1, anti-CXCL2, anti-NR4A2, anti-RBP4 
or anti-tubulin antibodies at 4 °C for an overnight period. 
A secondary antibody was applied to the membrane after 

3 rounds of washing. Using improved chemiluminescence, 
certain signals were detected.

2.10. Statistical analysis

The results are presented in the form of a medium standard 
deviation. Statistical analyses were carried out with SPSS 17.0 
statistical software. The Student t test was used to evaluate 
the importance of experimental differences among groups. A 
P-value < 0.05 was assessed as statistically significant.

3. Results

3.1. Patients with DN have Imm-DEG expressed

This study used the data downloaded from the GEO database 
(Fig. 1). The original data were then removed from the batch 
processing effect to create an ensemble dataset that included 
34 DN and 35 control samples. In total, 152 differentially 
expressed genes (DEGs) were identified in this study (Fig. 2A 
and B). Figure 2C shows how Imm-DEG intersect with the dif-
ferentially expressed genes. Of these 23 Imm-DEGs, 14 were 
upregulated (Fig. 2D) and 9 were downregulated (Fig. 2E).

Histograms of ImmDEG expression levels in DN and control 
samples were plotted to analyze the overall expression (Fig. 3). 
Many genes were expressed at higher levels in DN samples than 
in normal samples.

Figure 5.  Correlation analysis of disease and 7 trait genes in normal samples: * represents correlation significance, and numbers represent degree of correla-
tion. (*P < .05, **P < .01, ***P < .001, ****P < .0001).
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The LASSO algorithm was used to identify 7 genes that sig-
nificantly influenced DN (Fig. 4A and B). The coefficients of the 
7 genes were used to calculate the gene expression (Fig.  4C). 
These coefficients were multiplied by the corresponding coef-
ficients to obtain the DN score (Fig. 4D). To predict DN, sub-
ject working characteristic (ROC) curves were also studied for 
7 gene traits. The results demonstrated the predictive power of 
each gene trait (Fig. 4E).

RiskScore = −0.118012217125475∗NR4A2
−0.44660450067611∗IGF1− 0.113265448051255∗ALB
+0.156287465082143∗LYZ+ 0.116627084968955∗CCL5
−0.148048710244105∗CXCL2− 0.00811871093947512∗RBP4

(1)

We examined the correlation between gene expression and 
the functional correlation of 7 trait genes. The functional 

correlation coefficient between CCL5 and LYZ expression was 
0.66. All samples showed that LYZ was negatively correlated 
with all other genes except CCL5. CXCL2 was also less cor-
related than other genes (Fig. 5).

3.2. Unique immunological model of genetic 
characteristics

The ConsensusClusterPlus package was used to create 2 
immunological models: cluster A and cluster B. This method 
also uses a consistent clustering algorithm based on 7 distinct 
genes (Fig. 6A–C). Cluster A contained 36 samples, whereas 
cluster B had 33 samples. A heat map of all the differentially 
expressed immune genes was created. There were significant 
differences between the 2 groups in terms of immune-related 
gene expression. CCL5 and LYZ were expressed in cluster A 

Figure 6.  Consistent clustering of genes characteristic of DN patients. (A) CDF cumulative distribution curve. (B) Area under the CDF curve. (C) Two sets of 
clustering heatmaps. (D) Heat map of the expression levels of 7 characteristic genes in 2 clusters: red for cluster A, blue for cluster B, red for high expression, 
and blue for low expression. (E) ROC curves of the 7 characteristic genes independently distinguish between cluster A and cluster B. (*P < .05, **P < .01, ***P 
< .001, ****P < .0001). DN= diabetic nephropathy.
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Figure 7.  Protein–protein interaction (PPI) networks. (A) Differentially expressed gene PPI network: yellow nodes indicate characteristic genes. (B) PPI network 
of Imm-DEG: yellow nodes indicate characteristic genes. (C) Results of characteristic genes. (D) Results of gene enrichment analysis in the DEG PPI network. 
(E) Results of gene enrichment analysis in the Imm-DEG PPI network. Imm-DEGs = immune-related genes.

Figure 8.  Analysis of differences between 2 different immune modes. (A) The abscissa is log2FoldChange; the ordinate is –log 10 (P-value); red nodes indicate 
upward-adjusted DEGs; green nodes indicate downward-adjusted DEGs. (B) Heat map of DEG expression levels in 2 clusters: blue for cluster A; red indicates 
cluster B; red indicates high expression; blue indicates low expression.
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more than in cluster B. However, cluster A expression levels 
were significantly higher than in cluster B. RBP4, ALB, IGF1, 
CXCL2, NR4A2, and CXCL2 were significantly lower than in 
cluster A (Fig. 6D). ROC curves for the 7 gene tag categories 
were also evaluated and showed good classification effects 
(Fig. 6E).

3.3. PPI immune gene network

We extracted PPI networks from DEGs, Imm-DEGs, and char-
acteristic genes to explore the relationships between differ-
entially expressed immune genes. The PPI network for DEG 
contained 472 paired interactions, 122 genes, and ALB was 
closely related to 46 DEGs. CCL5 was found to be associ-
ated with 16 DEGs (Fig. 7A). The PPI network of ImmDEGs 
also contained 65 interaction pairs and 23 genes, and ALB 
was closely related to 15 differentially expressed immune gene 
genes. CCL5 was associated with 11 differentially expressed 
Imm-DEG (Fig.  7B). Figure 7C shows that the PPI network 
for the characteristic gene included 7 interacting pairs as well 
as 6 genes. ALB is an important component of this network. 
Functional enrichment analysis using KEGG was performed 
to verify the functions and structures of the genes in the PPI 
networks. The results showed that genes from the PPI network 
could be found in the complement and coagulation, protein 
digestion, absorption, mesangial extracellular matrix receptor 
interaction, pantothenate, CoA biosynthesis, and PPAR sig-
naling pathways. Enrichment in pathways, such as the renin–
angiotensin system, is also shown (Fig. 7D). Imm-DEGs were 
involved in viral protein interaction and cytokine receptor 
interaction, cytokine cytokine receiver interaction, cytokine 
signaling pathway, TNF pathway, and cytosolic DNA-sensing 
pathway (Fig. 7E).

3.4. Comparison analysis of 2 immune models

A total of 516 DEGs were derived between modes A and B 
to analyze the differences between them. Cluster A had 256 
upregulated DEGs, whereas cluster A contained 260 down-
regulated DEGs. (Fig.  8A). These DEGs could distinguish 
between the 2 immune modes, as shown in the heat map 
(Fig. 8B).

We then compared the roles of DEGs between the immune 
modalities to determine their biological relevance. First, the 
DEGs were functionally annotated (Fig. 9A). KEGG pathway 
analysis revealed that these DEGs had functional annotations 
in the complement and coagulation pathways, PPAR signaling 
pathway, and tryptophan metabolism (Fig. 9B).

3.5. Differences in immune properties between the 2 
models

The CIBERSORT algorithm can be used to assess the degree 
of immune cell infiltration among different immune modalities. 
The CIBERSORT analysis showed that patients in group A had 
significantly lower levels than those in group B. These include 
resting CD4 T cell memory, native B cells, regulatory T cells 
(Tregs), resting NK cells, resting dendritic cells, and activated 
mast cells. (Fig. 10A). Cluster B had significantly lower levels of 
memory B cells, plasma, gamma delta T cells, resting NK cells, 
and activated mast cells (Fig. 10B).

The correlation between the immune cells from groups A and 
B was also calculated. The results showed that naive B cells were 
positively correlated with resting groups of T cells in CD4 mem-
ories resting, but significantly negatively correlated with plasma 
cells and B cell memory (P < .05, Fig. 10C). In group A, NK cells 
showed a significantly positive correlation with activated neu-
trophils and mast cells, but not in Group B (P < .05, Fig. 10D).

3.6. Western blot analysis

In vitro, we examined the expression of characteristic genes in 
RMCs that had been altered by high glucose. LYZ, CCL5, ALB, 
IGF1, CXCL2, NR4A2, and RBP4 had significantly different 
protein levels after 48 hours of incubation in HG media com-
pared to the groups that received regular glucose medium and 
mannitol medium (Fig. 11).

4. Discussion
High-throughput and microarray technologies are the main 
methods used to explore gene expression levels and improve our 
understanding of the intrinsic molecular mechanisms underlying 
complex diseases. ESRD is mainly caused by DN. Current treat-
ments do not provide sufficient control to stop the disease from 
progressing. Not all cases of diabetes progress to DN. Early 
treatment can help slow progression. A thorough understanding 
of the molecular and pathological mechanisms underlying diabe-
tes.[18] This will allow early diagnosis and treatment. Therefore, 
new treatment strategies are needed. High-throughput genomic 
data have been used extensively to understand disease mecha-
nisms and predict potential therapeutic targets. We performed a 
thorough analysis of 5 mRNA microarray datasets and identi-
fied 153 DEGs. We identified 23 Imm-DEG. Next, we validated 
a predictive model and screened for genes encoding LYZ, CCL5, 
IGF1, CXCL2, NR4A2, and RBP4. In vitro studies have shown 
that LYZ regulates glycosylation in the human proximal tubular 

Figure 9.  Functional analysis between 2 different immune modes. (A) Gene ontology (GO) functional enrichment analysis: ordinate is significant; the abscissa is 
the result of enrichment; node colors indicate biological processes (BP), cellular components (CC), molecular functions (MF). (B) Results of Kyoto encyclopedia 
of genes and genomes pathway enrichment analysis.
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Figure 10.  Immune properties between 2 different immune modes. (A) Accumulation of immune cell content of cluster A and cluster B: different colors indicate 
different immune cells; the horizontal axis is the patient ID. (B) Histogram of immune cell content: the horizontal axis represents 22 immune cells; the vertical axis 
represents the cell contents; red indicates cluster A samples; blue indicates cluster B samples. (C) correlation of immune cells in cluster A patients; (D) correlation 
of immune cells in cluster B patients: blue indicates negative correlation; red indicates a positive correlation.
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cells. This is important because it can control the release and 
production of inflammatory mediators as well as the recruit-
ment of macrophages to the inflammatory site. Renal biopsy 
studies in patients with various kidney diseases have shown that 
glomerular CCL5 positive cells are closely related to extracap-
illary lesions.[19] RBP4 expression may be affected by tubular 
volume or dysfunction. Human insulin sensitivity and glucose 
homeostasis can also be affected by RBP4 changes.[20,21]

However, experiments have not shown a direct correla-
tion.CX3CR1, EGF, and FOS are closely related to ImmDEG. 
CX3CR1 is upregulated in diabetic kidneys, and in streptozo-
tocin-induced mouse models of diabetes, CX3CR1 deficiency 
reduces extracellular matrix deposition, which in turn affects 
the expression of CCL2.[22] A and activation of Smad2/3 in the 
glomeruli of diabetic mice, thereby alleviating proteinuria and 
podocyte loss in diabetic kidneys. Studies have shown that the 
early stage of glomerular growth in diabetic rats is accompa-
nied by an increase in the expression of proto-oncogenes c-fos 
and c-jun[23]; Meanwhile, the peroxisome proliferator-activating 
receptor γ-activating compound thiazolidinedione prevents the 
activation of the high glucose-induced TGF-1 gene by interact-
ing with the activated protein kinase Cc-Fos-TGF-1 promoter 
cascade in mesangial cells (MCs)[24,25]; The study found that 
CXCL10 reduced collagen production by renal fibroblasts in 
response to high glucose and TGF-|A, suggesting that CXCL10 
can inhibit downstream signaling of the TGF-|A receptor 
pathway.[26]

The pathway was enriched with DEGs in KEGG analysis. 
Increasing evidence suggests that the complement system plays 
a role in the pathogenesis and progression of diabetic kidney 
disease. First, the pattern recognition molecule binds to sug-
ar-glycated proteins. This activates the lectin signaling pathway. 
Second, hyperglycemia may cause glycosylation and impairment 
of complement regulatory proteins. This could lead to a spon-
taneous complement attack by activating several complement 
pathways. Mannose-binding LECTIN is a pattern recognition 
molecule in the innate immune system that has been used to 
identify the possibility of disease.[27,28] The regulation and main-
tenance of glomerular filtration depend on the function of MCs. 
Abnormal proliferation of MCs can lead to accumulation of the 
mesangial extracellular matrix, which further promotes glomer-
ular dysfunction and kidney disease. As the kidneys are mito-
chondria-rich, energetic-demanding, and metabolically active 
organs, renal mitochondrial dysfunction can be a major patho-
logical factor in the occurrence of DN. Hypoxia occurs in the 
kidneys because of the contradiction between abnormal energy 
metabolism in diabetic patients and their high demand for ATP. 
Chronic hypoxia in the proximal tubules and other sites of the 
kidneys is believed to be the most common route by which DN 
develops into ESRD. Pantothenic acid, a precursor of coenzyme 
A, plays an important role in energy metabolism and mitochon-
dria. The A-ketoglutaric acid and pyruvate dehydrogenase com-
plexes, which are the main metabolic pathways in the TCA cycle, 
are key enzymes in the TCA cycle.[29,30] Studies have also shown 

Figure 11.  Western blot analysis of the protein levels in rat mesangial cells. LYZ, CCL5, IGF1, and CXCL2 had higher protein levels after being incubated in 
high-glucose medium (DN) than they had after being incubated in control group (CG). However, ALB, NR4A2, and RBP4 protein levels in DN were below those 
in CG.
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that 4 metabolites, dihydrouracil, and uridinepropionic acids, 
PA, and adenosine 3-,5ʹ-bisphosphate, are significantly reduced 
in patients with DN. This means that the biosynthetic pathway 
for pantothenic acid and coenzyme A plays an important role 
in the pathological and physiological processes of DN.[31] In the 
treatment of DN, adjuvant therapy with renin–angiotensin–
aldosterone system (RAAS) inhibitors dilates bulbar arterioles 
and prevents progressive albuminuria and renal dysfunction by 
blocking the production of ACE inhibitors (ANGII) or ANGII 
on ANGII type 1 receptors. Hyperglycemia enhances RAAS 
activation, including increasing environmental levels of RAAS 
mediators in the kidney, and also leads to ANGII type 1 recep-
tor localization, expression, and/or changes in sensitivity, result-
ing in a weakened hemodynamic response to exogenous RAAS 
stimulation, resulting in corresponding symptoms.

Consensus clustering was performed using the 
ConsensusClusterPlus software. It is important to discuss molec-
ular typing when analyzing large samples. In this study, consen-
sus clustering was used to group the transcriptome data and 
divide the samples into distinct clusters. These results revealed 
that there was a clear difference in the molecular patterns of 
the transcriptome and proteome among samples from different 
clusters. This allowed for molecular typing of disease samples. 
Similar studies have been conducted previously. The scientist 
obtained large numbers of lung squamous cell carcinoma sam-
ples from TCGA database and performed consistent clustering 
analysis on the tumor samples to determine the 3 subtypes. The 
results showed that subtype II has a poor prognosis for clinical 
survival. The clinical survival prognosis for subtype II was poor, 
and that for subtypes I and III was good. Good. Consistency 
clustering was used to identify 2 immune patterns (cluster A and 
cluster B). Significant heterogeneity between the 2 subgroups 
was confirmed by immune correlation and differential analyses. 
The related genes were expressed in different ways in each sub-
group. We will continue to investigate the mechanism of action 
of these genes in the DN immune microenvironment.

Bioinformatics studies were used to examine immune infil-
tration between the DN and control groups. There were sig-
nificant differences in the expression of LYZ and CCL5, ALB, 
IGF1 CXCL2, NR4A2, and RBP4, and our data suggest that 
DN may be associated with complement and coagulation path-
way signaling pathways. These studies have also improved our 
understanding of how DN development. This study will aid in 
the study of diabetes nephropathy classification and the devel-
opment of more effective treatments. Further research is needed 
to determine the relationship between immune infiltration and 
function as well as the importance of immune patterns in DN.
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