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INTRODUCTION: Early detection of colorectal cancer (CRC) by screening programs is crucial because survival rates

worsen at advanced stages. However, the currently used screeningmethod, the fecal immunochemical

test (FIT), suffers from a high number of false-positives and is insensitive for detecting advanced

adenomas (AAs), resulting in false-negatives for these premalignant lesions. Therefore, more accurate,

noninvasive screening tools are needed. In this study, the utility of analyzing volatile organic

compounds (VOCs) in exhaled breath in a FIT-positive population to detect the presence of colorectal

neoplasia was studied.

METHODS: In this multicenter prospective study, breath samples were collected from 382 FIT-positive patients

with subsequent colonoscopy participating in the national Dutch bowel screening program (n 5 84

negative controls, n5 130 non-AAs, n5 138 AAs, and n5 30 CRCs). Precolonoscopy exhaled VOCs

were analyzed using thermal desorption-gas chromatography-mass spectrometry, and the data were

preprocessed and analyzed using machine learning techniques.

RESULTS: Using 10 discriminatory VOCs, AAs could be distinguished from negative controls with a sensitivity and

specificity of 79%and70%, respectively. Based on this biomarker profile, CRCandAAcombined could

bediscriminated fromcontrolswith a sensitivity and specificity of 77%and70%, respectively, andCRC

alone could be discriminated from controls with a sensitivity and specificity of 80% and 70%,

respectively. Moreover, the feasibility to discriminate non-AAs from controls and AAs was shown.

DISCUSSION: VOCs in exhaled breath can detect the presence of AAs and CRC in a CRC screening population andmay

improve CRC screening in the future.

SUPPLEMENTARY MATERIAL accompanies this paper at http://links.lww.com/CTG/A852, http://links.lww.com/CTG/A853, http://links.lww.com/CTG/A854
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INTRODUCTION
Colorectal cancer (CRC) is the third most common cancer
worldwide and poses an important healthcare issue with signifi-
cant morbidity, mortality, and economic impact (1). CRC is
known to develop from precursor lesions, in most cases adeno-
mas, through the adenoma-carcinoma sequence (2–4). CRC can
be prevented if these precursor lesions are identified and removed

endoscopically (5). Therefore, worldwide bowel cancer screening
programs have been implemented, which significantly reduced
CRC-related morbidity and mortality (6,7). In most countries,
including the United States and many European countries, bowel
cancer screening programs are based on the fecal immuno-
chemical test (FIT) for hemoglobin, followed by a colonoscopy if
the FIT is positive (8). However, this screening approach has
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significant limitations. FIT suffers from a considerable number of
false-positives and false-negatives (9,10). At a specificity of 95%,
the sensitivity of FIT is 73% for CRC and as low as 25% for
advanced adenomas (AAs) (11). Moreover, CRC, AAs, and non‐
advanced adenomas (NAAs) were found in only 7%, 39%, and
23%, respectively, of all colonoscopies performed after a positive
FIT (9). In other words, positive FITs are often followed up by an
unnecessary colonoscopy bringing a high burden to the health-
care system and society while a large proportion of relevant en-
doscopic findings (i.e., CRC and especially AA) are being missed.
These limitations may be overcome by the implementation of a
noninvasive and promising approach using volatile organic
compounds (VOCs) in exhaled breath to detect not only CRC but
also its precursor lesions in the FIT-positive population.

VOCs consist of a large variety of endogenous and exogenous
metabolites originating from the host and microbial metabolism.
They are measurable in exhaled breath, feces, blood, urine, and
saliva (12,13). Alterations in the host and microbiome metabo-
lism related to colorectal neoplasia are reflected in exhaled breath
VOC profiles (14,15). Earlier studies have analyzed exhaled
VOCsmostly in patients withCRC (16–21).However, translation
to clinical practice is hampered by the lack of study designs that
compare relevant biological variation (healthy vs early CRC and
adenomas). In addition, inappropriate consideration of potential
confounding effects (e.g., bowel cleansing, age) results in bias of
reported outcomes. As a result, although the data on VOCs for
CRC detection are promising so far, implementation in clinical
practice is not yet in sight (22–24).

Therefore, this study considered only FIT-positive individuals
to reflect the true relevant variation in the general population
while minimizing sampling bias. The aim of this multicenter
prospective study was to assess the feasibility of exhaled breath
analysis to differentiate between CRC, AA, NAA, and negative
controls in a FIT-positive CRC screening population.

METHODS

Study design and population

In the national Dutch bowel screening program, all inhabitants
between 55 and 75 years are biennially invited to participate by
providing a FIT sample.After a positive FIT, subjects are invited for
a prescreening intake for colonoscopy. Subjects scheduled for this
outpatient clinic visit in the Máxima Medical Center (Veldhoven,
the Netherlands) and the Maastricht University Medical Center1
(Maastricht, theNetherlands) between July 2016 and January 2018
were invited to participate in this study. Breath samples were col-
lected before bowel cleansing for colonoscopy and after written
informed consent had been obtained. Only patients undergoing a
scheduled colonoscopy were included in this study. All colonos-
copies were performed by certified endoscopists, minimalizing
chances ofmissed lesions (25).TheBostonBowel Preparation Scale
was used to assess cleanliness of the bowel for adequate inspection
(26). Patients with inflammatory bowel disease, familial polyposis
syndromes, or active malignancies other than CRC; those under
current treatment with radiotherapy or chemotherapy; or those
unable or unwilling to provide informed consent were excluded.
AAwas defined as size$ 1 cm, villous histology, and/or high-grade
dysplasia. Based on the endoscopic findings, patients were cate-
gorized into 4 groups: CRC, AA, NAA, and negative controls. In
the case ofmultiple lesions, the classificationwas based on themost
advanced lesion found. This study was approved by the Medical

Ethics Research Committee of the Maastricht University Medical
Center1 (METC No. 16-4-103.1/ab).

Breath sampling procedure and analysis

Patients were asked to inflate a 3-L Tedlar bag (SKC Ltd., Dorset,
UK). Within an hour of collection, its contents were transferred
into carbon-filled stainless-steel desorption tubes (Markes In-
ternational, Llantrisant Business Park, UK). In each study center,
1 room was assigned to be used for breath collection purposes.
Breath samples were analyzed by thermal desorption-gas chro-
matography coupled with time-of-flight mass spectrometry (TD-
GC-MS), as described previously (27).

Baseline statistical analysis

Clinical, anthropometric, demographic, endoscopic, and histo-
pathology data were collected in a standardizedmanner as part of
the national Dutch bowel screening program using hospital re-
cords. These included age, sex, body mass index (BMI), smoking,
alcohol use,medication use,medical history, endoscopic findings,
and histopathology.

IBM SPSS statistical software (version 22.0; IBM, Armonk,
NY) was used for statistical analysis of the baseline patient de-
mographics. Age, BMI, medication use, medical history, endo-
scopic findings, and histopathology are presented as mean with
corresponding SD, median with corresponding interquartile
range, or a fixed number with relative percentage. Differences in
baseline characteristics were tested using thex2 test (dichotomous
data), and 1-way analysis of variance was performed to compare
differences betweenmeans in 2 ormore groups. A 2-sideda-level
, 0.05 was defined as statistically significant.

Breath data preprocessing

TD-GC-MS data were preprocessed before subsequent statisti-
cal analysis. This consisted of noise removal, baseline correc-
tion, alignment, normalization, peak picking, and scaling, as
previously described (see Supplementary Table 1, Supplemen-
tary Digital Content 1, http://links.lww.com/CTG/A853, which
summarizes the breath data preprocessing in detail) (28). Only
features detected in at least 20% of 1 of the categorized disease
classes (i.e., CRC, AA, NAA, and negative controls) were in-
cluded in the analysis. The data were corrected for instrumental
variation using ComBat and Surrogate Variable Analysis
(29–32). Putative identification of VOCs was performed using
the National Institute of Standards and Technology library.
All breath data analyses were performed using MATLAB
2018a—Statistics and Machine Learning Toolbox.

Breath data analysis

Three supervisedmachine learningmodels were created to predict
endoscopic findings. Model 1 distinguished CRC cases from neg-
ative controls. Model 2 and Model 3 discriminated AA against
negative controls (2-class classification) and AA vs NAA vs nega-
tive controls (3-class classification), respectively.

Model 1: discriminating CRC vs negative controls. The number
of CRC cases was relatively low, that is, 30, resulting in class im-
balanced datawith low statistical power that negatively influence the
reliability of discriminatory models and biomarker selection. To
circumvent biased biomarker selection, 1-class classification was
applied using the Isolation Forest algorithm (which does not require
biomarker selection) with leave-one-out cross validation (33). The
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overall procedure is shown in the supplementary material (see
Supplementary Text, Supplementary Digital Content 2, http://links.
lww.com/CTG/A854, which describes amore elaborate explanation
and description of the statistical procedure).

Model 2: discriminating AA vs negative controls and AA plus
CRC combined vs controls. To discriminate AA from negative
controls, Random Forest (RF) was used (called hereModel 2). The
data set was first split into a training set (n 5 128 AAs, n 5 74

Figure 1. Representation of the data analytics that were applied in this study to discriminate advanced adenomas from negative controls. In this study,
ComBat was applied as a batch effect correction technique and Isolation Forests were used to select the representative subset for the independent test set.
GC-MS, gas chromatography–mass spectrometry; RF, Random Forest.

Figure 2.Hierarchical modeling approach to discriminate between negative controls, AA, andNAAusing 3 sequential binary RandomForestmodels. First,
AAwas discriminated against the combination of controls andNAA. Subsequently, the latter were discriminated. To add an extra layer of sensitivity, Model 2
was added. AA, advanced adenoma; NAA, nonadvanced adenoma.
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controls) and independent internal test set (n 5 10 AA, n 5 10
controls) using Isolation Forest (33). Variable selection and opti-
mization was based on the variable importance as assessed by

an internal iterative validation procedure of RF (1,000 iterations
with 1,000 trees per iteration ) (34).Next, thefinalmodel was tested
on the independent internal test set. A stepwise overview of the

Figure 3. Flowchart of included subjects. AA, advanced adenoma; BBPS, Boston Bowel Preparation Scale; CRC, colorectal cancer; FIT, fecal
immunochemical test; IBD, inflammatory bowel disease; NAA, nonadvanced adenoma.

Table 1. Baseline characteristics

Baseline characteristic CRC (n 5 30) AA (n5 138) NAA (n 5 130) Controls (n5 84) P value

Age, yr 6 SD 66.5 (5.7) 64.4 (7.4) 65.4 (4.9) 64.8 (8.6) NS

Male, n (%) 14 (46.7) 93 (67.4) 76 (58.5) 37 (44) a

BMI, kg/m2 6 SD 27.8 (5.6) 28 (4.8) 27.2 (4.7) 27.2 (4.7) b

Smoking, n (%) 3 (10) 22 (15.9) 15 (11.5) 8 (9.5) NS

No 9 (30) 65 (47.1) 54 (41.5) 34 (40.5)

Unknown 18 (60) 51 (37) 61 (47) 42 (50)

Alcohol, n (%) 5 (16.7) 48 (34.8) 40 (30.7) 24 (28.6) NS

No 7 (23.3) 37 (26.8) 29 (22.3) 18 (21.4)

Unknown 18 (60) 53 (38.4) 61 (47) 42 (50)

CRC TNM stadium, n (%)

T1N0M0 12 (40)

T2N0M0 7 (23.3)

T3N0M0 3 (10)

T1N1M0 1 (3.3)

T2N1M0 3 (10)

T3N1M0 4 (13.3)

AA, advanced adenoma; BBPS, Boston Bowel Preparation Scale; BMI, body mass index; CRC, colorectal cancer; NAA, nonadvanced adenoma; NS, not significant.
aCRC vs AA (P5 0.032), AA vs controls (P5 0.001), NAA vs controls (P5 0.039).
bAA vs controls (P 5 0.026).
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procedure is presented in Figure 1. Using Principal Coordinate
Analysis (PCoA) on the out-of-bag proximities obtained by RF, the
datawere visualized (see SupplementaryText, SupplementaryDigital
Content 2, http://links.lww.com/CTG/A854, which describes this
procedure in further detail). The performance of Model 2 was eval-
uated using sensitivity, specificity, area under the curve, receiver
operating characteristic (ROC) curves, positive predictive value
(PPV), and precision-recall curves (35). Because Model 1 contained
insufficient data for biomarker selection, another RF model was
created based on the selected VOCs by Model 2 to assess the appli-
cability and performance of this model to discriminate CRC from
negative controls andCRCandAAcombined fromnegative controls.

Model 3: discriminating AA, NAA, and negative controls. In
Model 3, a 3-class classification model was built to discrimi-
nate between AA, NAA, and controls using RF. The procedure
used here is shown in Figure 2. First, Model A (discriminating
AA vs rest) and Model B (discriminating NAA vs controls)
were created. Here, internal training (n 5 123 AA, n 5 115

NAA, n5 69 controls) and internal validation (n5 15 AA, n5
15NAA, n5 15 controls) sets were used to optimize themodel.
Using the final obtained models, the PCoA scores based on the
RF proximity matrices were assessed on separating the classes
of interest. This resulted in the selection of the scores of the first
Principal Coordinates (PCos) for all models. Subsequently,
these scores (Model A and Model B) were combined in a hi-
erarchical fashion, as illustrated in Figure 2, part 1. Similarly,
the first PCo scores of Model 2 were calculated and combined
with the subset obtained in Models A and B (Figure 2, part 2)
midst a midlevel fusion approach. Finally, using all obtained
PCoA scores, a final 3-class model was built, visualized, and
assessed using weighted accuracy.

RESULTS

Baseline characteristics

Four hundred forty-eight patients participated in this study and
provided a breath sample as shown in Figure 3. Hospital records of
10 patients (4 MMC, 6 MUMC1) could not be retrieved within

Table 2. Endoscopic findings and medication usage

Endoscopic finding CRC (n5 30) AA (n 5 138) NAA (n5 130) Controls (n5 84) P value

Diverticulosis, n (%) 7 (23.3) 65 (47.1) 68 (52.3) 39 (46.4) a

Diverticulitis, n (%) 0 (0) 3 (2.2) 1 (0.8) 1 (1.2) NS

Angiodysplasia, n (%) 1 (3.3) 1 (0.7) 5 (3.8) 6 (7.1) b

Hemorrhoids, n (%) 3 (10) 22 (15.9) 27 (20.8) 24 (28.6) c

BBPS median [range] 9 [6–9] 9 [5–9] 9 [6–9] 9 [5–9] NS

Medication usage

Acetylsalicylic acid, n (%) 2 (6.7) 9 (6.5) 20 (15.4) 6 (7.1) d

Carbasalate calcium, n (%) 3 (10) 22 (15.9) 12 (9.2) 14 (16.7) NS

Clopidogrel, n (%) 2 (6.7) 0 (0) 3 (2.3) 2 (2.4) NS

VKA, n (%) 0 (0) 3 (2.2) 8 (6.2) 1 (1.2) NS

DOAC, n (%) 0 (0) 4 (2.9) 5 (3.8) 2 (2.4) NS

NSAID, n (%) 0 (0) 4 (2.9) 5 (3.8) 12 (14.3) e

Statin, n (%) 8 (26.7) 46 (33.3) 42 (32.3) 25 (29.8) NS

ACE inhibitor, n (%) 8 (26.7) 43 (31.2) 31 (22.3) 18 (21.4) NS

Bisphosphonate, n (%) 0 (0) 2 (1.4) 0 (0) 0 (0) NS

Metformin, n (%) 4 (13.3) 7 (5.1) 10 (7.7) 6 (7.1) NS

Insulin, n (%) 1 (3.3) 2 (1.4) 4 (3.1) 3 (3.6) NS

Medical history

Hypertension, n (%) 13 (43.3) 75 (54.3) 59 (45.4) 34 (40.5) f

Diabetes, n (%) 5 (16.7) 10 (7.2) 16 (12.3) 11 (13.1) NS

COPD, n (%) 2 (6.7) 16 (11.6) 10 (7.7) 7 (8.3) NS

Cerebrovascular events, n (%) 9 (30) 31 (22.5) 33 (25.4) 20 (23.8) NS

Hypercholesterolemia, n (%) 2 (6.7) 12 (8.7) 15 (11.5) 9 (10.7) NS

AA, advanced adenoma; ACE, angiotensin converting enzyme; BBPS, Boston Bowel Preparation Scale; COPD, chronic obstructive pulmonary disease; CRC, colorectal
cancer; DOAC, direct oral anticoagulant; NAA, nonadvanced adenoma; NS, not significant; NSAID, nonsteroidal antiinflammatory drug; VKA, vitamin K antagonist.
aCRC vs AA (P5 0.017), CRC vs NAA (P5 0.004), CRC vs controls (P5 0.027).
bAA vs controls (P5 0.008).
cCRC vs controls (P5 0.040), AA vs controls (P5 0.024).
dAA vs NAA (P5 0.020).
eCRC vs controls (P5 0.029), AA vs controls (P5 0.001), NAA vs controls (P 5 0.006).
fAA vs controls (P5 0.045).
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the hospitals’ medical data system and were excluded from this
study. Three patients had a Boston Bowel Preparation Scale of 3,
and 2 patients had a history of IBD and were excluded from this
study. Three patients had an incomplete colonoscopy because of
benign stenosis, diverticulitis, or technical aspects of the procedure.
Forty-eight breath samples contained failedmeasurements because
of low sensitivity in the recorded mass spectra. Three hundred
eighty-two patients with breath, colonoscopy, and histopathology
data were included for analysis. Thirty patients (7.9%) had CRC;
138 patients (36.1%) hadAA; 130 patients (34%) hadNAA; and 84

patients (22%) were negative for CRC, AA, and NAA and com-
prised the control group.

Baseline characteristics are summarized in Table 1, and endo-
scopic findings andmedication usage are listed in Table 2. Age was
comparable between all groups. Smoking status and alcohol usage
was comparable between all groups, although data were partially
missing. Patients in theAAgroupweremore frequently ofmale sex
compared with CRC (P 5 0.032) and controls (P 5 0.001), had
higher BMI compared with controls (P 5 0.026), and were more
likely to have hypertension (P5 0.045). Patients in theNAAgroup
more frequently used acetylsalicylic acid compared with the AA
group (P5 0.02), and nonsteroidal anti-inflammatory drugs were
more often used by controls compared with all other groups.

Breath data analysis

Model 1: discriminating CRC vs negative controls. Model 1
distinguished CRC from negative controls using Isolation Forest
with leave-one-out cross validation. The ROC curve of this model is
shown in Figure 4a with an area under the curve ROC of 0.73. The
obtained sensitivity and specificitywere 67.3%and70%, respectively.

Model 2: discriminating AA vs negative controls and CRC plus
AA vs negative controls. The final RF model built on the breath
training data containing AA and negative controls identified a set
of 10 discriminatory VOCs that yielded a sensitivity and speci-
ficity of 79% and 70%, respectively, for the internal out-of-bag
validation set. Subsequently, when testing on the independent test
set (n 5 20), a sensitivity and specificity of 70% and 90%, re-
spectively, were obtained. The PPV for this sample set increased
from 63% based on FIT only to 87.5% based on FIT and breath
combined. The ROC curve for the independent test set is shown
in Figure 4b. In Figure 5, the separation between both groups
is visualized. Furthermore, CRC could be discriminated from
controls with a sensitivity and specificity of 80% and 70%, re-
spectively, using the 5 most important VOCs from this model. In
addition, CRC and AA combined as 1 group could be discrimi-
nated from controls with a sensitivity and specificity of 77% and
70%, respectively. ROC curves for these models and of the

Figure 4. (a) The obtained ROC curve when comparing colorectal cancer with negative controls using the Isolation Forest procedure. An AUC ROC,
sensitivity, and specificity of 0.7313, 67.3%, and 70% were obtained, respectively. (b) The obtained ROC curve for the independent test set of the
RandomForest model comparing advanced adenoma cases with control cases using 10 discriminatory volatile organic compounds. The sensitivity and
specificity were found to be 70% and 90%, respectively. AUC ROC5 0.727, AUC precision-recall5 0.662. AUC, area under the curve; ROC, receiver
operating characteristic.

Figure 5. Principal Coordinate Analysis score plot on a proximity matrix
obtained from the RF model and subsequently transformed using
unsupervised RF built as described under the Methods section. The
model was based on 10 selected volatile organic compounds. Every point
belongs to a single breath fingerprint (red: advancedadenomacases; blue:
control cases). The separation is observed on Principle Component 1,
explaining 70.5% of the variance. RF, Random Forest.
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internal training set ofModel 2 are reported in the supplementary
material (see Supplementary Figures 1 and 2, Supplementary
Digital Content 3, http://links.lww.com/CTG/A852).

The set of 10 discriminatory VOCs were identified as
2-propenoic acid ethenyl ester; lactic acid; 2,4-dimethyl-pyrrole;
p-menth-3-ene; 6-methyl heptane; 2,2,4,4-tetramethylpentane;
2-methylfuran; propyl pyruvate; and 2 unknown molecules be-
cause of low compound abundance. Of these, 2-propenoic acid
ethenyl ester; lactic acid; 2,4-dimethyl-pyrrole; p-menth-3-ene;
and 1 unknownmolecule weremost predictive for CRC and CRC
and AA combined when compared with controls. The impor-
tance per compound is shown in Figure 6. Compounds with

positive importance had higher concentrations in the AA group
as compared with controls. Similarly, compounds with negative
importance had lower concentrations in the AA group.

Model 3: discriminating AA vs NAA vs negative controls. In
Model 3, the hierarchical models A and B together discriminated
(Model A) AA vs rest and (Model B) NAA and negative controls
with a sensitivity and specificity of 72% and 65% using 12 VOCs
for Model A and 75% and 78% using 13 VOCs for Model B,
respectively. By midlevel fusion, the subsequently calculated
PCoA scores for these models were combined with those of
Model 2 and the final predictions were calculated. In Figure 7, the

Figure 6. Importance of the 10 selected and identified volatile organic compounds. Negative values indicate higher concentrations in control samples;
positive values indicate higher relative concentrations in advanced adenoma cases.

Figure7.Principal CoordinateAnalysis scoreplot on aproximitymatrix obtained from theRFmodel built and subsequently transformedusingunsupervised
RF. Themodel was based on the midlevel fusion of Model 1 (advanced adenoma vs control) and the hierarchical subsequent models A and B. Every point
belongs to a single breath chromatogram (blue: control cases; red: nonadvanced adenoma cases; yellow: advanced adenoma cases). The separation is
observed on Principle Coordinates 1 and 2 together, explaining 76.75% of the variance. RF, Random Forest.
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PCoA visualization of the final proximities is presented, showing
a separation between the 3 classes and the potential to addition-
ally separate NAA. The overall procedure resulted in an overall
weighted accuracy of 54%, where an accuracy of 33% indicates
random performance.

Although the performance of the model was validated using
the internal validation sets, the results could not be verified in
independent test sets. Because the Model was not independently
validated, we recognize that the results in model 3 may be pre-
mature, and therefore, chemical identification of the discrimi-
nating components has not been performed.

DISCUSSION
In this multicenter prospective study, the feasibility of exhaled
breath analysis to differentiate between CRC, AA, NAA, and
negative controls in a FIT-positive CRC screening populationwas
assessed. CRC could be distinguished fromnegative controls with
a sensitivity and specificity of 67.3% and 70%, respectively. In
addition, AAcould be discriminated fromnegative controls based
on 10 discriminatory VOCs with a sensitivity and specificity of
79% and 70%, respectively. The combination of exhaled breath
analysis with FIT led to an enhanced PPV of 82% as compared
with 63% if only a FIT would have been applied. Interestingly,
using the 5most importantVOCs specified byModel 2, bothCRC
as well as CRC and AA combined could be discriminated against
controls with sensitivities of 80% and 77%, respectively, and a
specificity of 70% for both. Finally, the feasibility of additionally
discriminating NAA in a 3-class classification model was shown.
The clinical application of breath-based analysis is 2-fold. First,
exhaled breath analysis may be used in combination with FIT in a
2-step procedure to stratify patients at risk of CRC or AAs (i.e.,
colonoscopy indicated). Second, breath-based analysis has the
potential to replace FIT as a screening test that considers not only
CRC but also clinically relevant AAs. For both approaches, fur-
ther research and validation steps are required.

Several earlier studies have analyzed exhaled VOCs for the
detection of CRC, but only few studied its potential for the de-
tection of adenomas, in particular AA (16–21). Recently, Alto-
mare et al found 14 discriminatory VOCs that could distinguish
patients with CRC fromnoncancer controls. However, CRC cases
were mainly of an advanced stage and no adenomas were in-
cluded in the study (21). Similarly, Markar et al published a study
in which 7 VOCs were found to be associated with CRC. They
successfully discriminated patients with CRC and other controls
groups, but only a small number of undefined adenomas (n5 7)
were included (20).

Eight of 10 selected VOCs discriminating AA from negative
controls were putatively identified in this study. Of these,
2-propenoic acid ethenyl ester; lactic acid; propyl pyruvate; and
2,4-dimethyl-pyrrole can be linked to changes in the metabolic
microenvironment of the colon. For instance, hypoxic tumor cells
have a high rate of aerobic glycolysis (Warburg effect), consume
more glucose, and secrete large amounts of lactic acid as a waste
product in their microenvironment (36). Indeed, a relative en-
richment of lactic acid has been previously reported in studies
comparing CRC vs controls (36–40). The enrichment of propyl
pyruvate can be explained by similar mechanisms because its
derivative pyruvate is a precursor of lactate (41,42). Although 2,4-
dimethyl pyrrole could not directly be interpreted in light of CRC,
its unsubstituted version pyrrole was observed in abnormal
concentrations in fecal samples in ulcerative colitis and Crohn’s

disease. Similarly, 2-propenoic acid ethenyl ester could not di-
rectly be interpreted, but its derivative propionate has repeatedly
been found in lower concentrations in CRC cases, which is in line
with our results (43). The formation of 6-methyl heptane and p-3-
menthene could be linked to oxidative stress, a well-known phe-
nomenon in neoplastic disease (44). The origin of 2VOCs remained
ambiguous: 2,2,4,4-tetramethylpentane and 2-methylfuran. The
former could be related to microbial activity and dysbiosis (45–47).
2-Methylfuran may be related to oxidative stress, smoking status, or
coffee consumption (48,49).

This study had some limitations. First, limited data on
smoking and alcohol usage were recorded during the pre-
screening intake. This may have resulted in confounding effects
because 2-methylfuran is also related to smoking. Because none of
the identified VOCs related to alcohol usage, its influence on the
results is expected to be minimal. Dietary habits were not part of
the data collection because the ideal diagnostic tool should be
sufficiently robust to be applied in the general population, irre-
spective of various external factors, including dietary habits (50).
Second, the CRC group was underpowered to reliably find bio-
markers. However, CRC could be detected using VOCs found in
Model 2 suggesting that CRC and AA are biologically closely
related. Improved predictions are expected when more specific
CRC markers are added in the model, for which larger study
populations are required.

Future perspectives include the validation of our results in a
larger cohort, which will additionally allow detection of CRC-
specific biomarkers. Improved results can be expected because
breath sampling methods have significantly been optimized over
recent years. In addition, exhaled breath analysis should be tested
in a FIT-näıve population as well, to verify the applicability of
breath analysis as a standalone screening test.

A set of 10 discriminatory VOCs was identified that could
detect AA when compared with controls and was related to the
microenvironment of the colon. Furthermore, the feasibility of
exhaled breath analysis to successfully detect CRC in a FIT-
positive populationwas demonstrated. Further research is needed
to validate these results, but this study has shown the potential of
breath-based analysis to improve detection rates of bothCRC and
AAs, either in combination with FIT or as a standalone screening
test.
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Study Highlights

WHAT IS KNOWN

3 Colorectal cancer can be prevented if precursor lesions are
identified and removed endoscopically.

3 Fecal immunochemical tests for hemoglobin for bowel cancer
screening programs suffer from high numbers of false-
positives and are insensitive for advanced adenomas.

3 Exhaled volatile organic compounds have been studied for
colorectal cancer, but data on (advanced) adenomas are
limited.

WHAT IS NEW HERE

3 Breath-based analysis has the potential to be used as a
screening test for both colorectal cancer and clinically
relevant advanced adenomas.
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