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Exact and Computationally Robust Solutions for Cylindrical
Magnets Systems with Programmable Magnetization

Federico Masiero and Edoardo Sinibaldi*

Magnetic systems based on permanent magnets are receiving growing
attention, in particular for micro/millirobotics and biomedical applications.
Their design landscape is expanded by the possibility to program
magnetization, yet enabling analytical results, crucial for containing
computational costs, are lacking. The dipole approximation is systematically
used (and often strained), because exact and computationally robust
solutions are to be unveiled even for common geometries such as cylindrical
magnets, which are ubiquitously used in fundamental research and
applications. In this study, exact solutions are disclosed for magnetic field and
gradient of a cylindrical magnet with generic uniform magnetization, which
can be robustly computed everywhere within and outside the magnet, and
directly extend to magnets systems of arbitrary complexity. Based on them,
exact and computationally robust solutions are unveiled for force and torque
between coaxial magnets. The obtained analytical solutions overstep the
dipole approximation, thus filling a long-standing gap, and offer strong
computational gains versus numerical simulations (up to 106, for the
considered test-cases). Moreover, they bridge to a variety of applications, as
illustrated through a compact magnets array that could be used to advance
state-of-the-art biomedical tools, by creating, based on programmable
magnetization patterns, circumferential and helical force traps for
magnetoresponsive diagnostic/therapeutic agents.

1. Introduction

Over the last two decades, magnetic systems and methods
for remote actuation and localization have attracted increasing
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attention, in particular concerning mi-
cro/millirobots and miniature devices for
biomedical applications, also thanks to
the fact that biological tissues are essen-
tially transparent and safely exposed to
(relatively slow-varying and low-intensity)
magnetic fields.[1–4] Progresses in manu-
facturing are further expanding the design
landscape through the possibility to code
magnetization profiles in soft magnetore-
sponsive composites.[5–8] Both current
coils systems[9,10] and permanent magnets
were adopted as field sources. Compared
to coils, which permit higher-frequency
modulation and the possibility to switch off
the field, permanent magnets can generate
stronger fields and gradients, and their
application is not restricted by wiring and
cooling requirements, thus fostering their
attractiveness for heat-sensitive biomed-
ical procedures.[11] As a matter of fact,
permanent magnets, and specifically cylin-
drical magnets in most cases, were used
to actuate micro/millirobots and magne-
toresponsive agents in air and (biological)
fluids/tissues[12–16] (by also enabling com-
plementary localization[17,18]), catheters,[19]

endoscopes,[20] capsules/pills,[21,22] building blocks for stable
assemblies[23] and flexible pumps prospectively functional to
soft robotic hearts.[24] Moreover, magnetic localization of cylin-
drical magnets was investigated, for example, for controlling
robotic prostheses[25] and in wearable sensing systems for
rehabilitation.[26] Furthermore, (rigid) permanent magnets with
simple geometries, such as cylinders and cuboids, were used as
external actuation sources for a variety of (deformable) soft mag-
netoresponsive systems, such as soft magnetic robots[27,28] and
active substrates for mechanobiology investigations,[29] by also
enabling shape-memory and stiffness modulation in composite
elastomers.[30] Cylindrical magnets, in particular, were further
used to actuate soft magnetoresponsive tools for endoluminal
navigation,[31,32] bellow actuators,[8] bioinspired millirobots,[33]

and substrates for fluid and solid transport.[34] Finally, cylindri-
cal (and cuboid) magnets were also exploited for magnetization
coding in soft magnetoresponsive materials.[35–37]

In several cases, in order to cope with the complexity of
non-linear magnetic interactions, analytical models for magnets
were based on the classical dipole approximation,[38,39] both for
actuation and localization problems.[21,40] Yet it is well known
that such an approximation applies for working distances sen-
sibly greater than the characteristic size of the magnetic source,
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and this condition is often stretched, as occurring, for exam-
ple, in those biomedical applications where tiny magnetore-
sponsive objects (devised to operate in anatomical districts)
impose relatively cumbersome external magnetic sources (for
the magnetic interaction to be effective enough). As a matter
of fact, the inadequacy of the dipole approximation was often
remarked[41] and, in most cases, numerical simulations had to
be alternatively performed.[8,13–16,29,34,35] The dipole approxima-
tion cannot be applied even for miniature systems where mag-
nets are ingeniously assembled at relatively short distances. Con-
sequently, with reference to cylindrical magnets (and apart from
specific expressions only holding on the cylinder axis,[42] and
approaches combining series-expansion expressions with nu-
merical calculations[43]), numerical simulations were exploited
even for miniature components/systems,[44] including magnetic
springs based on coaxial magnets for both linear and rotational
mechanisms.[45,46]

As outlined above, magnets systems were most commonly ad-
dressed by means of numerical simulations, which, however, per-
mit to master (and thus leverage) the underlying physical phe-
nomena only in a restricted number of cases and, in general,
at higher computational costs. Conversely, analytical approaches
immediately contribute to knowledge build-up (for instance, in
terms of scaling laws), and they can offer computationally inex-
pensive, priceless contributions for conceiving and further de-
veloping magnets systems. Yet fundamental solutions, namely
complete analytical solutions allowing to exactly and robustly
compute both magnetic field and gradient, associated in partic-
ular with generic uniform magnetization, are still to be unveiled
for many commonest geometries, including cylindrical magnets.
This lack is due to the fact that, although the underlying problem
formulation is classical,[39] related derivations involve non-trivial
functions, including elliptic integrals.[47] As a matter of fact, only
one exact solution has been recently disclosed for magnetic field
and gradient, which is limited to the case of axial magnetiza-
tion, and which anyway requires two distinct representations in
order to circumvent computational singularities.[48] Moreover,
some solutions for cylindrical magnets with diametric magneti-
zation have been recently reported, whose computation, however,
is hampered by singularities,[49,50] and which are anyway limited
to the magnetic field only.[49–51] Furthermore, an analytical solu-
tion has been recently reported for uniformly magnetized cylin-
drical tiles, which, however, requires multiple representations to
circumvent computational singularities, and which is nonethe-
less limited to magnetic field only.[52] Corresponding gaps in the
expanding field of magnetic actuation remain. For instance, ex-
act analytical solutions for force and torque between cylindrical
magnets, which are of utmost utility for the design of related sys-
tems, are lacking: only the force between coaxial magnets with ax-
ial magnetization was disclosed (either by assuming the same ra-
dius for both magnets[53] or by allowing for different radii[54–56]),
whereas analytical expressions for force and torque between coax-
ial magnets with diametric magnetization have not been achieved
so far. This lack of fundamental analytical solutions, in partic-
ular for cylindrical magnets with generic magnetization, is re-
flected by the fact that increasingly ambitious scientific investi-
gations and applications are being tackled mainly based on ex-
perimental approaches, possibly complemented by case-specific

and computationally expensive numerical simulations.[1,2,28,57] In
order to design and develop cylindrical magnets systems with
programmable magnetization, exact and computationally robust,
complete solutions are therefore strategically sought, for a wide
spectrum of applications, and to complement the development
of soft magnetoresponsive systems as illustrated above.

This study fills the aforementioned gaps, by providing a mani-
fold original contribution. First, exact analytical solutions are un-
veiled for both magnetic field and gradient of cylindrical magnets
with generic uniform magnetization, thus advancing axial and
diametric results within a unifying solution framework. Specif-
ically, complete solutions are disclosed, based on the involved
intrinsic entities (namely magnet geometry, pose and magneti-
zation), which can be robustly computed everywhere within and
outside the magnets, thus outstripping the dipole approximation.
Said solutions only presume a uniform generic magnetization
(no additional hypotheses restrict their applicability), and they di-
rectly extend, by superposition, to cylindrical magnets systems of
arbitrary complexity. Moreover, thanks to the above results, exact
and computationally robust analytical solutions are reported for
the force and torque between coaxial magnets, including mag-
nets with diametric magnetization, thus also extending the an-
alytical toolkit for magnetic actuation. Specifically, compact ex-
pressions are provided, which seamlessly account for generic
values of the dimensions of the magnets and their relative dis-
tance, thus further overstepping the dipole approximation. Fur-
thermore, all the obtained solutions for magnetic field, gradient,
force and torque can be computed by calling a single function,
namely the so-called Bulirsch integral  (Section S1, Supporting
Information):

(kc, p, a, b
)

:= ∫
𝜋∕2

0

a cos2 𝜓 + b sin2
𝜓

(cos2 𝜓 + p sin2
𝜓)

√
cos2 𝜓 + k2

c sin2
𝜓

d𝜓 ,

which is commonly available via software libraries.[58] In addi-
tion, in order to highlight the potential for practical application of
the above results, and considering cylindrical magnets arrays pro-
posed for manipulation and biomedical systems,[13,15,34] an illus-
trative application is concisely introduced, based on a compact ar-
ray allowing to create both circumferential and helical force traps
for magnetoresponsive agents, thanks to programmable magne-
tization patterns. Specifically, superparamagnetic agents are con-
sidered, because they are increasingly proposed for both diag-
nostic and therapeutic approaches (such as magnetic resonance
imaging, drug delivery and thermotherapy).[59] Finally, derived
computational gains are also shown, through comparisons with
(finite element) numerical simulations, and self-contained imple-
mentations of the obtained solutions are provided, for the benefit
of scientists and potential users from a broader readership.

2. Results

Figure 1 introduces a cylindrical magnet with generic uniform
magnetization. Figure 1a shows the involved intrinsic entities:
magnet size (defined by radius R̄ and half-height L̄), pose (given
by origin O and axial direction ê∥, bold symbols and ⋅̂ hereafter de-
noting vectors and unit vectors, respectively), and magnetization
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Figure 1. Cylindrical magnet with generic uniform magnetization. a) Magnet size (radius R̄, half-height L̄), pose (origin O, axial direction ê∥), and
magnetization (M⋆). Magnetization, in particular, is decomposed into axial (M∥) and diametric (M⊥) contributions: M⋆ = M∥ + M⊥. Gold/silver
colors consistently remind of magnetic poles. b) Non-dimensional cylindrical coordinates: illustration for two generic points P′ on the surface of the
magnet, and a generic point P outside the magnet. The unit vectors systems {ê𝜌, ê𝜙, êz} and {ê⊥, ê∥×ê⊥, ê∥} represent the considered cylindrical and
intrinsic (Cartesian) frames, respectively. We obtained exact and computationally robust analytical solutions, for both magnetic field and field gradient,
at generic points P outside or inside the magnet (and, by superposition, our solutions extend to cylindrical magnets systems of arbitrary complexity,
in terms of both spatial arrangement and magnetization pattern).

Table 1. Exact solution for the magnetic field.

Components (cylindrical frame) Complete solution (frameless)

H∥𝜌 𝜋 = M∥
(
−𝜌 f3

)
(1)

H∥z 𝜋 = M∥
(

f0 + 2 f1
)

(2)

H⊥𝜌 𝜋 = M⊥ c𝜙
(
𝜌 f2 − f1

)
(3)

H⊥𝜙 𝜋 = M⊥ s𝜙
(
𝜌 f2 + f1

)
(4)

H⊥z 𝜋 = M⊥ c𝜙
(
−𝜌 f3

)
(5)

H =
(

f0 M∥ + f1(2 M∥ − M⊥) + f2 u + f3 v
)
∕𝜋 (6)

M⋆ = M∥ + M⊥ (decomposed into axial M∥ =M∥ ê∥ and diametric
M⊥=M⊥ ê⊥ contributions). Gold/silver colors remind (in all
figures) of magnetic poles consistent with M⋆. Moreover, the
adopted cylindrical and (Cartesian) intrinsic frames are shown,
respectively denoted by {ê𝜌, ê𝜙, êz} and {ê⊥, ê∥×ê⊥, ê∥}, as well
as the non-dimensional coordinates used to preserve physical
consistency during the derivation (based on R̄ as reference
length, Figure 1b). With reference to the figure at hand, it is
worth anticipating that we obtained exact and computationally
robust analytical solutions, for both magnetic field (H) and field
gradient (grad(H)), at generic points P either outside or inside
the magnet.

Table 1 shows the solution for the magnetic field H = H∥ +
H⊥. Cylindrical components for axial and diametric contributions
are reported through Equations 1–2 and 3–5, respectively, while
Equation 6 compactly provides the solution in purely vectorial
terms. Table 2 shows the solution for the field gradient grad(H) =
grad(H∥) + grad(H⊥), in terms of its matrix representations G(cyl)

and G in the cylindrical and intrinsic frame, respectively. Axial
and diametric contributions for G(cyl) are reported through Equa-
tions 7–9 and 10–14, respectively, while Equation 15 compactly

provides G. All the exact solutions in Tables 1 and 2 can be com-
puted by solely calling ; self-contained implementation details
(including auxiliary expressions for cϕ, sϕ, f0-f5, u, v, J̃∥ and J̃⊥) are
reported in Section 4 for the benefit of generic readers keen on
directly using the obtained solutions.

It is to be remarked that Equations 6 and 15, which also cir-
cumvent the indeterminacy of the cylindrical components asso-
ciated with ê𝜌 and ê𝜙 on the cylinder axis, provide the complete
solutions, in terms of the involved intrinsic entities. The cylin-
drical components, however, permit to easily see that, while H is
continuous both outside and inside the magnet, H⊥𝜌 is discon-
tinuous across the lateral surface of the magnet (Sl in Figure 1a),
whereas H∥z is discontinuous across the bottom and top surfaces
(Sb and St, respectively). Such discontinuities are consistent with
the well-known “jump” condition on the magnetic induction B,
namely n̂⋅[[B]]=0[39] (where [[⋅]] denotes the difference between
outside and inside limit values: outside minus inside, let us say);
indeed, [[H⊥𝜌]]=M⊥ cos𝜙 across Sl, and [[H∥z]]=M∥ across Sb and
St. Finally, the exact solutions in Tables 1 and 2, and in particular
the complete solutions in Equations 6 and 15, can be robustly
evaluated (no singularities arise) in the whole computational

Adv. Sci. 2023, 10, 2301033 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2301033 (3 of 16)



www.advancedsciencenews.com www.advancedscience.com

Table 2. Exact solution for the magnetic field gradient.

Components (G(cyl) , cylindrical frame) Complete solution (G, intrinsic frame)

𝜌̄−1 (𝜕𝜙H∥𝜙 + H∥𝜌)𝜋 R̄ = M∥
(
−f3

)
(7)

𝜕𝜌̄H∥z 𝜋 R̄ = M∥
(

f4
)

(8)

𝜕z̄H∥z 𝜋 R̄ = M∥
(

f5
)

(9)

𝜌̄−1 (𝜕𝜙H⊥𝜌 − H⊥𝜙)𝜋 R̄ = M⊥ s𝜙
(
−2 f2

)
(10)

𝜌̄−1 (𝜕𝜙H⊥𝜙 + H⊥𝜌)𝜋 R̄ = M⊥ c𝜙
(
2 f2

)
(11)

𝜕𝜌̄H⊥z 𝜋 R̄ = M⊥ c𝜙
(

f3 − f5
)

(12)

𝜌̄−1 (𝜕𝜙H⊥z)𝜋 R̄ = M⊥ s𝜙
(

f3
)

(13)

𝜕z̄H⊥z 𝜋 R̄ = M⊥ c𝜙
(

f4
)

(14)

G =
(
M∥ J̃∥ + M⊥ J̃⊥

)
∕
(
𝜋R̄

)
(15)

domain, thus providing analytical results that inherently outper-
form the dipole approximation.

Figure 2 shows illustrative results for H and grad(H) of a sin-
gle magnet. Specifically, Figure 2a shows the angle 𝜆 introduced
to parameterize the generic magnetization orientation, while
Figure 2b–d show illustrative contour plots of H and grad(H),
for selected values of L and 𝜆, on a chosen surface 𝔖 close to
the magnet (where our solutions effortlessly apply, whereas the
dipole approximation is challenged). Moreover, field lines in Fig-
ure 2b highlight physically-consistent H discontinuities across
the magnet surface (only due to M∥ on the êy-êz plane, even to
M⊥ on the êx-êz plane), while Figure 2c,d also compare the ob-
tained exact analytical results with those provided by numerical
(finite element) simulations, and by the dipole approximation. In
particular, the agreement between exact solutions and numerical
simulations is shown, for chosen H and grad(H) components,
on selected cut-lines (CL1-CL4). Beyond these specific illustra-
tions, the relative difference was below 10−2 and 2 · 10−2 for H
and grad(H), respectively, over the whole 𝜆 range (with slightly
larger differences for the gradient mainly due to numerical dif-
ferentiation within the finite element solver). Yet computational
times were remarkably different: O(102)-O(103) s (setup and
postprocessing times excluded) to run a numerical simulation,
versus O(10−5)-O(10−4) s (without algorithmic optimization) to
compute H and grad(H) at a point via the analytical results. De-
tailed quantification of speed-up factors was clearly beyond the
present scope; however, assuming to compute field and gradient
at O(103) points, the exact solutions offer strong computational
gains (above 103) compared to numerical simulations. Finally,
the dipole approximation introduces remarkable errors (even
outside the gray-shadowed intervals, within which the approxi-
mation accuracy is expected to deteriorate because the cut-lines
intersect the smallest sphere bounding the magnet), thus fur-
ther underlining the value of the exact solutions achieved in
this study.

The explicit solutions obtained for H and grad(H) opened up
the possibility to achieve further exact results, and we seized this
opportunity to tackle related gaps in magnetic actuation. Specif-
ically, we addressed the interactions between two coaxial cylin-

drical magnets C1 (radius R̄1, half-height L̄1) and C2 (radius R̄2,
half-height L̄2), at relative distance d̄≥ L̄1+L̄2 along direction ê1→2,
as shown in Figure 3a (non-dimensional schematic, based on R̄1
as reference length). By assuming axial magnetizations M∥1 and
M∥2, we first computed the corresponding force f 1→2

∥ exerted by
C1 on C2 (torque being null, by symmetry); by assuming dia-
metric magnetizations M⊥1 and M⊥2 relatively shifted by an an-
gle 𝜃, we then computed the related force f 1→2

⊥
and torque t1→2

⊥
.

The achieved exact solutions are reported in Table 3, where 𝜇0
denotes vacuum magnetic permeability. All the exact solutions
in Table 3 can be computed by solely calling ; self-contained
implementation details (including auxiliary expressions for 𝜂f
and 𝜁 t) are reported in Section 4, ready for use by any interested
readers. Moreover, they can be robustly computed for generic
magnets size and relative distance, down to the limit case of mag-
nets in contact with each other, thus providing analytical results
that inherently outperform those achievable through the dipole
approximation. Figure 3b illustrates the agreement between ex-
act analytical solutions and numerical (finite element) simula-
tions, for selected values of R2 and L2, considering the normal-
ized force f⊥ and torque t⊥ associated with diametric magnetiza-
tions. The relative difference was below 10−2 for both force and
torque, in the whole 𝜃 range, with strong computational gains
(well above 103) for the exact solutions (gains are higher than
those for field/gradient, since force/torque are scalar values re-
sulting from a spatial integration that is already accounted for
by the exact analytical solutions). Furthermore, Figure 3c illus-
trates the relative error (with respect to the exact solutions) in-
troduced when computing ||f 1→2

⊥
|| and ||t1→2

⊥
|| by means of the

dipole approximation, by varying the face-to-face distance d̃ and
R2 (resp. L2) for selected values of L2 (resp. R2), once fixed 𝜃

so as to maximize force and torque intensity (consistently with
Figure 3b), for ease of presentation. The dipole approximation
introduces considerable discrepancies (even outside the regions
defined by a transparent white layer, within which the approxi-
mation accuracy is expected to deteriorate because at least one
portion of a magnet intersects the smallest sphere bounding the
other one), thus further remarking the merit of the exact solu-
tions. Let us observe that the relative errors on ||f 1→2

⊥
|| are also

Adv. Sci. 2023, 10, 2301033 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2301033 (4 of 16)



www.advancedsciencenews.com www.advancedscience.com

Figure 2. Magnetic field and gradient of a single magnet: illustrative results. a) Parameterization (schematic) of magnetization orientation through
the angle 𝜆. b) Illustrative results for (L = 1, 𝜆 = 𝜋/4): contour plot of ||H|| on 𝔖, and H field lines on the êx-êz and êy-êz planes. The field lines (white
curves over ||H|| intensity plots) highlight physically-consistent H discontinuities across the surface of the magnet. c) Illustrative results for (L = 1/2,
𝜆 = 𝜋/6): contour plot of 𝜕x̄Hx on 𝔖, and comparison between the exact solutions and the results provided by numerical (finite element) simulations
and by the dipole approximation. d) Illustrative results for (L = 2, 𝜆 = 𝜋/3): contour plot of Hz on 𝔖, and comparison between the exact solutions and
the results provided by numerical simulations and by the dipole approximation. In c,d), selected field and gradient components are shown, on chosen
cut-lines (CL1-CL4). The exact analytical solutions provide the same results as the numerical simulations (considering the whole domain, the relative
difference was below 10−2 and 2 · 10−2 for H and grad(H), respectively, in the whole 𝜆 range and for each component), yet with strong computational
gains (above 103). The dipole approximation introduces remarkable errors (even outside the gray-shadowed intervals, within which the approximation
accuracy is expected to deteriorate), thus further underlining the value of the exact solutions.

representative of those associated with ||f 1→2
∥ ||, because both

forces share the same “shape function” 𝜂f in Table 3.
Finally, in order to illustrate the effective usability of the

achieved analytical results closer to real-world systems, and con-
sidering state-of-the-art actuation arrays aimed to trap magne-
toresponsive agents in biological fluids/tissues,[13,15] we then ad-
dressed a cylindrical magnets array. Specifically, we considered
the system sketched in Figure 4a, composed of 6 rings, each
with 6 magnets aligned with the axial direction êw of the cylin-
drical workspace ℑ, and devised to create force traps for su-
perparamagnetic agents (modeled as point dipoles) located on
the workspace lateral surface (superparamagnetic particles, in-

deed, are increasingly proposed for both diagnostic and thera-
peutic applications,[2,28,59] including magnetic targeting/retrieval
in/from biological flows[12,13]). By varying M⋆ (parameterized by
the angles 𝜆 and ς for each magnet), we aimed to illustrate the
possibility to program the magnetization pattern so as to create,
based on the same compact array configuration, both circumfer-
ential and helical magnetic traps, as potentially favorable, for ex-
ample, for retrieval in complex/swirling flows (which is still to be
demonstrated in literature). It should be noticed that the possi-
bility to exactly and inexpensively compute such traps even close
to the magnets was specifically enabled by the solutions obtained
for H and grad(H) in this study. Figure 4b illustrates the resulting
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Figure 3. Magnetic force and torque between coaxial magnets: illustrative results. a) Coaxial magnets (schematic): with axial magnetizations (left);
with diametric magnetizations at relative angular shift 𝜃 (right). b) Normalized force f⊥ and torque t⊥ between magnets with diametric magnetization:
comparison between the exact solutions and the results provided by numerical (finite element) simulations, for (R2 = 1/2, L2 = 1) and (R2 = 2, L2 =
1), and selected values of the face-to-face distance d̃. The exact analytical solutions provide the same results as the numerical simulations (the relative
difference was below 10−2 for both force and torque, in the whole 𝜃 range), yet with strong computational gains (well above 103). c) Relative error
(with respect to the exact solutions) introduced when computing ||f 1→2

⊥
|| and ||t1→2

⊥
|| via the dipole approximation, by varying d̃ and R2 (resp. L2) once

fixed L2 = 1 (resp. R2 = 2). Considerable discrepancies appear (even outside the regions defined by a transparent white layer, within which the dipole
approximation accuracy is expected to deteriorate), thus further remarking the merit of the exact solutions (grounded on those previously obtained for
field and gradient).

Table 3. Exact solutions for the force and torque between coaxial magnets.

Axial magnetization Diametric magnetization

f 1→2
∥ = −𝜇0 R̄1 R̄2 𝜂f (R2, L1, L2, d) (M∥1 ⋅M∥2) ê1→2 (16) f 1→2

⊥
=
𝜇0

2
R̄1 R̄2 𝜂f (R2, L1, L2, d) (M⊥1 ⋅M⊥2) ê1→2 (17)

t1→2
⊥

=
𝜇0

6
R̄2

1 R̄2 𝜁t(R2, L1, L2, d) (M⊥1×M⊥2) (18)

normalized axial force f̃w, together with the corresponding mag-
netic traps (black curves over f̃w intensity plots, further high-
lighted through corresponding insets). Starting from the “base”
configuration with purely axial magnetizations (𝜆 = 0) for which
circumferential traps can be intuitively created (and traps wig-
gling could be reduced by increasing magnets density), the other
three test-cases show the possibility to modulate the traps by sim-
ply varying ς from ring to ring (while keeping 𝜆 = 𝜋/4 for all the
magnets, for simplicity). In particular, circumferential trapping
stripes can be created by keeping each M⋆ in the corresponding
sagittal plane (namely the plane passing through the workspace
axis and the corresponding magnet center O), for example, with
ς = {1, 1, 1, 0, 0, 0} · 𝜋, whereas helical traps can be introduced
with magnetizations perpendicular to the corresponding sagittal
planes, for example, with ς = 𝜋/2 or ς = {−1, −1, −1, 1, 1, 1} · 𝜋/2.

The latter two test-cases also highlight the possibility to locally
modulate traps chirality, which could be functional to specific
tools/applications. This illustration, necessarily simplified and
concise to keep the study focused, underlines the concrete op-
portunity to leverage our exact solutions in order to inexpen-
sively explore richer design spaces, as discussed in Section 3.
Figure 4c further illustrates the (𝜆 = 𝜋/4, ς = 𝜋/2) magnetization
pattern, through the contour plot of ||H|| on the workspace lateral
surface, and by showing the agreement between exact solutions
(obtained by superposition of those individually associated with
each magnet in the array) and numerical (finite element) sim-
ulations, on selected cut-lines (CL5-CL8, white-highlighted over
the aforementioned contour). The relative difference was below
2 · 10−2, with smaller differences only hampered by memory con-
straints. Indeed, the considered finite element run required a
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Figure 4. Magnetization patterning on a compact cylindrical magnets array. a) Schematic of a 6-ring array with 6 magnets per ring, also showing
the cylindrical workspace ℑ and the angles (𝜆, ς) used to individually parameterize magnetization orientation. b) Illustrative results for selected
magnetization patterns: intensity plots of the normalized axial force f̃w acting on superparamagnetic agents (modeled as point dipoles) located on the
workspace lateral surface, and associated magnetic traps (superimposed black curves, highlighted through insets that unroll the considered lateral
surface). Compared to the circumferential traps created with purely axial magnetizations (𝜆 = 0), more elaborate schemes also involving helical traps
with spatially varied chirality can be obtained by varying ς from ring to ring, while keeping 𝜆 = 𝜋/4 for all the magnets, for simplicity. Given a compact
array configuration, this possibility to modulate the force traps by re-programming the magnetization pattern (here rotating the magnets around their
common axis) could be used, for example, to advance endoluminal tools for magnetic retrieval of diagnostic/therapeutic agents in complex/swirling
biological flows. Beyond this illustration, richer design spaces can be inexpensively explored thanks to the obtained exact solutions. c) Illustrative
results for the (𝜆 = 𝜋/4, ς = 𝜋/2) magnetization pattern: contour plot of ||H|| on the workspace lateral surface, and comparison between the exact
solutions and the results provided by numerical (finite element) simulations, through selected field components on chosen cut-lines (CL5-CL8, white-
highlighted over the aforementioned contour). The exact analytical solutions provide the same results as the numerical simulations (the relative
difference was below 2 · 10−2, smaller differences being only hampered by the physical memory required by numerical simulations), yet with very
strong computational gains (around 106). This test-case, beyond its specificity, sheds further light on the advantages enabled by the exact solutions
determined in this study.

peak memory very close to the total physical memory of the used
computer, because of the relatively high number of elements
needed to suitably resolve the magnetic field variation close to the
surface of the magnets (and in particular to their edges), also con-
sidering their arrangement. Consistently, computational times
were strikingly different: the numerical simulation took O(104) s

(setup and postprocessing times excluded), while the exact solu-
tions were computed in O(10−2) s (without algorithmic optimiza-
tion), thus offering a very strong computational gain (about 106).
Beyond its specificity, the considered test-case sheds further light
on the advantages enabled by the results of the present study, as
further discussed in Section 3.
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3. Discussion and Conclusions

The number of studies involving magnetic methods/systems, in
particular for micro/millirobotics and biomedical applications,
has been strongly increasing in recent years. Novel function-
alities and approaches are being enabled by the integration of
(rigid) magnets into systems with programmable magnetization
patterns, and by their use for developing (deformable) mag-
netoresponsive soft-material systems, in particular as external
actuation sources and for magnetization coding.[1,4,28] Yet tech-
nological and implementation advances, possibly supported
by numerical simulations, seem not to be correspondingly
backed by progresses in analytical tools, which are crucial to
develop magnetic systems. Indeed, the physics knowledge-based
approach cannot be replaced, in general, with case-specific
numerical simulations, whose computational costs, moreover,
can soon become unsustainable as the complexity of the systems
increases. At the same time, the dipole approximation is com-
monly used also where its applicability can be questioned (as,
for instance, when modeling relatively cumbersome magnetic
sources devised to actuate biomedical devices in anatomical
districts). Even past efforts taken to identify permanent magnet
geometries whose field could be optimally fit by the dipole
approximation[60] underline the impactful constraint posed by
the lack of more descriptive analytical models. The fact is that
analytical solutions allowing to determine magnetic fields and
gradients, exactly and robustly in the whole computational do-
main, are still to be unveiled for many commonest geometries,
including cylindrical magnets that are almost ubiquitously used
both in fundamental research and applications.

Challenged by the above striking and long-standing theoreti-
cal gap, and considering the potential impact of the sought solu-
tions on a gamut of research scopes and practical applications,
we tackled the fundamental scientific problem of exactly and ro-
bustly computing both magnetic field and field gradient for cylin-
drical magnets with generic (axial and diametric) uniform mag-
netization (Figure 1). This study unveils the complete solutions
through Tables 1 and 2, and in particular via Equations 6 and 15
that determine magnetic field and gradient, respectively, through
a single compact expression. These solutions, which hold both
within and outside the magnets (while also describing physically-
consistent discontinuities across their surface, Figure 2b), are ex-
act, and they can be robustly computed in the whole domain, thus
intrinsically overstepping the dipole approximation (Figure 2c,d).
Moreover, the obtained solutions extend, by superposition, to hol-
low cylindrical magnets and cylindrical magnets systems of arbi-
trary complexity, in terms of both spatial arrangement and mag-
netization patterns.

The solutions determined in the present study surpass the re-
lated analytical results reported in literature, for the following
multiple aspects. (i) Our analytical framework provides exact so-
lutions for both magnetic field and gradient, thus outstripping
ref. [48], which is limited to axial magnetization, and refs. [49–
52], which did not determine the gradient solution. Indeed, no
analytical solutions were previously achieved for the gradient
when considering diametric magnetization. (ii) Our solutions
(including the cylindrical components that specify axial and di-
ametric contributions for magnetic field and gradient) can be ro-
bustly computed in the whole computational domain. In partic-

ular, they do not suffer from singularities on the prolongation 𝜏 l
of the lateral surface of the magnet (Figure 1a), where ref. [49]
leaves singular expressions and ref. [48] has to introduce an ad-
ditional representation for computing the solution. (iii) Both for
field and gradient, our complete solution is provided by a sin-
gle expression explicitly accounting for the involved intrinsic en-
tities (namely magnet geometry, pose and magnetization), and
such an expression is not limited, in particular, by the represen-
tation in cylindrical coordinates (which are not fully defined on
the cylinder axis). Specifically, the field solution in Equation 6
is purely vectorial (i.e., it is frameless), and the gradient solu-
tion in Equation 15 is expressed as a matrix in the magnet in-
trinsic frame, which is always well-defined based on pose and
magnetization. (We deliberately pursued this matrix representa-
tion, because it can be directly exploited for generic implemen-
tations by a wide range of scientists/engineers/users, not neces-
sarily acquainted with more involved mathematical formalism.)
Consequently, our field solution does not suffer from singulari-
ties on the axis of the magnet, differently from ref. [50]. Moreover,
the obtained vectorial solution provides a compact and physically
descriptive representation in the whole domain, differently from
ref. [51] that leaves both axial and diametric contributions indi-
vidually expressed through cylindrical components (and reports
some Cartesian expressions limited to the axis). The advantage of
our solution can be further appreciated by comparing Equation 6
with the considerable number of corresponding expressions re-
ported through multiple tables in ref. [52] where the use of a
computer algebra system (to automatically integrate the relevant
governing equations) implied to cope with singularities (poten-
tially introduced through the involved integration constants) by
considering multiple cases. (iv) Our complete solutions, for both
field and gradient, can be computed by calling a single function,
namely . Although quantitative comparative claims on com-
putational cost could be rigorously introduced only based on a
purposely-focused study beyond the present scope (also consider-
ing, for instance, hardware/software benchmarks and optimized
implementations), some arguments can be drafted in view of the
involved functions. In particular, considering that complete ellip-
tic integrals can be compactly computed through , the computa-
tional cost of our complete solutions is expected not to exceed that
one of the partial solutions in refs. [48, 49]. Moreover, our com-
plete solutions are expected to be computationally cheaper than
the partial solutions in refs. [50–52], because the latter also in-
volve incomplete elliptic integrals that are more computationally
demanding.[47] (v) Our analytical framework also enables orig-
inal solutions for force and torque, which surpass, per se, re-
lated analytical results in literature. Specifically, the exact and
computationally robust solutions in Table 3, which can be com-
puted by solely calling , hold for generic magnets size and rel-
ative distance, down to the limit case of magnets in contact with
each other, thus further outstripping the dipole approximation
(Figure 3c). Moreover, besides encompassing previous results on
coaxial magnets with axial magnetization,[53–56] our solutions for
force and torque between coaxial magnets with diametric magne-
tization are the first to be reported. To conclude, the above points
highlight a manifold substantial advancement compared to pre-
vious analytical results.

The scope of our theoretical results is confined by the assump-
tion of uniform magnetization. This limitation is in common
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with all the previous analytical results recalled in the above para-
graph, because, in practice, assuming uniform magnetization
is key for enabling analytical treatment and, notwithstanding
the inherent simplification compared to real-world systems, the
derived results contributed to build-up fundamental knowledge
on magnetic systems, besides fostering complementary meth-
ods (including numerical approaches), experiments design, and
implementations. The fact is that the intrinsic non-linearity of
magnetostatics problems does not permit to obtain analytical so-
lutions for fields/gradients associated with generic non-uniform
magnetizations, and this complication is exacerbated when
pursuing force/torque solutions, due to additional mathematical
difficulties associated with spatial derivation/integration.[39] In
this regard, it should be noticed that assuming uniform mag-
netization does not remove, per se, the base challenges, as also
reflected, for example, by recent solutions for the field (field only,
no gradient) of uniformly magnetized cylindrical tiles, which
are not fully analytical and whose computation is hampered by
singularities.[61] Hence, even by assuming uniform magnetiza-
tion, obtaining complete analytical solutions, as those disclosed
by the present study, remains scientifically challenging and
relatively uncommon, at large. At the same time, the assumption
of uniform magnetization does not necessarily introduce a
detrimental limitation, because rare-earth magnetic materials
nowadays in widespread use, such as Neodymium-Iron-Boron
(NdFeB), exhibit an almost ideal hard-magnetic behavior,[52]

and related real magnets systems can be accurately modeled
by assuming uniform magnetization.[53] For completeness, we
observe that some analytical results were obtained even for
hollow cylindrical magnets with ideally circumferential[62] or
radial magnetization.[63] Such solutions (not fully analytical
in the latter case), are nonetheless limited to magnetic field
components, expressed in particular in cylindrical coordinates,
and their application to real magnets could be hampered by the
challenge to accurately code a circumferential/radial magneti-
zation profile during manufacturing. That said, our solutions
cannot be applied for materials featuring hysteretic magnetic
behavior, as well as soft-magnetic materials (introducing further
non-linear effects) and hard-magnetic materials with appreciably
non-uniform magnetization (also due, for instance, to shape
anisotropy[2,28]). For those cases, numerical approaches must be
pursued, including, for example, moments methods devised to
compute demagnetization effects in non-uniformly magnetized
bodies,[64–66] thus entering a research field beyond the scope
of our study. At the same time, the present considerations
spur to further leverage our analytical framework in search for
additional exact solutions, in particular associated with specific
magnetization patterns, for both field/gradient and force/torque.
As for the latter, we conclude this paragraph by remarking that
the obtained solutions are further limited to coaxial magnets.
Indeed, exact force/torque solutions for cylindrical magnets
with generic relative pose are, overall, hardly viable because of
additional mathematical difficulties (for instance, associated with
spatial integration over generic cylindrical domains represented
in a common frame). Arguably, this is the reason why, already for
non-coaxial parallel magnets, and by accepting the additional re-
striction to axial magnetization, no fully analytical solutions have
been achieved so far.[53,56] The possibility of overcoming, even
partially, the above challenges, through an extension of the pro-

posed analytical framework, will be assessed through subsequent
investigations.

For the sake of clarity, we also remark that the obtained ex-
act solutions hold for rigid cylindrical magnets: they do not ap-
ply to deformable cylindrical magnets, for example, made of
soft magnetoresponsive composites. Indeed, magnetoresponsive
continua must be modeled by considering that a magnetic field
induces body deformations that, in turn, affect the field itself, and
this magneto-mechanical coupling adds to non-linear material ef-
fects (such as, for instance, the hyperelastic behavior of common
polymeric matrices used in composites[28]). Consequently, the
possibility to obtain analytical solutions for magnetoelastic prob-
lems is further confined to assumed elementary deformations
and magnetic fields,[67] whereas case-specific numerical simula-
tions are possibly used to support the development of more real-
istic systems. There is, however, a concrete connection between
our findings and magnetoresponsive continua. In many cases,
indeed, the external magnetic sources used to actuate magne-
toresponsive soft-material systems are rigid magnets with uni-
form magnetization and simple geometries, such as cylinders
and cuboids. More in detail, such external magnets are gener-
ally displaced/rotated, in a controlled way, for inducing sought
deformations/effects on the continuum, as occurring, for exam-
ple, in ref. [29], where couples of opposite magnets were alterna-
tively displaced along predefined directions for stretching a con-
tinuum sample, or in ref. [27], where the considered magnetic
slime was deformed in a functional way by moving multiple per-
manent magnets. In numerical simulations, such pose variations
of the external rigid magnets increase computational complex-
ity/costs (either for multiple simulations or for re-meshing in a
single run), on top of the efforts necessary to model the contin-
uum sample. Differently, our exact solutions could be called at
runtime in order to inexpensively compute both field and gra-
dient for the external cylindrical sources, as functional to define
body forces and torques acting on the continuum. (This argu-
ment adds to the advantages offered by our analytical solutions
versus numerical simulations, as further discussed below.) In the
same spirit, considering the use of cylindrical magnets for mod-
ulating the stiffness or the rheological properties of soft magne-
toresponsive composites, our results could also be used to quanti-
tatively investigate/characterize magnetorheological elastomers.
Similarly, our results could support the design of magnetization
profiles to be coded, through external cylindrical magnets, in soft
magnetoresponsive composites (by taking advantage of the exact
determination of fringe effects around the magnets). In this re-
gard, our solutions could complement recent approaches for the
design of magnetization coding, for example, based on a com-
bination of model-based and data-driven strategies.[36,68] Even in
this case, however, subsequent specific investigations are neces-
sary to back stronger and more detailed claims.

Notwithstanding the above discussed limitations, our theoret-
ical solutions offer advantages even from an application point of
view. First, being exact, they remove the inherent inaccuracy in-
troduced by the dipole approximation when designing actuation
and localization systems. As for the former, they could be used,
for example, to accurately model the cylindrical magnets used
for manipulating miniature biomedical devices, thus possibly
extending ref. [21]. As for the latter, they could be used, for
example, for accurately detecting magnets relatively close to
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sensors in robotic prostheses, thus possibly extending ref. [25].
Moreover, exactly knowing the gradient is profitable for both
computations and system design/control. Indeed, it avoids finite-
precision differentiation in numerical solvers, with benefits for
robustness/accuracy, as quickly mentioned when comparing
exact solutions and numerical simulations for a single magnet
(Figure 2c,d). In addition, exactly knowing the gradient fosters
system design/control by means of Jacobian-based optimization
methods.[20] Furthermore, our solutions in Equation 6 and 15
explicitly account for the key design parameters (i.e., magnets
geometry, pose and magnetization) and, given their vectorial
character, the designer can trivially exploit superposition (while
also taking advantage, to some extent, of physical intuition)
in order to explore/define the design space. At the same time,
algorithmic design is fostered by the fact that our solutions can
be computed by calling a single function. For the sake of illustra-
tion, let us consider, for example, the magnetic actuation system
reported in ref. [43], based on multiple cylindrical magnets with
axial magnetization. Its design was based on a series-expansion
solution in cylindrical coordinates for the magnetic field of each
magnet, combined with corresponding frame transformations
aimed to represent all the involved contributions in a common
reference frame. We respectfully observe that a corresponding
design strategy based on our exact field solution would remove
the inaccuracies inherently associated with series truncation
(as well as the partial indeterminacy of cylindrical coordinates
on the axis of each magnet), while also reducing computational
complexity, thanks to the use of a single function and the removal
of coordinate transformations. In addition, our exact gradient
solution could be used to further optimize design (by also
considering, for instance, extended targets/constraints), and the
advantage of computationally inexpensive vectorial solutions is
expected to become more compelling as the number of involved
magnets increases. Furthermore, taking advantage of the fact
that our solutions were expressly determined for magnets sys-
tems with programmable magnetization, we can explore richer
design spaces by leveraging magnetization patterning, yet this
aspect is further discussed in the following paragraph, for ease of
presentation. Moreover, our exact and singularity-free solutions
could be used to also improve the robustness of model-based
localization systems, because sampling a model close to singular
points/domains can affect the convergence of the underlying
algorithms without clear hints of the almost-hit singularity, since
its detection can be blurred by numerical round-off, both in
simulations and in real-world embedded processors. In addition,
they could be used to increase the number of sensed degrees-
of-freedom (for instance, in wearable rehabilitation systems[26]),
without sacrificing accuracy. Finally, even the derived exact
solutions for force/torque could be used for the design of
linear/rotational magnetic springs, including hollow magnets
(through clear extensions by superposition), thus replacing case-
specific numerical simulations[45,46] with physically descriptive
and computationally inexpensive analytical expressions.

Considering all the arguments introduced so far, it emerges
that our findings have the potential to effectively impact practical
implementations and applications. In this regard, our solutions
remarkably add magnetization patterning to the designer’s
palette, thus extending the possibilities to program magnetic
behaviors for a system. For instance, previous magnets systems

for stable assemblies,[23] or magnets array devised to trap mag-
netoresponsive agents for biomedical applications,[13,15] used
magnets with “standard” magnetization (such as cylindrical
magnets with axial magnetization, and cuboids with magneti-
zation aligned with one edge, like popular fridge magnets), and
the sought magnetic behavior was programmed through the
spatial arrangement of the magnets. This approach, however,
may hamper the possibility to implement compact systems, with
potential negative effects, for example, on the miniaturization of
tools conceived for minimally invasive biomedical procedures.
Our solutions overcome this limitation, for example, by allowing
to program magnetization for a given spatial arrangement. We
concisely illustrated this opportunity by considering a compact
cylindrical magnets array (Figure 4) aimed to trap, relatively close
to the magnets, tiny agents featuring the same magnetic behavior
as particles increasingly used for both diagnostic and therapeutic
medical procedures.[59] In particular, we showed the possibility to
create, based on suitable magnetization patterns, both circumfer-
ential and helical force traps, while also modulating their global
scheme and/or local features (like traps chirality for the helical
ones) through magnetization re-programming, as achievable by
rotating the magnets around their common axis (Figure 4b). The
considered concept array could be used, for example, to advance
the design of magnetic retrieval catheters (which already demon-
strated some potential for translation[13]), in particular toward
operation in complex/swirling biological flows, yet stronger
claims can only be made on the basis of physically representative
flow conditions and clinically relevant implementation con-
straints. Furthermore, in the considered illustration we did not
determine specific magnetization patterns by solving an inverse
problem, that is, we did not use the achieved solutions for design
in the strict sense. A subsequent design study, focused on the cre-
ation of a real magnets system with programmed magnetization
such as to enable new functions/applications compared to exist-
ing magnets/coils systems, will provide more tangible evidence
of the advantages of our analytical solutions for design. To the
purpose, once identified specifications and constraints relevant
to a real-world problem (for instance, a biomedical procedure
lacking of suitable tools), a design/optimization framework will
be defined, where to integrate our solutions, starting from the
self-contained implementation that is reported, for the benefit
of a wider readership, in the present paper. However, to keep
the discussion scientifically focused, we skip speculations at this
stage and simply underline that, even for design, our findings
can provide significant advantages compared to numerical sim-
ulations. Indeed, considering cylindrical magnets systems with
programmable magnetization, our exact solutions inexpensively
determine the results to which numerical simulations tend,
provided that the involved discretization is refined enough
(Figure 2c,d; Figure 3b; Figure 4c). (In this regard, it should be
noticed that our solutions can also be used as benchmarks for de-
veloping related numerical approaches.) Yet accurately resolving
magnetic field variations, in particular close to the surface/edges
of the magnets, requires a relatively fine discretization per se,
thus further adding to computational costs, so that our solutions
offer a very strong computational gain (about 106), versus finite
element simulations, already for the aforementioned magnets
array system. Consistently, physics-informed meshing and, pos-
sibly, gradient computation could hamper the development of
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design approaches based on numerical simulations, since mem-
ory requirements and computation times could rapidly become
unsustainable, at least on common computing platforms, for in-
creasingly complex systems. Conversely, our analytical solutions
could enable scalable design frameworks.

To conclude, our study was focused on cylindrical mag-
nets systems with generic uniform magnetization, for which
we achieved exact and computationally robust solutions for
magnetic field, gradient, force and torque. In order to tackle
more articulated systems and ambitious real-world implementa-
tions, it is necessary to co-develop and synergistically integrate
complementary contributions, for example, concerning novel
magnetic materials (including soft magnetoresponsive compos-
ites and architected/foldable magnetic materials),[57,69–71] mod-
eling/simulation (for both rigid magnets and magnetoelastic
continua),[72,73] and system assembly/integration.[74,75] Neverthe-
less, original approaches and solutions grounded on classical
physics knowledge continue to unfold new research pathways
and potential applications,[76] and, in this spirit, the analytical so-
lutions determined in this study can be effectively used to scien-
tifically investigate, develop, and possibly invent complex cylin-
drical magnets systems with programmable magnetization, for a
wide variety of applications.

4. Methods

Base Cylindrical Magnet and Coordinate Systems: With refer-
ence to Figure 1a, a cylindrical magnet was considered with ra-
dius R̄, half-height L̄, and generic uniform magnetization M⋆. Sb,
St, and Sl respectively denote the bottom, top, and lateral surface
of the cylinder; 𝜏b, 𝜏 t and 𝜏 l respectively denote the correspond-
ing prolongations. Given the direction ê∥ of the cylinder axis, it
was defined M∥ := (M⋆ ⋅ ê∥) ê∥ :=M∥ ê∥ and M⊥ :=M⋆ − M∥ such
that M⊥ := ||M⊥|| ê⊥ :=M⊥ê⊥ (without loss of generality, since for
||M⊥|| = 0 the diametric direction ê⊥ can be arbitrarily chosen in
the plane perpendicular to ê∥).

By measuring the angular coordinate from ê⊥, a cylindrical co-
ordinate system was introduced with unit vectors {ê𝜌, ê𝜙, êz := ê∥}
and origin O at cylinder mid-height. In this system, a point P′

on the cylinder surface has coordinates (𝜌̄′, ϕ′, z̄′), whereas a
point P either inside or outside the cylinder has coordinates (𝜌̄,
ϕ, z̄). In order to preserve physical consistency during the deriva-
tion, the corresponding non-dimensional coordinates (𝜌′ := 𝜌̄′∕R̄,
ϕ′, z′ := z̄′∕R̄) and (𝜌 := 𝜌̄∕R̄, ϕ, z := z̄∕R̄) were introduced, which
are illustrated in Figure 1b together with the scaled magnet di-
mensions R:= R̄∕R̄=1 and L:= L̄∕R̄. Spatial derivatives were con-
sistently carried out (so that, for instance, ∂𝜌(·) := ∂(·)/∂𝜌 and
𝜕𝜌̄(⋅) :=𝜕(⋅)∕𝜕𝜌̄ = 𝜕𝜌(⋅)∕R̄). Cylindrical coordinates were used to
obtain field and gradient components, which were later recom-
bined to represent the solution in the intrinsic (Cartesian) frame
{êx, êy, êz} :={ê⊥, ê∥ × ê⊥, ê∥} in order to circumvent the indeter-
minacy of ê𝜌 and ê𝜙 (due to ϕ) for points P on the cylinder axis.

Solution Procedure for Magnetic Field and Gradient: Hereafter,
the solution strategy is first outlined. To obtain H and grad(H) at
a generic point P, the magnetostatics governing equations (in the
absence of free currents) curl(H) = 0 and div(B) = 0 were first re-
called, where the magnetic induction B is locally linked to H and
to the magnetization M by B = 𝜇0(H + M), with 𝜇0 := 4𝜋 · 10−7

TmA−1 denoting vacuum magnetic permeability.[39] Once intro-

duced the magnetic scalar potential 𝜑 such that

H := −grad(𝜑),

a single governing equation remains, namely Δ𝜑 = div(M)
(where Δ denotes the Laplace operator), and its solution, given
the assumed uniform magnetization M⋆, formally reads[39]

𝜑(P) = 1
4𝜋 ∫St∪Sb∪Sl

M⋆ ⋅ n̂||P − P′|| dS′,

where n̂ denotes the (outer) normal at the running point P′ on the
cylinder surface. Then, after recasting the magnetic scalar poten-
tial as 𝜑 = (M∥ 𝜑̃∥ + M⊥𝜑̃⊥)R̄∕(4𝜋), with

𝜑̃∥(P) := R̄−1

(
∫St

dS′||P − P′|| − ∫Sb

dS′||P − P′||
)

and

𝜑̃⊥(P) := R̄−1 ∫Sl

cos(𝜙′) dS′||P − P′|| ,

an explicit exact solution was obtained for both 𝜑̃∥ and 𝜑̃⊥, by
direct integration (systematically working in non-dimensional
terms). H = H∥ + H⊥ and grad(H) = grad(H∥) + grad(H⊥) were
finally achieved by computing H∥ := (−grad(𝜑̃∥))M∥R̄∕(4𝜋) and
H⊥ := (−grad(𝜑̃⊥))M⊥R̄∕(4𝜋).

Hereafter, the solution procedure is further sketched. It con-
sists of four main steps (Steps 1–4). Lower-level details are fully
reported in Supporting Information, for ease of readability.

At Step1, the starting expressions of 𝜑̃∥ and 𝜑̃⊥ were reworked
by using Bessel functions (Section S2, Supporting Information).

At Step2, 𝜑̃∥ and 𝜑̃⊥, as well as relevant spatial derivatives
thereof (up to the second order), were expressed in terms of inte-
grals involving products of Bessel functions. Specifically, by con-
sidering that the expression of 𝜑̃⊥ obtained at Step1 depends on
whether z ⩾ L, |z| < L or z ⩽ −L, these three cases were individ-
ually addressed (Sections S3–S5, Supporting Information).

At Step3, the derivatives obtained at Step2 were recast in terms
of the Bulirsch integral , so as to finally achieve the sought
components of H and grad(H) in the cylindrical frame. To the
purpose, we used  to also compute the so-called Normalized
Heuman Lambda function Λ (Section S1, Supporting Informa-
tion), since its introduction allowed us to circumvent singulari-
ties that arise with some formulations involving complete ellip-
tic integrals of the third kind.[48,49] More specifically, at Step3 the
components of H∥ and H⊥ in Table 1 were first obtained; H∥ϕ = 0
(by symmetry) was omitted for conciseness from the considered
table. Then, a matrix representation for grad(H) was addressed,
since the force f = 𝜇0 grad(H) · m acting on a magnetic dipole m
subject to H[1,2] is commonly expressed through the associated
matrix representation [ f𝜌, fϕ, fz]T = 𝜇0 G(cyl) [m𝜌, mϕ, mz]T, with

G(cyl) :=
⎡⎢⎢⎢⎣
𝜕𝜌̄H𝜌 𝜌̄−1 (𝜕𝜙H𝜌 − H𝜙) 𝜕z̄H𝜌

𝜕𝜌̄H𝜙 𝜌̄−1 (𝜕𝜙H𝜙 + H𝜌) 𝜕z̄H𝜙

𝜕𝜌̄Hz 𝜌̄−1 (𝜕𝜙Hz) 𝜕z̄Hz

⎤⎥⎥⎥⎦ .
The derivatives of H∥ and H⊥ in Table 2 were thus ob-

tained; 𝜌̄−1(𝜕𝜙H∥𝜌−H∥𝜙) = 0 and 𝜌̄−1𝜕𝜙H∥z = 0 (by symmetry)
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were omitted for conciseness from the considered table. Only
five G(cyl) components were shown in Table 2 because the remain-
ing ones are obtained from the curl-free and divergence-free con-
ditions, namely 𝜌̄−1𝜕𝜌̄(𝜌̄H𝜌) + 𝜌̄−1𝜕𝜙H𝜙 + 𝜕z̄Hz = 0, 𝜌̄−1𝜕𝜙Hz =
𝜕z̄H𝜙, 𝜕z̄H𝜌 = 𝜕𝜌̄Hz and 𝜕𝜌̄(𝜌̄H𝜙) = 𝜕𝜙H𝜌. Additional details are
reported in Sections S3–S5 (Supporting Information).

At Step4, the solution was extended so as to circumvent the in-
determinacy of ê𝜌 and ê𝜙 (due to ϕ) on the cylinder axis, thus
achieving the complete solutions for H and grad(H). As for
H, by representing ê𝜌 and ê𝜙 in terms of êx = ê⊥ and êy= ê∥×
ê⊥ (while having êz= ê∥), H= (H∥𝜌 + H⊥𝜌) ê𝜌 + (H∥𝜙 + H⊥𝜙) ê𝜙 +
(H∥z + H⊥z) êz was recast by only using ê∥ and ê⊥, and that ex-
pression was manipulated so as to finally achieve the compact
frameless expression in Equation 6. As for grad(H), the matrix
representation of the above force f in the intrinsic frame was con-
sidered, namely [ fx, fy, fz]T = 𝜇0 G [mx, my, mz]T, with

G :=
⎡⎢⎢⎢⎣
𝜕x̄Hx 𝜕ȳHx 𝜕z̄Hx

𝜕x̄Hy 𝜕ȳHy 𝜕z̄Hy

𝜕x̄Hz 𝜕ȳHz 𝜕z̄Hz

⎤⎥⎥⎥⎦ ,

and the compact solution in Equation 15 was obtained
by computing G=ℜG(cyl) ℜ−1 via the rotation matrix ℜ :=
[cos𝜙,− sin𝜙, 0; sin𝜙, cos𝜙, 0; 0, 0, 1] (semicolon here denoting
row splitting) that maps the cylindrical representation into that
one in the intrinsic frame. Additional details are reported in Sec-
tion S6 (Supporting Information).

Exact analytical solutions for H and grad(H) were thus fi-
nally achieved, which do not suffer from singularities in the
whole computational domain. Selected components were also il-
lustrated (Figure 2b–d) by computing the solution on a surface
𝔖 obtained by cutting in half the cylindrical surface 5 ⋅ 10−2R̄ in-
ward from the magnet surface. The exact solution for the under-
lying magnetic scalar potential 𝜑 was also achieved, which is re-
ported in Section S7 (Supporting Information), for completeness.

Solution Procedure for Magnetic Force and Torque: Two coaxial
cylindrical magnets C1 (radius R̄1, half-height L̄1, magnetization
M1) and C2 (radius R̄2, half-height L̄2, magnetization M2) were
considered, at a relative distance d̄≥ L̄1+L̄2. Force and torque ex-
erted by C1 on C2 can be respectively computed as follows:[38]

f 1→2 =𝜇0 ∫V2

grad
(
H1

)
⋅M2 dV,

t1→2 =𝜇0 ∫V2

(
(P−O1) × (grad

(
H1

)
⋅M2) + M2 × H1

)
dV,

where (subscripts are understood and) V2 denotes the volume oc-
cupied by C2. First, by assuming axial magnetizations M1 = M∥1
and M2 = M∥2, the associated force f 1→2

∥ was computed (torque
being null, by symmetry). Then, by assuming diametric magneti-
zations M1 =M⊥1 and M2 =M⊥2 at a generic relative angular shift
𝜃, the corresponding force f 1→2

⊥
and torque t1→2

⊥
were computed.

More specifically, given the axial direction ê1→2 pointing from C1
to C2, force and torque were represented in the intrinsic frame
associated with C1, by assuming êz = ê∥ = ê1→2 (without loss of
generality). Once consistently adopted R̄1 as reference length for
non-dimensionalization, H1 and grad(H1) were replaced with the

exact expressions previously achieved for field and gradient, re-
spectively, and integration about the axial direction was directly
performed, ending up with the same kind of integrals obtained at
Step2 of the solution procedure for field and gradient. Proceed-
ing as at Step3, the expressions at hand were then recast in terms
of , thus finally reaching the results in Table 3, which seamlessly
account for the three cases R̄2 ⋚ R̄1 through a unified expression,
and do not suffer from singularities even in the limit case of mag-
nets in contact with each other. Additional details are reported in
Section S8 (Supporting Information).

Magnets Array Actuation System: It was assumed to have nr
= 6 ring arrays, each containing nm = 6 evenly spaced magnets
(Figure 4a), with R̄=2⋅10−3 m, L = 1 and ||M⋆|| = 106Am−1 (as
for common NdFeB magnets), around a cylindrical workspace ℑ
having radius 2.5R̄ and axial span LℑR̄=13.5R̄. In order to inves-
tigate a compact array embodiment, the rings radius (namely the
distance from the workspace axis to the center O of each magnet)
was set equal to 3.75R̄, and the magnets were evenly distributed
along the axial span (thus resulting in a (Lℑ−2 L)R̄∕(nr−1) axial
shift between adjacent rings). Furthermore, all the magnets were
aligned with the workspace axial direction, by setting ê∥ = êw, and
an angular shift of 𝜋/nm rad between adjacent rings was intro-
duced. Finally, for each magnet, the magnetization orientation
was parameterized via the polar angle 𝜆 ∈ [0, 𝜋] rad and the az-
imuthal angle ς ∈ [ − 𝜋, 𝜋] rad shown in Figure 4a (with ς defin-
ing an angular offset with respect to the sagittal plane passing
through the workspace axis and O).

At each point on the workspace lateral boundary, the axial force
fw := f ⋅êw was computed by assuming the presence of a spherical
superparamagnetic agent, modeled as an induced dipole m = 𝜅H
(by neglecting magnetization saturation effects possibly limiting
dipole moment intensity[2,12,28]), and the normalized axial force
was then obtained as f̃w := fwR̄∕(𝜇0 ||M⋆|| ||m||) (so that 𝜅, above
introduced to define m in a physically consistent way, is imma-
terial), with the trivial extension f̃w :=0 for ||m|| = 0. In order to
compute f̃w, we implemented the exact solutions achieved for H
and grad(H) in Matlab (The MathWorks, USA), by accounting
for the array structure via computationally inexpensive superpo-
sition. Finally, starting from the nodal force lines f̃w =0 on the
workspace lateral surface, magnetic traps were defined in corre-
spondence of negative values of the directional derivative of f̃w
along êw. Let us remark that the as-computed traps are not af-
fected by magnetization saturation effects, consistently with the
expression introduced above for the induced point dipole.

Comparison with Numerical Simulations and Dipole Approxi-
mation: The obtained exact analytical results were compared
to numerical simulations carried out by means of the finite-
element solver Comsol Multiphysics (Comsol Inc, USA). Simu-
lations were run on a desktop personal computer (CPU: 3 GHz;
RAM: 128 GB), by assuming R̄=10−2 m and ||M⋆|| = 106Am−1.

As for H and grad(H) of a single magnet, two test-cases were
considered, namely L = 1/2 and L = 2. For each of them, 46 sim-
ulations were run, by parameterizing the magnetization orienta-
tion through 46 evenly spaced values of 𝜆∈ [0, 𝜋/2] rad, with cos 𝜆
= M∥/||M⋆|| (Figure 2a; half of the [0, 𝜋] span was considered, for
simplicity). The magnetostatics governing equations were solved
in a spherical domain centered at O, by imposing 𝜑 = 0 on its
boundary (far enough from O not to affect the solution, as ex
post verified). The domain was discretized by 2nd-order-accurate
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tetrahedral elements, and the grid was incrementally refined to
obtain discretization-independent results. For each simulation,
the (vector) numerical solution  was exported at grid points
within a cube centered at O and having (non-dimensional) edge
length 6, by neglecting grid points within a 5 · 10−2-thin shell
around the magnet surface. Once computed the analytical solu-
tion  at the same grid points by using Matlab (The MathWorks,
USA), the relative difference Σ(|(⋅) − (⋅) |) ∕Σ(|(⋅) |) was com-
puted, where (·) represents a generic field or gradient component,
Σ denotes numerical integration over the cube (to account for
the uneven spatial distribution of grid points), and subscripts are
understood. Analytical and simulation results were also visually
compared (Figure 2c,d), by reporting selected components on the
following cut-lines (relatively close to the magnet): CL1 := {|x| ⩽

3/2, y = 0, z = L + 1/10}, CL2 := {x = 11/10, y = 0, |z| ⩽ L + 1/2},
CL3:={x=11

√
2∕20, y=11

√
2∕20, |z|≤L+1∕2}, and CL4 := {x =

0, y = 11/10, |z| ⩽ L + 1/2}.
Moreover, as regard force and torque, it was preliminarily ver-

ified that the expression for f 1→2
∥ produces the same results as

the expression in ref. [55], so as to focus on f 1→2
⊥

and t1→2
⊥

, for
which analytical benchmarks are not available. Once fixed L1 =
L2 = 1 and the same magnetization intensity ||M⋆|| for both mag-
nets, two test-cases were considered, namely R2 = 1/2 and R2 = 2.
For each of them, we ran 2 × 30 = 60 simulations. Specifically, 2
values were chosen for the face-to-face distance d̃ :=d − L1 − L2,
namely 1/10 and 3/2, and for each of them the angular shift be-
tween the involved magnetizations was parameterized through
30 evenly spaced values of 𝜃 ∈ [0, 𝜋] rad (Figure 3a; half of the [0,
2𝜋] span was considered, for simplicity). Discretization was per-
formed in a similar way as described above. For each simulation,
the resulting (scalar) numerical values for force and torque, say
(⋅) to leverage the above notation, were exported, and the cor-
responding analytical values (⋅) were computed. For each value
of d̃, the relative difference RMS((⋅) − (⋅) ) ∕RMS((⋅) ) was fi-
nally computed, with the root mean square (RMS) value defined
over each (evenly distributed) 𝜃−set. Analytical and simulation
results were also visually compared (Figure 3b), by reporting the
normalized force f⊥ := (f 1→2

⊥
⋅ ê1→2)∕(𝜇0 R̄1 R̄2 ||M⋆||2) and torque

t⊥ := (t1→2
⊥

⋅ ê1→2)∕(𝜇0 R̄2
1 R̄2 ||M⋆||2).

Furthermore, as concerns the magnets array actuation sys-
tem, the (𝜆 = 𝜋/4, ς = 𝜋/2) magnetization pattern was consid-
ered. A spherical domain was defined, centered around the array
workspace and large enough for the null-potential boundary con-
dition not to affect the solution, as mentioned above. The domain
was discretized by the aforementioned tetrahedral elements,
and the grid was incrementally refined to obtain discretization-
independent results, by paying careful attention to the boundary
layers close to the surface of each magnet (and in particular to
the edges), where the solution undergoes relatively sharp varia-
tions. The number of elements used for the considered test-case
(around 80 · 106), as well as those used for the aforementioned
simpler simulations (nearly 10 · 106), are consistent, for exam-
ple, with the number of elements (around 2 · 106) needed to sim-
ulate a simple cylindrical tile.[61] For each field component, we
exported the numerical solution at evenly spaced points along
four cutlines on the lateral surface of the workspace (denoted as
CL5-CL8 in Figure 4c), so as to compute the associated RMS rela-
tive difference with respect to the analytical solution, as described

above. More in detail, the axial cutlines CL5 and CL6 were intro-
duced by intersecting the workspace lateral surface with sagittal
planes passing through the workspace axis and containing the
origins of axially aligned magnets. Considering symmetry, CL5
and CL6 were chosen as defined by 𝜙ℑ=0 and 𝜙ℑ=𝜋∕nm rad, re-
spectively, with the reference direction for the angular coordinate
𝜙ℑ defined (up to nm angular shifts, by symmetry) in Figure 4c.
The circumferential cutlines CL7 and CL8 were defined by inter-
secting the workspace lateral surface with planes perpendicular
to the workspace axis. Considering symmetry, CL7 was defined
by picking the plane bisecting the workspace axial span, and CL8
by picking the plane through the origins of the magnets in a ring
adjacent to the aforementioned bisecting plane. Analytical and
simulation results were also visually compared (Figure 4c).

Finally, the obtained exact solutions were also compared with
the results provided by the dipole approximation. As for H and
grad(H) of a single magnet, the aforementioned selected com-
ponents were computed on CL1-CL4 by using the well-known
dipole expressions.[39] Considering that the multipole expansion
is well defined for points P outside the smallest sphere bounding
the magnet,[39] the cut-line segments that intersect that sphere
were identified, so as to highlight those intervals (gray in Fig-
ure 2c,d) where the dipole approximation was expected to dete-
riorate (differently from the exact solution, which does not suf-
fer from any limitations). Using the well-known expressions for
force and torque between dipoles,[39] the relative error on ||f 1→2

⊥
||

and ||t1→2
⊥

|| (with respect to the exact solutions) was then com-
puted, by varying d̃ and R2 (resp. L2), with L2 = 1 (resp. R2 = 2). To
the purpose, it was also fixed 𝜃 so as to maximize force and torque
intensity, for ease of rendering. Consistently with above, those
regions in the R2-d̃ (resp. L2-d̃) plane were highlighted (trans-
parent white layer in Figure 3c) where the dipole approximation
was expected to deteriorate (differently from the exact solution,
which does not suffer from any limitations), because at least one
portion of a magnet intersects the smallest sphere bounding the
other one.

Solution Implementation: The exact solutions for magnetic
field and gradient reported in Tables 1 and 2, respectively, can be
fully implemented by using the self-contained set of expressions
in Table 4. Specifically, group FG1 reports the coordinates-related
definitions (while also including 𝜌 and z for ease of readability).
In the computational domain, which excludes the magnet sur-
face (whence the edges), 0≤𝜎2

±≤ 1 and 0≤k2
±<1. Group FG2

then reports the so-called Normalized Heuman Lambda function
Λ, consistently defined (in terms of ) for 0 ⩽ 𝜎2 ⩽ 1 and 0 ⩽ k< 1
(Λ can be robustly computed even for 𝜎2 = 1, see Section S1, Sup-
porting Information). Moreover, group FG3 defines the functions
f0 − f5 appearing in Tables 1 and 2, by also using sign and  to de-
note sign and Heaviside step functions, respectively. Function f2,
in particular, can be robustly computed even on the magnet axis,
namely for 𝜌 = 0 (see Sections S3–S5, Supporting Information).
Furthermore, function fΛ, which seamlessly accounts for the
three cases z ⩾ L, |z| < L and z ⩽ −L, (see Sections S2–S5, Sup-
porting Information), is continuous across the surfaces 𝜏b and
𝜏 t shown in Figure 1a (whereas function f0 simply accounts for
magnetization discontinuity when crossing the corresponding
surfaces Sb and St). Finally, group FG4 and FG5 report key
definitions for the final, complete solutions: FG4 defines u
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Table 4. Implementation of the exact solutions for magnetic field and gradient.

Group Auxiliary expressions

FG1 p := (P−O)∕R̄, 𝜌 = ‖p×ê∥‖, z = p⋅ê∥, s𝜙 := sin𝜙, c𝜙 := cos𝜙, z± := z ± L, 𝜎2
± := z2

±∕
(
(1−𝜌)2 + z2

±
)

d2
± := (1+𝜌)2 + z2

±, d± :=
√

d2
±, k2

± := 4𝜌∕d2
±, k± :=

√
k2
±, k2

c± := 1 − k2
±, kc± :=

√
k2

c±

FG2 Λ(𝜎2, k) :=
√

p̃ 𝜎2 (kc, p̃, 1, k2
c

)
, with p̃ := (1−𝜎2k2

c )∕(1−𝜎2), k2
c :=1−k2, kc :=

√
k2

c

FG3 f1(𝜌, z; L) := 1
4

([
zi

di
(kci, 1, 1, 1

)]+
−
+ fΛ

)
, f2(𝜌, z; L) := 𝜌−3

4

([
zi

di
(kci, 1, 1−2𝜌, 1+2𝜌

)]+
−
− fΛ

)

f3(𝜌, z; L) := 4

[
1
d3

i


(

2
√

kci

1 + kci
, 1, 0, 2

(1 + kci)3

)]+

−

, f4(𝜌, z; L) :=

[
zi

d3
i


(

kci, 1, 1
k2

ci

,−1

)]+

−

f5(𝜌, z; L) :=

[
1
d3

i


(

kci, 1,
1−𝜌
k2

ci

, 1+𝜌

)]+

−

,
[

f (zi , di , ki,…)
]+
− := f (z+, d+, k+,…) − f (z−, d−, k−,…)

⎧⎪⎨⎪⎩
fΛ(𝜌, z; L) := sign(1−𝜌)

[
Λ(𝜎2

i , ki)
]+
−, f0(𝜌, z; L) := 0 for z ≥ L

fΛ(𝜌, z; L) := sign(1−𝜌)
(
Λ(𝜎2

+, k+) + Λ(𝜎2
−, k−)

)
, f0(𝜌, z; L) := −𝜋(1−𝜌) for |z| < L

fΛ(𝜌, z; L) := sign(1−𝜌)
[
Λ(𝜎2

i , ki)
]−
+, f0(𝜌, z; L) := 0 for z ≤ −L

FG4 u := 𝜌
(
M⊥− 2 (M⊥ ⋅𝝂) 𝝂

)
, v :=

(
p ⋅ (M∥−M⊥)

)
ê∥ − M∥ p,

{
𝝂 := (p×ê∥)∕𝜌 for 𝜌 > 0

𝝂 := 0 for 𝜌 = 0

FG5
{

J̃∥ := J∥, J̃⊥ := J⊥, c̃ := (p ⋅ ê⊥)∕𝜌, s̃ := (p ⋅ ê∥ × ê⊥)∕𝜌 for 𝜌 > 0

J̃∥ := J̃0
∥ , J̃⊥ := J̃0

⊥
, c̃ := 0, s̃ := 0 for 𝜌 = 0

J∥ :=
⎡⎢⎢⎢⎣
g1 − f3 g2 g4

g2 g3 − f3 g5

g4 g5 f5

⎤⎥⎥⎥⎦ , J⊥ :=
⎡⎢⎢⎢⎣
c̃ (6f2 − c̃2g6) s̃ (2f2 − c̃2g6) g1 − f3
s̃ (2f2 − c̃2g6) c̃ (2f2 − s̃2g6) g2

g1 − f3 g2 g4

⎤⎥⎥⎥⎦ , J0
∥ :=

⎡⎢⎢⎢⎣
−g⋆ 0 0

0 −g⋆ 0
0 0 2g⋆

⎤⎥⎥⎥⎦ , J0
⊥

:=
⎡⎢⎢⎢⎣

0 0 −g⋆
0 0 0

−g⋆ 0 0

⎤⎥⎥⎥⎦
g1 := c̃2 g , g2 := s̃ c̃ g , g3 := s̃2 g , g4 := c̃ f4, g5 := s̃ f4, g6 := 8f2 + f4, g := 2 f3 − f5, g⋆ := 𝜋

4

[(
1 + z2

i

)− 3
2

]+
−

Table 5. Implementation of the exact solutions for magnetic force and torque.

Group Auxiliary expressions

FT1 𝜂f (R2, L1, L2, d) := 𝜂(R2, d + L1 + L2) + 𝜂(R2, d − L1 − L2) − 𝜂(R2, d − L1 + L2) − 𝜂(R2, d + L1 − L2)

𝜁t(R2, L1, L2, d) := 𝜁 (R2, d + L1 + L2) + 𝜁 (R2, d − L1 − L2) − 𝜁 (R2, d − L1 + L2) − 𝜁 (R2, d + L1 − L2)

FT2
{
𝜂(R2, x) := x

(
f6 − f7

)
∕𝓁, 𝜁 (R2, x) :=

(
(2 (1 + R2

2) − x2) f6 + f8
)
∕𝓁 for (R2, x) ≠ (1, 0)

𝜂(R2, x) := 0, 𝜁 (R2, x) := 4 for (R2, x) = (1, 0)

f6(R2, x) := k(kc, 1, 0,−1
)
, f7(R2, x) := (kc, 1 − 𝜉k, 𝜉, 𝜉 − k

)
f8(R2, x) := (kc, 1 − 𝜉k, 4R2 + 3𝜉x2, 4R2 + 3𝜉x2 − k (4𝜉R2 + 3x2)

)
, 𝜉 := min(1, R2) ∕max(1, R2)

k(R2, x) := R2 ∕𝓁2, kc(R2, x) := +
√

1 − k2, 𝓁(R2, x) :=
(√

(1 + R2)2 + x2 +
√

(1 − R2)2 + x2

)
∕ 2
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and v appearing in Equation 6, whereas FG5 defines J̃∥ and J̃⊥
featuring in Equation 15.

The exact solutions for magnetic force and torque reported in
Table 3 can be fully implemented by using the self-contained set
of expressions in Table 5. Specifically, group FT1 defines the func-
tions 𝜂f and 𝜁 t appearing in Table 3. Group FT2 then reports the
underlying definitions, in particular in terms of , with x ⩾ 0 (for
consistency with the assumption d − L1 − L2 ⩾ 0) and 0 < 𝜉 ⩽ 1
(to seamlessly deal with the three cases R̄2 ⋚ R̄1 through a single
analytical expression).
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Supporting Information is available from the Wiley Online Library or from
the author.
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