
RESEARCH ARTICLE
www.advancedscience.com

S100A5 Attenuates Efficiency of Anti-PD-L1/PD-1
Immunotherapy by Inhibiting CD8+ T Cell-Mediated
Anti-Cancer Immunity in Bladder Carcinoma

Huihuang Li, Jinbo Chen, Zhenghao Li, Minfeng Chen, Zhenyu Ou, Miao Mo,
Ruizhe Wang, Shiyu Tong, Peihua Liu, Zhiyong Cai, Chunyu Zhang, Zhi Liu,
Dingshan Deng, Jinhui Liu, Chunliang Cheng, Jiao Hu,* and Xiongbing Zu*

Although immune checkpoint blockade (ICB) therapies have been approved
for bladder cancer (BLCA), only a minority of patients respond to these
therapies, and there is an urgent need to explore combined therapies.
Systematic multi-omics analysis identified S100A5 as a novel
immunosuppressive target for BLCA. The expression of S100A5 in malignant
cells inhibited CD8+ T cell recruitment by decreasing pro-inflammatory
chemokine secretion. Furthermore, S100A5 attenuated effector T cell killing of
cancer cells by inhibiting CD8+ T cell proliferation and cytotoxicity. In
addition, S100A5 acted as an oncogene, thereby promoting tumor
proliferation and invasion. Targeting S100A5 synergized with the efficacy of
anti-PD-1 treatment by enhancing infiltration and cytotoxicity of CD8+ T cells
in vivo. Clinically, there was a spatially exclusive relationship between
S100A5+ tumor cells and CD8+ T cells in tissue microarrays. Moreover,
S100A5 negatively correlated with immunotherapy efficacy in our real-world
and several public immunotherapy cohorts. In summary, S100A5 shapes a
non-inflamed tumor microenvironment in BLCA by inhibiting the secretion of
pro-inflammatory chemokines and the recruitment and cytotoxicity of CD8+ T
cells. Targeting S100A5 converts cold tumors into hot tumors, thus enhancing
the efficacy of ICB therapy in BLCA.
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1. Introduction

Bladder carcinoma (BLCA) is one of the
most prevalent carcinomas worldwide, with
573 278 new cases and 212 536 new deaths
reported in 2020.[1] Despite radical cystec-
tomy and platinum-based chemotherapy,
advanced BLCA, including locally advanced
and metastatic BLCA, is commonly re-
garded as an incurable disease with ex-
tremely poor prognosis.[2,3] Owing to their
high tumor mutation burden (TMB), im-
mune checkpoint inhibitors (ICIs) have
gained increasing attention for the treat-
ment of advanced BLCA.[4,5] Since 2016, five
ICIs, including atezolizumab, durvalumab,
avelumab, pembrolizumab, and nivolumab
have been approved by the US Food and
Drug Administration (FDA) for the treat-
ment of advanced BLCA.[2] However, only a
minority of patients respond to ICIs treat-
ment, suggesting an urgent need to iden-
tify novel biomarkers that can not only ac-
curately predict ICIs response but also have
the potential to be promising immunother-
apy targets.[5,6]

Numerous factors affect ICI efficiency. Immune profiles of
the tumor microenvironment (TME) are vital elements that
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determine how a response occurs.[7] The TME is composed of
tumor cells, fibroblasts, vascular endothelial cells, immune cells,
extracellular matrix, and extracellular soluble molecules.[8] Based
on the presence or absence of T cells in the tumor parenchyma,
the TME can generally be divided into two profiles: non-inflamed
tumors (without T cell infiltration into the tumor parenchyma,
including immune-desert and immune-excluded phenotypes)
and inflamed tumors (with T cell infiltration into the tumor
parenchyma, including immune-inflamed phenotype).[9] The-
oretically, ICIs, including anti-programmed death 1 (PD-1) and
anti-programmed death-ligand 1 (PD-L1), exhibit no therapeutic
effects without T cell immunity. Consistent with this, inflamed
tumors have higher response rates to immunotherapy, including
ICIs.[10] In addition, the combination of both anti-PD-1 and
cytotoxic T lymphocyte antigen 4 (CTLA-4) has shown much
higher effectiveness because CTLA-4 increases the production
of tumor-specific T cells by moving the checkpoint for T cell pro-
liferation and priming.[11] Inspired by this, we are committed to
identifying a biomarker that can not only predict the infiltration
of tumor-infiltrating immune cells (TIICs) for diagnosis, but also
develop new combined anti-PD-1/PD-L1 treatment strategies for
higher therapeutic efficacy.

Members of the S100 protein family play vital roles in tumor
invasion and immune evasion by acting as Ca2+ mediators and
extracellular factors.[12] In breast cancer, tumor cells secrete
S100A7 to recruit tumor-associated macrophages (TAMs).[13] In
addition, S100A8 and S100A9 can recruit myeloid-derived sup-
pressor cells (MDSCs) to maintain an immunosuppressive state
in the TME of breast cancer.[12] In melanoma, S100A4 can in-
crease the release of inflammatory cytokines and promote tumor
immune responses.[14] S100A5 has been reported to play a vital
role in the recurrence of the World Health Organization (WHO)
grade I meningiomas.[15] In addition, S100A5 was significantly
upregulated in the BLCA.[16] However, their comprehensive roles
in TME and immunotherapy are unclear, especially in BLCA.
Therefore, in this study, we focused on S100A5 by comprehen-
sively analyzing the expression patterns and immunological
roles of multiple S100 family proteins in BLCA. Pan-cancer
analyses revealed that the immunosuppressive role of S100A5
in the TME was most evident in BLCA. Based on these findings,
we validated the oncogenic and immunosuppressive roles of
S100A5 in BCLA both in vitro and in vivo. Moreover, the value
of predicting immunotherapy response was revealed in our
real-world and multiple immunotherapy cohorts.

2. Results

2.1. Focusing S100A5 in BLCA through Comprehensive Analyses

S100 family proteins including S100A1-16, S100B, and
S100P were summarized based on the review of Bresnick
et al.[12] According to the principles of normalization cancer
immunotherapy,[49] molecular targets should meet two con-
ditions for potential immunotherapy: specific expression in
carcinoma cells and inhibition of TIICs infiltration. Therefore,
we first analyzed the expression patterns of these proteins in the
TCGA-BLCA and Xiangya BLCA cohorts and found that S100A5,
S100A7, S100A11, S100A14-16, and S100B were significantly
higher in carcinoma tissues than normal tissues in both cohorts

(Figure S1A,B, Supporting Information). Then, 28 immune cells
were identified using the single-sample gene set enrichment
analysis (ssGSEA) algorithm and systematically correlated with
S100 proteins. As shown in Figure S1C,D (Supporting Infor-
mation), only S100A5 and S100A6 were significantly negatively
correlated with TIICs infiltration in both cohorts. Combined with
the expression patterns, we focused on S100A5 in this study.

We then performed pan-cancer analyses of S100A5 in 33 types
of carcinomas. In most carcinomas, S100A5 was expressed at
significantly higher levels in tumor tissues than in normal tis-
sues, including bladder cancer tissues (Figure S2A,B, Supporting
Information). In addition, we found that S100A5 was signifi-
cantly higher in the tumor tissues in our TMA (Figure S2C,
Supporting Information). S100A5 was also expressed in several
normal tissues (Figure S2D, Supporting Information). Next, we
explored the immunological role of S100A5 in multiple carci-
nomas. As shown in Figure S3A (Supporting Information), the
negative correlation between S100A5 and immunomodulators
was most evident in BLCA. We selected four important immune
checkpoints, including PD-L1, CTLA-4, PD-1, and lymphocyte
activation gene-3 (LAG-3), and found that S100A5 had the most
exclusive association with these immune checkpoints in BLCA
(Figure S3B–E, Supporting Information). Furthermore, S100A5
was significantly negatively correlated with most TIICs in the
BLCA (Figure S3F, Supporting Information). However, there
was no significant negative correlation between S100A5 and TI-
ICs in other carcinomas, such as lung adenocarcinoma (LUAD),
sarcoma (SARC), breast invasive carcinoma (BRCA), and colon
adenocarcinoma (COAD) (Figure S3F, Supporting Information).
In summary, we found that only S100A5 shaped a non-inflamed
TME specifically in BLCA, by correlating multiple S100 proteins
with multiple cancer types.

2.2. S100A5 Shapes a Non-Inflamed TME in BLCA

The cancer-immune cycle includes the following steps: first, the
death of cancer cells releases cancer antigens; then, antigen-
presenting cells (APCs), such as dendritic cells (DCs), capture
and present antigens to T cells, resulting in the activation of
effector T cells. Effector T cells traffic to the tumor sites and
infiltrate the tumor bed. Finally, effector T cells recognize and
kill tumor cells and release more antigens.[50,51] Based on the
bulk RNA-seq data of TCGA-BLCA, we downloaded the levels
of these steps from the tracking tumor immunophenotype
(TIP) (http://biocc.hrbmu.edu.cn/TIP/). As shown in Figure
1A; Table S1 (Supporting Information), most of these steps
were significantly negatively correlated with S100A5, indicating
that S100A5 may inhibit the cancer-immune cycle and shape a
non-inflamed TME in BLCA. Furthermore, we directly evaluated
the infiltration of 28 immune cell types using the ssGSEA algo-
rithm (Figure 1B; Table S1, Supporting Information) and found
significant negative correlations between S100A5 expression
and most immune cells, including activated CD8+ T cells, type
1 T helper (Th1) cells, natural killer (NK) cells, activated CD4+ T
cells, activated DCs, and NK T cells. To eliminate the influence
of this algorithm, six other algorithms (CIBERSORT, EPIC,
mMCP-counter, quanTIseq, TIMER, and xCell) were used to cal-
culate immune cell infiltration. As expected, S100A5 expression
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Figure 1. Correlations between S100A5 and tumor microenvironment (TME) characteristics in TCGA-BLCA and Xiangya cohort. A) Correlation between
S100A5 and cancer-immunity cycles in TCGA-BLCA cohort. Different colors represent different cycles; Positive correlation is marked in red, while negative
correlation is marked in blue. B) Correlation between S100A5 and tumor-infiltrating immune cells (TIICs) using ssGSEA algorithm in TCGA-BLCA cohort.
C) Validation the role of S100A5 with cancer-immunity cycles and TIICs using ssGSEA algorithm in Xiangya cohort. Yellow represents higher infiltration
cells, while blue represents lower infiltration cells. D) Different expression patterns of effector genes of CD8+ T cells, dendritic cells (DCs), macrophage
cells, natural killer (NK) cells and type 1 T helper (Th1) cells between high and low S100A5 groups; Red represents higher expressed genes, while blue
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was significantly and negatively correlated with most cytotoxic
T lymphocytes (CTLs) and NK cells, regardless of the algorithm
(Table S1, Supporting Information). Importantly, the negative
correlation between S100A5, the cancer-immune cycle, and
TIICs was validated in the Xiangya cohort (Figure 1C; Table S2,
Supporting Information), indicating a robust predictive value
of S100A5 for TIICs in BLCA. In addition to TIICs, S100A5
expression negatively correlated with the effector genes of CD8+

T cells, DCs, macrophages, NK cells, and Th1 cells (Figure 1D;
Table S3, Supporting Information). Next, we calculated the pan-
cancer T cell-inflamed score (TIS) and found that the S100A5
was significantly negatively correlated (R = −0.29, p < 0.001;
Figure 1E). Furthermore, we summarized the TIS genes and
found that S100A5 was significantly negatively correlated with
almost all TIS genes (Figure 1F, bottom left; Table S3, Support-
ing Information). Finally, we found that S100A5 expression was
significantly negatively correlated with most ICI genes, such as
PD-1, PD-L1, LAG-3, and CTLA-4, which were reported to be
lower in the non-inflamed TME (Figure 1F, upper right; Table S3,
Supporting Information).[52] Numerous public databases were
used to validate the results. As showed in Figure 2A, S100A5 was
significantly negatively correlated with immune cell infiltration
in GSE87304, GSE48276, and GSE48075. Similar results were
found for GSE120736, GSE31684, GSE32894, GSE69795, and
E-MTAB-1803 (Figure S4–S8, Supporting Information). In sum-
mary, using bulk RNA-seq data, we found that S100A5 shaped a
non-inflamed TME in BLCA.

2.3. Validating the Role of S100A5 in TME in Terms of Molecular
Subtypes

Bladder cancer can be divided into molecular subtypes based
on transcriptome profiling, which can precisely classify patients
according to their prognosis and therapeutic options.[35,40,42] We
found that the low S100A5 group patients were more likely to
be the basal subtype, while those belonging to the high S1005A
group could be the luminal subtype based on seven molecular
classification systems in both TCGA-BLCA and Xiangya co-
horts (Figure S9A and Table S4, Supporting Information). In
addition, the area under the ROC curves (AUCs) were more
than 0.85 in the TCGA-BLCA cohort (Figure S9B and Table S4,
Supporting Information) and reached 0.90 in the Xiangya cohort
(Figure S9C and Table S4, Supporting Information), indicating
a robust high predictive value of S100A5 for molecular subtypes.
Urothelial, Ta, and luminal differentiation pathways were en-
riched in the high S100A5 group, whereas basal differentiation
pathways were enriched in the low S100A5 group (Figure S9A
and Table S4, Supporting Information). It is generally consid-
ered that the basal subtypes (low S100A5 group) possess more
cytotoxic lymphocytes and NK cell infiltration and could be more
sensitive to immunotherapies.[35] In addition, the interferon
response and immune differentiation pathways were enriched
in the low S100A5 group (Figure S9A and Table S4, Supporting
Information). We successfully validated these results using

GSE48075 and GSE48276 cohorts (Figure S9D–F, Supporting
Information). In summary, we confirmed that S100A5 expres-
sion was negatively correlated with immune cell infiltration
and response to immunotherapies in terms of BLCA molecular
subtypes.

2.4. Combining Bulk RNA-seq and scRNA-seq Revealed that
S100A5 could Inhibit Pro-Inflammatory Cytokine and
Chemokines Secretion

Dividing the TCGA-BLCA cohort into two groups based on
the median expression of S100A5, we filtered 1803 differen-
tially expressed genes (DEGs) between the high and low S100A5
groups (|log2FC| >1 and adj.P.value <0.05) (Table S5, Supporting
Information). Surprisingly, there was only one common gene be-
tween the low S100A5, stromal score, and immune score groups
(Figure S10A and Table S5, Supporting Information). Moreover,
there were no common genes among the high S100A5, stromal
score, and immune score groups (Figure 2B; Table S5, Support-
ing Information). These results confirmed the exclusive role of
S100A5 with stromal and immune scores in terms of DEGs.
We identified 967 common genes (Figure S10B and Table S5,
Supporting Information) and performed Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) anal-
yses using these DEGs. The majority of KEGG pathways were
enriched in cytokine- or chemokine-related pathways (Figure 2C;
Table S6, Supporting Information). Also, GO pathways were
enriched in immune-related pathways, such as T cell activation,
response to interferon-𝛾 , immune receptor activity, cytokine and
chemokine activity (Figure S10C–E and Table S6, Supporting
Information).

These analyses were conducted using bulk RNA-seq, the
fundamental principle of which is that all genes are expressed
equally in every cell. It is difficult to investigate TME heterogene-
ity at the single-cell level using bulk RNA-seq. So, we collected
three muscle invasive bladder cancer (MIBC) samples from our
hospital and performed scRNA-seq to overcome this limitation.
A total of 19 852 cells were grouped into six major clusters after
quality control and integration (Figure 2D, left). Clusters were an-
notated based on the well-established marker genes as previous
reported: epithelial cells (EPCAM), myeloid cells (LYZ), T cells
(CD3D), fibroblasts (COL1A1), B cells (CD79A and CD19), and
endothelial cells (PECAM1 and VWF)[27,28] (Figure S11A–H, Sup-
porting Information). The UMIs and genes detected in the ep-
ithelial and immune cells are shown in Figure S11I,J (Supporting
Information). As shown in Figure S12 (Supporting Information),
CNVs accumulated mainly in EPCAM+ epithelial cells, confirm-
ing the malignant origin of the marked epithelial cells. According
to an article reported by Peng et al.,[32] we calculated the CNV
scores of every epithelial cell and defined the epithelial cells with a
CNV score of more than 0.02 as malignant epithelial cells, for fur-
ther analysis. Interestingly, S100A5 was specifically expressed in
bladder epithelial cells (Figure 2D, right). We focused on malig-
nant epithelial cells and divided them into high S100A5 and low

represents lower expressed genes. E) Correlation between S100A5 and pan-cancer T cell-inflamed score (TIS). F) Correlation between S100A5 and TIS
related genes (bottom left) and immune checkpoint inhibitor (ICI) genes (upper right); Positive correlation was marked in red, while negative correlation
was marked in blue. ns, not statistically significant. *p < 0.05; **p < 0.01; ***p < 0.001.
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Figure 2. S100A5 specifically expressed on tumor cells and inhibited pro-inflammatory cytokine and chemokines secretion. A) Correlation between
S100A5 and tumor-infiltrating immune cells (TIICs) using the ssGSEA algorithm in the GSE87304, GSE48276, and GSE48075 cohorts. B) Venn Diagram
showing common differentially expressed genes (DEGs) between the high S100A5, stromal score and immune score groups. C) KEGG enrichment
results for common DEGs. D) tSNE plot of all single cells and S100A5 expression patterns in Xiangya scRNA-seq. E,F) GSEA shows the enrichment
of cytokine and chemokine secretion related pathways E) and T cell infiltration-related pathways F) between different S100A5 expression groups in
malignant epithelial cells in the Xiangya scRNA-seq cohort. NES: normalized enrichment score. G) S100A5 expression levels in the TME (GSE130001)
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S100A5 expression groups. As shown in Figure 2E, GO pathways
related to cytokine and chemokine secretion were downregu-
lated in the high S100A5 expression group (Table S7, Supporting
Information). Furthermore, the high S100A5 expression group
showed significantly downregulated T cell proliferation and acti-
vation pathways (Figure 2F; Table S7, Supporting Information).
S100A5 expression was the highest in epithelial cells, whereas no
expression was observed in immune cells (such as CD4+ T, CD8+

T and NK cells) using another scRNA-seq database containing
two bladder cancer specimens (Figure 2G, GSE130001). We also
analyzed S100A5 expression in peripheral blood cells (including
CD4+ T, CD8+ T, NK cells, and et al.) and found that S100A5 was
barely expressed in these cells (Figure 2G, GSE145281).

These results were further validated using public scRNA-seq
databases. Chen et al. reported the first and largest scRNA-
seq map of BLCA (PRJNA662018)[27] and we clustered 59 045
cells from tumor tissues into eight major clusters after quality
control and integration using their cohort (Figure 2H, left;
Figure S13, Supporting Information). As expected, S100A5
was specifically expressed in the epithelial cells (Figure 2H,
right). We then separated the malignant epithelial cells following
the same role in Xiangya scRNA and found that malignant
epithelial cells with high S100A5 expression significantly in-
hibited chemokine- and cytokine-related pathways in both
GO (Figure 2I; Table S8, Supporting Information) and KEGG
(Figure 2J and Table S8, Supporting Information) analyses. In
another scRNA-seq cohort (GSE135337), we clustered 36 534
cells into five major clusters (Figure S14 and S15A, Sup-
porting Information). S100A5 was specifically expressed on
epithelial cells (Figure S15B, Supporting Information) and
significantly negatively correlated with cytokine, chemokine
and T cell infiltration related pathways (Figure S15C–E and
Table S8, Supporting Information). Similar results were ob-
tained for GSE145137 (Figure S15F–I and Table S8, Supporting
Information).

2.5. S100A5 Inhibited CD8+ T Cells Recruitment through
Decreasing Pro-Inflammatory Chemokines Secretion

These results are mainly based on large and systematic bioinfor-
matics analyses. We then validated these results in vitro and in
vivo. S100A5 short hairpin RNA (sh-S100A5) and S100A5-cDNA
(oe-S100A5) and their negative controls (sh-NC and oe-vector
respectively) were successfully transfected on human bladder
cancer cell lines (T24 and 5637) (Figure S16A–D, Support-
ing Information). RNA-Seq was performed on three parallel
sh-S100A5 and oe-S100A5 cell lines. As expected, S100A5
was significantly downregulated in the sh-S100A5 group com-
pared to the oe-S100A5 group (Figure 2K, T24; Figure S16E,
5637, Supporting Information). In contrast, several important
chemokines, including CCL2, CCL5, CXCL10, and CXCL11
were significantly upregulated when S100A5 was downregulated
(Figure 2K; Table S9, Supporting Information). Among these

chemokines, CXCL10 and CXCL11 were reported to play vital
roles in the process of recruiting immune cells.[53,54] Moreover,
pathways related to cytokine/chemokine secretion/interaction
(Figure S16F,G and Table S10, Supporting Information) and im-
mune cell infiltration (Figure S16H and Table S10, Supporting
Information) were significantly upregulated in the sh-S100A5
cell line compared to those in the oe-S100A5 cell line. Similar
results were also found in the 5637 cell line (Figure S17A–C and
Table S9 and S10, Supporting Information).

To determine the key downstream cytokines/chemokines of
S100A5, we applied ProcartaPlex multiple immunoassays to
detect multiple cytokines and chemokines in cell culture super-
natants from sh-S100A5 and oe-S100A5 cell lines. As shown in
Figure 3A (T24), the secretions of CCL2, CCL3, CCL4, CCL5, and
CXCL10 were obviously increased when knocking down S100A5.
Moreover, the secretion protein levels of these chemokines and
another vital chemokines (CXCL9)[53] were validated using
ELISA. We found that all these chemokines were secreted at
significantly higher levels in the sh-S100A5 cell line (Figure 3B,
T24). Furthermore, RT-PCR results revealed that the mRNA
expression levels of these chemokines were significantly higher
when S100A5 was knocked down (Figure 3C, T24). In contrast,
when S100A5 was overexpressed, the secreted protein levels of
these chemokines were significantly decreased according to Pro-
cartaPlex multiple immunoassays (Figure S17D,E, T24, Support-
ing Information) and ELISA (Figure S17F, T24, Supporting Infor-
mation). mRNA expression was also significantly decreased, as
shown by RT-PCR (Figure S17G, T24, Supporting Information).
Similar results were observed in 5637 cells (Figure S17H–K,
Supporting Information). We conducted a CD8+ T cell migration
assay to determine whether S100A5 inhibits CD8+ T cell infiltra-
tion by downregulating these chemokines (Figure 3D). We found
that the knockdown and overexpression of S100A5 significantly
increased and then decreased (Figure 3E, T24) CD8+ T cell
migration, respectively, compared to their negative controls.
Similar results were also found in the 5637 cells (Figure 3F,
5637). In summary, we found that S100A5 inhibited CD8+ T cell
recruitment by decreasing chemokines secretion.

2.6. S100A5 Attenuated Effector T Cells Killing Cancer Cells
through Inhibiting CD8+ T Cells Proliferation and Cytotoxicity

In addition to recruitment, we explored whether S100A5 ex-
pression could inhibit T cell function. First, we subdivided T
cells into CD4+ and CD8+ T cells based on classical markers
(including CD3D, CD3E, CD3G, CD4, CD8A, and CD8B) in
Xiangya scRNA-seq (Figure S18A–C, Supporting Information).
Long et al. divided CD8+ T cells into progenitor exhausted T cells
and terminally exhausted T cells, and revealed that patients with
more progenitor exhausted T cells had a higher tumor-killing
efficiency and anti-PD1 response rate.[55,56] We found that T cell
cluster 1 had significantly lower progenitor exhaustion scores
and higher exhaustion scores than cluster 3 (Figure S18D,

and blood cells (GSE145281). H) tSNE plot of all single cells and S100A5 expression patterns in the PRJNA662018 scRNA cohort. iCAF, inflammatory
cancer-associated fibroblasts; mCAF, myo-cancer-associated fibroblasts. I,J) GSEA shows GO I) and KEGG J) enrichment of cytokine and chemokine
secretion-related pathways between different S100A5 expression groups in malignant epithelial cells in the PRJNA662018 scRNA cohort. K) Volcano plot
showing the major DEGs between the knockdown and overexpression S100A5 groups in T24 cell. ns, not statistically significant. *p < 0.05; **p < 0.01;
***p < 0.001.
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Figure 3. S100A5 inhibited CD8+ T cell recruitment and cancer cell killing process by regulating CD8+ T cell proliferation and cytotoxicity. A) Heatmap
of multiple cytokines and chemokines detected by ProcartaPlex multiple immunoassays between S100A5 knockdown and the negative control groups
in T24 cell culture supernatants. Red indicates higher secretion and blue indicates lower secretion. B,C) CCL2, CCL3, CCL4, CCL5, CXCL9, and CXCL10
levels detected using ELISA B) and RT-PCR C), respectively, between S100A5 knockdown and negative control groups in the T24 cell line. D) Diagram of
the CD8+ T cell migration assay. E,F) Relative migration of CD8+ T cells among S100A5 knockdown, S100A5 overexpression, and their negative controls
in T24 cell line culture supernatants E) and 5637 cell line culture supernatants F). G) Representative images and histogram plots of the T cell-mediated
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Supporting Information); therefore, we defined cluster 1 as
composed of terminally exhausted CD8+ T cells and cluster 3 as
composed of progenitor exhausted CD8+ T cells (Figure S18E,
Supporting Information). Then “CellChat” package was used
to infer interactions and communication probability between
high/low S100A5 expression epithelial cells and T cell subgroups
(Figure S18F, Supporting Information). Surprisingly, epithelial
cells with high S100A5 expression had a larger number of
interactions and interaction weights with T cell subgroups than
epithelial cells with low S100A5 expression (Figure S18G, Sup-
porting Information), indicating that epithelial cells with high
S100A5 expression had more communication with T cells and
might inhibit their functions. Similar results were obtained for
PRJNA662018 scRNA-seq (Figure S19, Supporting Information).

We then performed a T cell-mediated tumor cell-killing assay
to validate the results described above. In both the T24 and
5637 cell lines, S100A5 knockdown significantly enhanced the
ability of T lymphocyte (activated from human peripheral blood
mononuclear cells, PBMCs) to kill cancer cells (Figure 3G, T24;
Figure S20A, 5637, Supporting Information), whereas S100A5
overexpression significantly inhibited this ability (Figure 3H,
T24; Figure S20B, 5637, Supporting Information). Mechanisti-
cally, we found that the key proliferation marker Ki-67 (Figure 3I)
and cytotoxicity marker perforin (Figure 3J) were significantly
upregulated in CD8+ T cells when lymphocytes were co-cultured
with the sh-S100A5 cell line, but downregulated when lympho-
cytes were co-cultured with the oe-S100A5 cell line. When CD8+

T cells were directly cultured with recombinant S100A5, the pro-
liferation marker Ki-67 (Figure S20C, Supporting Information)
and the cytotoxicity marker perforin (Figure S20D, Supporting
Information) were significantly downregulated compared with
the control groups. In addition, the exhausted marker PD-1
was significantly upregulated when cultured with recombinant
S100A5 (Figure S20E, Supporting Information).

Interestingly, when cancer cell lines were not co-cultured
with T lymphocytes (Figure 3G,H, Figure S20A,B, Supporting
Information), knockdown or overexpression of S100A5 alone
inhibited or promoted cancer cell proliferation, respectively. We
speculated that S100A5 may also act as an oncogene and pro-
mote BLCA proliferation and invasion. MTT cell viability assays
revealed that knockdown (Figure S21A, Supporting Information)
and overexpression (Figure S21B, Supporting Information) of
S100A5 significantly inhibited and promoted the proliferation
of bladder cancer cells, respectively. In addition, the colony
formation assay confirmed that the knockdown (Figure S21C,
Supporting Information) and overexpression (Figure S21D,
Supporting Information) of S100A5 significantly inhibited and
promoted the colony formation ability of bladder cancer cells,
respectively. In addition, a wound healing assay revealed that
S100A5 promoted bladder cancer cell invasion (Figure S21E–G,
Supporting Information). In summary, we found that S100A5
could act as an oncogene and inhibit cancer cell death by
inhibiting CD8+ T cell proliferation and cytotoxicity.

2.7. Targeting S100A5 Enhanced the Efficacy of Anti-PD-1
Treatment and CD8+ T Cells Recruitment

Considering that S100A5 could inhibit CD8+ T cell infiltra-
tion and proliferation in vitro, we further explored whether it
could affect the efficacy of anti-PD-1 treatment preclinically.
We constructed a subcutaneous bladder cancer model by sub-
cutaneously injecting S100A5 KD and negative control MB49
cells (Figure S22A,B, Supporting Information). Consistent with
the results for the T24 cell line, we found that the knockdown
of S100A5 inhibited BLCA proliferation and invasion using
MTT (Figure S22C, Supporting Information), colony formation
(Figure S22D, Supporting Information), and wound healing
assays (Figure S22E, Supporting Information) on the MB49 cell
line. The in vivo experimental procedure and treatment schedule
were illustrated in Figure 4A. As shown in Figure 4B,C, S100A5
knockdown or anti-PD-1 treatment alone significantly sup-
pressed the tumor burden in vivo. However, S100A5 knockdown
plus anti-PD-1 treatment showed the highest efficacy in inhibit-
ing tumor burden, indicating that S100A5 downregulation could
enhance the efficacy of anti-PD-1 treatment. In addition, there
was no difference in body weight between the groups of mice
(Figure 4D). Moreover, knockdown of S100A5 with anti-PD-1
treatment showed the greatest ability to prolong survival in mice
(Figure 4E).

Furthermore, the tumor tissues were digested into single-cell
suspensions, and flow cytometry analysis was applied to explore
the composition of immune cells. As shown in Figure S23A–
D (Supporting Information), the proportions of leukocytes
(CD45+), lymphoid cells (CD45+CD11b−), and T cells (CD3+)
were generally the same in each group. Then we further explored
the proportion of CD8+ T cells and their cytotoxicity indicators
(including GZMB, IFN-𝛾 , TNF-𝛼 and Perforin) among each
group. We found that S100A5 knockdown or anti-PD-1 treat-
ment alone significantly increased the infiltration of CD8+ T
cells (Figure 4F) and enhanced their cytotoxicity by upregulating
GZMB (Figure 4G), IFN-𝛾 (Figure 4H), TNF-𝛼 (Figure 5A)
and perforin (Figure 5B). However, S100A5 knockdown with
anti-PD-1 treatment showed the highest efficacy in recruiting
CD8+ T cells and upregulating these cytotoxicity indicators
(Figure 4F–H and Figure 5A,B). In addition, immunofluores-
cence (IF) analysis confirmed that both S100A5 knockdown and
anti-PD-1 treatment promoted CD8+ T cell infiltration, whereas
the combination of S100A5 knockdown and anti-PD-1 treatment
showed the highest efficiency (Figure 5C,D).

The above in vivo experiment was still based on the S100A5
knockdown cell line, and we designed a nanomedicine carrying
siS100A5 for the direct targeting of S100A5. Liposomes are
one of the most widely used carriers of siRNAs because of
their high loading efficiency, reliable drug protection, good
biocompatibility, and targeted delivery.[57–59] We successfully
synthesized liposome and loaded them with siS100A5. Trans-
mission electron microscopy (TEM) showed the morphology of

tumor cell-killing assay between the S100A5 knockdown and negative control groups in the T24 cell line. The OD values were normalized to the mean
value in the sh-NC group without T cell co-culture. H) Representative images and histogram plots of the T cell-mediated tumor cell-killing assay between
S100A5 overexpression and negative control groups in the T24 cell line. The OD values were normalized to the mean value in the oe-vector group
without T cell co-culture. I,J) Flow cytometry analysis shows different Ki-67 I) and perforin J) expression on effector T cells after co-cultured with S100A5
knockdown and overexpression of T24 cell lines and their negative control cell lines. ns, not statistically significant. *p < 0.05; **p < 0.01; ***p < 0.001.
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Figure 4. Downregulation of S100A5 enhanced the efficacy of anti-PD-1 treatment and CD8+ T cells recruitment in vivo. A) In vivo experimental procedure
and treatment schedule. B) Tumor images among different experimental groups after mice sacrifice. C) Histogram plot of tumor volumes among different
experimental groups after mice sacrifice. D) Scatter diagram plot of body weights among different groups during experimental procedure. E) Kaplan-
Meier plot of survival percent among different experimental groups. F–H) Representative contour plots and the proportion of CD8+ T cells in T cells F),
GZMB+ cells in CD8+ T cells G), and IFN-𝛾+ cells in CD8+ T cells H). ns, not statistically significant; **p < 0.01; ***p < 0.001.
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Figure 5. IHC and TissueFAXS Cytometry panoramic tissue quantification assay depicted the spatial exclusive relationship between S100A5 and effector
T cells in the TME. (A-B) Representative contour plots and the proportion of TNF-𝛼+ cells in CD8+ T cells A), and perforin+ cells in CD8+ T cells B).
C) Representative immunofluorescence (IF) images of CD8 staining among different experimental groups. Scale bars, 40 μm. D) Percent of CD8+ cells
in all cells corresponding to IF images. E) Representative images of the expression patterns of CD8, PD-L1 and S100A5 in non-inflamed and inflamed
TME using IHC. Scale bars, 100 μm. F) CD8 and PD-L1 IHC scores between high and low S100A5 groups. G,H) Representative multi-color staining of
non-inflamed G) and inflamed H) phenotypes of patients with bladder cancer: S100A5 (purple), CK19 (azure), CD4 (red), CD8 (green), DAPI (blue). I)
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liposome@siS100A5 (Figure S24A, Supporting Information).
The average DLS of the liposome@siS100A5 was 205.6 nm (a
little bit larger than that of liposome alone) with polydispersity
index (PDI) of 0.16 (Figure S24B, Supporting Information).
The surface charge of the liposome was 43.6 mV and turned
to be 25.8 mV when siS100A5 (−11.6 mV) was loaded onto it
(Figure S24C, Supporting Information). Standard curve shows
the relationship between fluorescence intensity and siS100A5
concentration (Figure S24D,E, Supporting Information), and
with loading efficiency of 78%.

The anti-tumor efficiency of liposome@siS100A5 was tested
in the following four groups: (1) liposome + IgG2a isotype, (2)
liposome@siS100A5 + IgG2a isotype, (3) liposome + anti-PD-1,
(4) liposome@siS100A5 + anti-PD-1. We found that the injection
of liposome@siS100A5 alone significantly suppressed the tumor
burden, and this effect was synergized when combined with anti-
PD-1 treatment (Figure S25A,B, Supporting Information). There
was no difference in the body weight between the groups of mice
during the treatment procedure (Figure S25C, Supporting Infor-
mation). To test the toxicity of liposome@siS100A5 in the blood
system, we detected mouse whole blood and blood biochemistry
indices after intravenous injection of liposome@siS100A5 and
revealed that all these blood indices were within the normal
range (Figure S25D, Supporting Information). In addition, H&E
staining of the heart, liver, spleen, lungs, and kidneys revealed
that our treatment caused minimal damage to the major organs
(Figure S25E, Supporting Information). We found that S100A5
was mainly expressed in malignant epithelial cells, whereas very
low expression was observed in immune cells and peripheral
blood cells using scRNA-seq analysis. This could explain why
targeting S100A5 had minimal adverse effects on normal tissues
and blood system.[49] Furthermore, flow cytometry analysis
(Figure S25F, Supporting Information) revealed that targeting
S100A5 could significantly promote CD8+ T cell infiltration, and
this effect could be synergized when combined with anti-PD-1
treatment (Figure S25G, Supporting Information). In summary,
we revealed that the downregulation of S100A5 and targeting
S100A5 could enhance the efficacy of anti-PD-1 treatment and
promote CD8+ T cells recruitment in vivo.

2.8. The Spatial Exclusive Relationship between S100A5+

Malignant Cells and Effector T Cells

Tissue microarrays (TMAs) containing 50 BLCA samples receiv-
ing no prior treatment were prepared. We defined the samples
as “inflamed phenotype” samples in which CD8+ T cells were
located in the tumor parenchyma and defined the samples as
“non-inflamed phenotype” samples in which CD8+ T cells were
located in the stroma (not in parenchyma) or no CD8+ T cells
either in parenchyma or stroma. The representative image in
Figure 5E shows the exclusive role of S100A5 between CD8
and PD-L1 at the protein level. Moreover, both the CD8 and
PD-L1 IHC scores were significantly higher in the low S100A5
group (Figure 5F). The TissueFAXS cytometry panoramic tissue

quantification assay was further applied to reveal the spatially ex-
clusive role of S100A5+ bladder cancer cells and CD4+ and CD8+

T cells. Figure 5G,H shows representative images of multi-color
staining. In non-inflamed tumors, the wide expression of S100A5
in tumor cells inhibited the infiltration of CD4+ and CD8+ T
cells into the tumor region (Figure 5G, non-inflamed). In con-
trast, none of S100A5 expression tumors exhibited an inflamed
phenotype, with numerous CD4+ and CD8+ T cells infiltrating
the tumor regions (Figure 5H, inflamed). The co-expression of
S100A5 on tumor cells and the exclusive role of S100A5 between
CD4+ T and CD8+ T cells reached statistical significance in
the whole TMA cohort (Figure 5I). In addition to CD4+ and
CD8+ T cells, S100A5 was barely expressed in NK (CD16+)
cells and macrophages (CD68+) (Figure S26A,B, Supporting
Information). Moreover, the flow-like cytometry plots show that
S100A5 was positively expressed mainly in CK19+ tumor cells
(58.84%), but almost not in CD4+ T cells (2.45%) or CD8+ T cells
(4.15%, Figure 5J). For further spatial analysis, we quantified the
number of CD4+ and CD8+ T cells within the distance gradients
of S100A5+CK19+ tumor cells (0-25 μm, 25–50 μm, 50–100 μm,
and 100–150 μm). As expected, the greater the distance from
S100A5+CK19+ cells, the more CD4+ and CD8+ T cells showed
an increasing trend (Figure 5K), which confirmed the spatially
exclusive relationship between S100A5 and effector T cells.

2.9. S100A5 and Immune Checkpoint Blockade (ICB) Response

As S100A5 shaping a non-inflamed TME, theoretically, lower
S100A5 expression could be associated with favorable ICB
response rates. Therefore, we determined whether S100A5
expression could predict ICB response. As our previous study
reported, we have built Xiangya immune cohort containing 51
BLCA patients treated with ICB from our hospital.[19] Patients
with higher S100A5 expression (Figure 6A) showed progres-
sive disease after anti-PD-1 treatment (Figure 6B). In contrast,
patients with lower S100A5 expression (Figure 6C) achieved a
complete response after anti-PD-1 therapy (Figure 6D). Accord-
ing to the pathological response, these patients were categorized
into the complete response (CR), partial response (PR), stable
disease (SD), and progressive disease (PD) groups. We further
divided CR and PR patients into the response group, whereas
SD and PD patients were classified into the non-response group.
Low S100A5 IHC score group (IHC score less than 6) possessed
significantly more patients responding to anti-PD-1 treatment
than high S100A5 IHC score group (IHC score no less than
6) among the whole TMA cohort (Figure 6E). Importantly, the
patients with lower S100A5 IHC scores exhibited significantly
higher disease-free survival (DFS) rates than those with higher
scores (Figure 6F). Moreover, multi-color IF images showed a
negative correlation between S100A5 expression, CD8+ T cells
infiltration, and PD-L1 expression (Figure 6G), revealing the
mechanism of response or non-response to treatment. In a
large immunotherapy cohort of BLCA (IMvigor210), we found
that S100A5 expression was highest in the desert immune

The histograms of different S100A5+CD4+, S100A5+CD8+, and S100A5+CK19+ percent cells among the whole TMA. J) The flow-like cytometer plots
show the percent of S100A5+CK19+, S100A5+CD4+, and S100A5+CD8+ cells respectively. K) The spatial distribution of CD4+ and CD8+ T cells within
the distance gradients of S100A5+CK19+ tumor cells (0–25 μm, 25–50 μm, 50–100 μm, and 100–150 μm). ns, not statistically significant. *p < 0.05; **p
< 0.01; ***p < 0.001.
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Figure 6. Relationship between S100A5 expression and immune checkpoint blockade (ICB) response. A) Representative immunohistochemical (IHC)
image of high S100A5 expression patient. Scale bar, 100 μm. B) Representative CT image for patient with progressive disease after anti-PD-1 treatment.
C) Representative IHC image of low S100A5 expression patient. Scale bar, 100 μm. D) Representative CT image for patient with complete response
after anti-PD-1 treatment. E) Relative percentage of patients with clinical response to immunotherapy between different S100A5 expression groups in
Xiangya immune cohort. Yellow, immunotherapy response group; Blue, non-response group. F) Disease-free survival (DFS) of patients with different
S100A5 IHC scores in Xiangya immune cohort. G) Representative multi-color IF images for S100A5 (green), CD8 (red), PD-L1 (yellow) and DAPI (blue)
in non-response and response group patients. Scale bars, 100 μm. H) Expression of S100A5 on desert, excluded, and inflamed immune phenotypes in
IMvigor210 cohort. I,J) Expression of S100A5 on patients with different PD-L1 expression on tumor cells I) and immune cells J) in IMvigor210 cohort. K)
Correlation between S100A5 expression values and immunotherapy response in the desert phenotype of IMvigor210 cohort. Different color represents
different response type. CR: complete response; PR: partial response; SD: stable disease; PD: progressive disease. ns, not statistically significant. *p <

0.05; **p < 0.01; ***p < 0.001.

phenotype, TC0 (lowest PD-L1 expression on tumor cells), and
IC0 (lowest PD-L1 expression on immune cells) (Figure 6H–J).
Furthermore, we found that patients with CR expressed signifi-
cantly lower S100A5 than patients with PD or SD in IMvigor210
(Figure 6K).

3. Discussion

S100 family proteins, as a type of small molecular EF-hand
calcium-binding proteins, play vital roles in the development and
progression of numerous types of carcinomas and show prognos-
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tic value and are potential novel targets for treatment.[60] The vital
role of S100 proteins in carcinomas has been widely reported in
melanoma, breast carcinoma, and lung carcinoma. S100A4 not
only activates the nuclear factor-kappa B (NF-𝜅B) pathway and
leads to the release of the tumor necrosis factor (TNF)-𝛼,[61] but
also shapes an inflamed TME by inducing the secretion of IL-
8 and C–C chemokine ligand 2 (CCL2),[14] playing an oncogenic
role in malignant melanoma. In breast carcinoma, multiple S100
proteins are dysregulated, including S100A2, S100A4, S100A6-9,
and S100A11.[60] Among them, S100A8 and S100A9 can recruit
MDSCs to maintain an immune suppression state in the TME,[12]

indicating the key roles of S100 family proteins in modulating
the TME. For lung carcinoma, S100A4 expression was associ-
ated with worse survival outcomes in NSCLC and promoted can-
cer invasion through the NF-𝜅B/MMP9 signaling pathway.[62,63]

Recently, Liu et al. revealed that S100A7 can shape an immuno-
suppressive TME and decrease the efficacy of immunotherapy
in LUSC.[64] However, the expression patterns and functions of
S100 proteins are cancer specific.[60] Regarding BLCA, only Yao
et al. reported that S100A2-3, S100A5, S100A7-9, S100A14-16,
and S100P were significantly higher in BLCA tissues using real-
time PCR.[16] The comprehensive roles of S100 proteins in the
TME and immunotherapy remain unclear, especially in BLCA. In
this study, for the first time, we comprehensively analyzed the ex-
pression patterns and immunological roles of multiple S100 fam-
ily proteins in BLCA and found that S100A5 might have the most
important value in BCLA. Furthermore, pan-cancer analyses
through 33 types of carcinomas revealed that the immunosup-
pressive role of S100A5 in the TME was most obvious in BLCA.

As a high TMB tumor, an increasing number of studies have
demonstrated the efficacy of ICIs in BLCA. Five ICIs have gained
approval from the FDA: atezolizumab, durvalumab, avelumab,
pembrolizumab, and nivolumab.[2,4,5] However, only a minor-
ity of patients respond to ICI treatment, and most patients
benefit little from ICIs and suffer from treatment-related tox-
icity, suggesting an urgent need to identify biomarkers of re-
sponse to ICIs.[5,6] To date, numerous biomarkers have been
found to predict ICI response. PD-L1 expression in tumor cells
has been reported to be associated with higher response rates;
however, patients without PD-L1 expression also show an ICI
response.[65] Other biomarkers include TMB, alteration of DNA
damage repair genes, and interferon-𝛾 associated genes; how-
ever, all these biomarkers need additional validation for clini-
cal application.[65] As an immune rheostats, the treatment func-
tion of ICIs largely depends on pre-existing anticancer immune
responses.[50] Therefore, the immunosuppressive state of TME
can be a major obstacle to ICI efficacy. The TME is composed of
tumor cells, fibroblast cells, vascular endothelial cells, immune
cells, extracellular matrix, and extracellular soluble molecules,
and plays a vital role in cancer development and evasion of the
host immune system.[8] Based on the presence or absence of T
cells in the tumor parenchyma, the TME can generally be divided
into two profiles: non-inflamed and inflamed tumors.[9] In this
study, we used systematic bioinformatics analysis (including bulk
RNA-seq and scRNA-seq) to reveal that S100A5 is associated with
a non-inflamed TME phenotype in BCLA. Inflamed tumors, char-
acterized by CD4+ and CD8+ T cell infiltration and elevated signa-
tures of immune activation, are sensitive to immunotherapy.[7,8]

We validated that S100A5 inhibited CD8+ T cell infiltration,

whereas its knockdown significantly promoted infiltration and
enhanced the cytotoxicity of CD8+ T cells in vitro and in vivo.

There are two fundamental strategies for cancer immunother-
apy: “immune enhancement” strategy, which focuses on increas-
ing immune activation, and “immune normalization”, which
focuses on restoring immune cell deficiency in the TME.[49]

Immune-related adverse events (irAEs) limit the clinical ap-
plication of “immune enhancement” strategy, while “immune
normalization” strategies, such as ICIs show objective response
rates without obvious irAEs. However, ICIs have shown no
therapeutic efficacy in some patients, partly because of a lack of
pre-existing anticancer immune responses. The combination of
“immune enhancement” and “immune normalization” strate-
gies could be more effective. For example, combined therapy
with anti-PD-1 and CTLA4 therapy has shown much higher
effectiveness.[11] The key for developing “immune enhance-
ment” strategy is to avoid irAEs. Using sc-RNA-seq data, we
found that S100A5 was specifically expressed in tumor cells and
barely expressed in other cells, both in the TME and blood. These
results could be beneficial for developing anti-S100A5 drugs that
are tumor cell-specific and less toxic. Niclosamide, an inhibitor
of S100A4, which inhibit colorectal cancer (CRC) progression,
has entered phase II clinical trials for the treatment of metastatic
CRC.[66,67] Based on our findings, anti-S100A5 therapy might
have the ability to turn “cold” tumors into “hot” tumors and
show higher effectiveness in combination with ICIs. Our work
is the first step towards the development of anti-S100A5 drugs
that can reverse the TME without obvious toxicity.

Unsupervised clustering of transcriptome profiling data re-
vealed that BLCA can be divided into molecular subtypes that can
be used to predict prognosis and therapeutic options, including
chemotherapy and immunotherapy.[35] Several molecular sub-
type models of BLCA have been established, including CIT,[37]

Lund,[38] MDA,[39] TCGA,[40] Baylor,[41] and UNC.[42] However,
the differences in the number, relative size, and names of the
subtypes between these molecular subtype models inhibit their
clinical application. Thus, Kamoun et al. reported a consensus
molecular classification by conducting a network analysis of
these six molecular subtype models.[35] Consensus molecu-
lar classification has promoted the clinical use of molecular
subtypes. However, all of these molecular subtypes are built
based on transcriptome profiling data (RNA-seq or microarray),
which can be complex and expensive for clinical applications.
We found that S100A5 expression could accurately predict all
seven classification systems with high accuracy (AUC > 0.85),
and validated this prediction value using other public databases
and our own RNA-seq cohort. Our findings greatly simplify
molecular classification systems and promote their clinical
applications. Basal subtypes have been reported to possess more
cytotoxic lymphocytes and NK cell infiltration, and may be more
sensitive to immunotherapy.[35] This is consistent with our
previous finding that S100A5 shaped a non-inflamed phenotype
of BLCA in terms of the molecular subtypes of BLCA.

There are some limitations of our study. First, our validation
cohorts contained RNA-seq and microarray data, and different
cohorts may have led to batch effects and bias in our findings.
Second, although S100A5 could mediate tumor immune evasion
by regulating chemokine secretion and CD8+ T cell cytotoxicity,
further detailed mechanisms are required. Third, to turn cold
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bladder tumors into hot ones, S100A5 small-molecule inhibitors
need to be developed in future research.

4. Conclusions

S100A5 shapes a non-inflamed tumor microenvironment
in BLCA by inhibiting the secretion of pro-inflammatory
chemokines and the recruitment and cytotoxicity of CD8+ T
cells. Targeting S100A5 converts cold tumors into hot tumors,
thus enhancing the efficacy of ICB therapy in BLCA.

5. Experimental Section

Sources of Datasets and Preprocessing—Xiangya Cohorts: As
reported in the previous studies,[17,18] 60 fresh bladder cancer
samples was collected (only 57 qualified samples) and 13 paired
adjacent normal samples without prior treatment from the
Xiangya Hospital and performed RNA sequencing (RNA-seq)
of the qualified samples. Among the 57 patients, 56 were suc-
cessfully followed up. This cohort was named the Xiangya BLCA
cohort (GSE188715). In addition, a tissue microarray (TMA)
containing 50 BLCA samples was built and 28 paired adjacent
normal samples without prior treatment and another TMA
containing 51 BLCA samples with immune checkpoint blockade
(ICB) treatment.[19]

Sources of Datasets and Preprocessing—Public Databases: For
the Cancer Genome Atlas (TCGA) database, the fragments
per kilobase per million mapped fragments (FPKM) value of
RNA-seq data of 33 types of cancer from the UCSC Xena data
portal (https://xenabrowser.net/) was downloaded.[20] Specific
to TCGA-BLCA, the FPKM value was transformed into tran-
scripts per kilobase million (TPM). Duplicate patients and
those without complete clinical information were filtered out.
A total of 403 patients with detailed clinical information were
included in the analysis. Gene Expression Omnibus (GEO)
(https://www.ncbi.nlm.nih.gov/geo/) databases with more than
50 BLCA samples were downloaded using “GEOquery” R pack-
age, including: GSE87304 (GPL22995), GSE48276 (GPL14951),
GSE48075 (GPL6947), GSE120736 (GPL10558), GSE31684
(GPL570), GSE32894 (GPL6947), GSE69795 (GPL14951), and
then transformed the gene symbol using the corresponding
GPL files. E-MTAB-1803, a public database containing 85
BLCA samples, was downloaded from The European Bioin-
formatics Institute (https://www.ebi.ac.uk/). Moreover, the
expression matrix was downloaded and clinical information of
the BLCA immunotherapy cohort (IMvigor210 cohort) from
http://researchpub.Gene.com/imvigor210corebiologies/.[21]

Sources of Datasets and Preprocessing—Calculating of TME Cell
Infiltration: Tracking tumor immunophenotype (TIP) was a
web-based analytical platform for analyzing the level of seven-
step cancer immune cycles (http://biocc.hrbmu.edu.cn/TIP/).[22]

The TPM data was uploaded of the TCGA-BLCA and Xiangya
cohorts onto TIP and downloaded the cancer-immune cycle.
The single-sample gene set enrichment analysis (ssGSEA)
algorithm was used to calculate the infiltration of 28 immune
cells into the BLCA TME. The gene set for each immune cell
was obtained from a study by Charoentong et al.[23] To eliminate
the influence of this algorithm, six other algorithms were used

to calculate the infiltration of immune cells: CIBERSORT, EPIC,
mMCP-counter, quanTIseq, TIMER, and xCell. Among these al-
gorithms, EPIC, quanTIseq, TIMER, and xCell algorithms were
performed using “deconvolute” function of the “immunede-
conv” R package. For CIBERSORT, LM22 was downloaded, an
annotated gene set, to define the 22 immune cell subtypes from
the CIBERSORT web portal (http://cibersort.stanford.edu/). For
mMCP-counter, the genes and probesets files were downloaded
from https://github.com/ebecht/MCPcounter and used “MCP-
counter.estimate” function of the “MCPcounter” R package.[24]

Other Immunological Characteristics of TME: MHC, receptors,
chemokines, and immune stimulators (122 immunomodula-
tors) were identified based on a study by Charoentong et al.[23]

Moreover, 22 ICI genes were identified based on the study by Aus-
lander et al.[25] Eighteen genes for calculating the T cell-inflamed
score (TIS) were identified based on the study by Ayers et al.[26]

Pan-cancer TIS and the effector genes of CD8+ T cells, dendritic
cells (DCs), macrophages, natural killer (NK) cells, and type 1 T
helper (Th1) cells were collected as previously described.[17]

Analysis Process of Single Cell RNA Sequencing (scRNA-seq):
Three samples from muscle invasive bladder cancers (MIBCs)
were obtained from Xiangya hospital and performed scRNA-seq
in OE Biotech Co, Ltd (Shanghai, China), named Xiangya scRNA
cohort. The detailed preparation of single-cell suspensions,
sequencing of droplet-based single-cells and raw data processing
have been reported in previous studies.[18,27] After cell ranger
processing, the count matrixes were converted into Seurat object
by “Seurat” R package (version 4.1.0). Cells were regarded with
unique molecular identifier (UMI) numbers less than 1000,
gene numbers less than 200, log10GenesPerUMI less than 0.70
and mitochondrial-derived UMI counts over 20% as low-quality
cells and filtered out these cells. Then the count matrixes were
normalized using “NormalizeData” function and regressed out
the effect of mitochondrial ratio using “SCTransform” function.
“SelectIntegrationFeatures” function was used to find the top
3000 variable features for integration and “PrepSCTIntegration”
function was used to convert the Seurat object to SCT list object
for integration. Then, “FindIntegrationAnchors” and “Integrate-
Data” functions were used to integrate the three samples based
on the top 3000 variable features selected above. This process
regressed the potential batch effect and created a new matrix
with 3000 variables. Then principal component analysis (PCA)
was conducted using “RunPCA” function and ran t-distributed
stochastic neighbor embedding (tSNE) based on “pca” reduction
using “RunTSNE” function. Finally, the main cells clusters were
identified using “FindNeighbors” and “FindClusters” function
(res = 0.4) and visualized the cells clusters based on tSNE plot.
Clusters were annotated combined by “SingleR” package and
well-established marker genes reported previously. In particular,
cells annotated as T cells were further clustered into subclusters.
All parameters of the functions used above were set to default.

In addition, a public scRNA-seq dataset (PRJNA662018[27])
containing eight BLCA and three normal tissue samples was
downloaded. Another public scRNA-seq dataset (GSE135337[28])
containing seven BLCA tissue samples, was downloaded from
the supplementary materials of the GEO database. The analysis
processes were similar to those used for Xiangya scRNA cohort.
Specifically, out cells were filtered with UMI numbers less
than 1000, genes numbers less than 250, log10GenesPerUMI
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less than 0.80, and mitochondrial-derived UMI counts over
10%. Moreover, the log2TPM matrix of one primary bladder
cancer patient (two other matrices were not available in the
GEO database) was downloaded and cell type information
from the supplementary file of GSE145137.[29] Because all
the cluster and cell type information could be downloaded,
the above scRNA-seq analysis processes was omitted and di-
rectly used “VlnPlot” function to visualize the expression of
S100A5 in the TME of BLCA. Two other scRNA-seq databases
(GSE130001[30] and GSE145281[31]) were analyzed using TISCH
(http://tisch.comp-genomics.org/home/).

Estimation of Copy Number Variations (CNVs) in Epithelial Cells:
Setting the epithelial cells from three normal tissue samples in
PRJNA662018 scRNA as references, the “InferCNV” package
was used to detect the initial CNVs values of epithelial cells from
tumor tissue samples in Xiangya scRNA and PRJNA662018
scRNA. The initial CNVs value of each cell was re-standardized
and made the background value as 0. The mean of the squares
of all the initial gene CNVs values was then defined as the final
CNVs score for each cell. Epithelial cells from tumor tissue
samples with final CNVs scores more than 0.02 were regarded as
malignant epithelial cells for downstream analysis. This process
was performed as described by Peng et al.[32]

Cell Chat Analysis: The “CellChat” R package (version 1.6.1)
was used to perform Cell chat analysis.[33] According to the offi-
cial workflow, the normalized expression data of malignant ep-
ithelial cells was loaded, T cells, and cell group information into
CellChat. Receptor-ligand interactions were screened using the
“CellChatDB.human” database as a reference. “computeCom-
munProb,” “filterCommunication,” “computeCommunProb-
Pathway,” and “aggregateNet” functions were used to figure
out the potential ligand-receptor interactions between high/low
S100A5 expression epithelial cells and T cell subgroups. All
parameters of the functions used above were set to default.

Pathway Enrichment Analysis: For bulk RNA-seq data, the
empirical Bayesian approach of the “limma” R package was used
to filter the differentially expressed genes (DEGs). The signif-
icance criterion was set as |log2FC| >1 and adj.p.value <0.05,
for filtering DEGs. For scRNA-seq data, DEGs between different
S100A5 expression patterns on epithelial cells were recognized
using Findmarker function in “Seurat” R package. Gene Set
Enrichment Analysis (GSEA) was performed based on genes
ordered by fold change (FC). Gene sets from the Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
were downloaded from the Molecular Signatures Database
(MSigDB) (https://www.gsea-msigdb.org/gsea/index.jsp).[34] In
addition, 12 bladder cancer signatures were collected that could
represent different processes of different molecular subtypes
of BLCA from Kamoun’s study.[35] Then the enrichment scores
of these signatures were calculated using ssGSEA algorithm in
“GSVA” R package.[36]

Determining the Molecular Subtypes of BLCA: There were
seven established molecular subtypes of BLCA: Cartes d’Identité
des Tumeurs-Curie (CIT),[37] Lund,[38] MDAnderson Cancer
Center (MDA),[39] TCGA,[40] Baylor,[41] University of North
Carolina (UNC),[42] and consensus subtypes.[35] BLCA patients
were stratified into all the molecular subtypes above using
“ConsensusMIBC” and “BLCAsubtyping” R packages. To unify
these seven molecular models, patients with BLCA can gener-

ally be divided into basal and luminal subtypes based on the
relationships between the different models.[35] The predictive
accuracy of S100A5 for the molecular subtypes was depicted
using receiver operating characteristic (ROC) curves.

Malignant Bladder Cell Lines: Human malignant bladder cell
lines T24 and 5637 were purchased from the American Type
Culture Collection (ATCC, Manassas, VA, USA) and cultured in
DMEM or RPMI-1640 medium (Invitrogen), respectively. The
murine malignant bladder cell line MB49 was purchased from
Meisen CTCC (Jinhua, China) and cultured in DMEM. All the
media were supplemented with 10% FBS (Gibco), 1% penicillin
and streptomycin (Invitrogen). The condition of incubator was
set as 37 °C with 5% CO2.

Stable Cell Transfection: Lentiviral vectors with S100A5-short
hairpin RNA (sh-S100A5) and S100A5-cDNA (oe-S100A5) were
purchased from Shanghai Genechem. The targeting sequences
were as followings: sh-S100A5 #Human 1: cgACTTCTTTC-
TAGAGGACAA; sh-S100A5 #Human 2: gcAGCATCGAT-
GACTTGATGA; sh-S100A5 #Human 3: gtGACCACGTTTCA-
CAAATAT; sh-S100A5 #Mouse 1: gcCTACAATGACTTCTTC-
CTA; sh-S100A5 #Mouse 2: gaAGGAGAGCAGCATTGATAA;
sh-S100A5 #Mouse 3: gtCACCACTTTCCATAAATAT. Then, ac-
cording to the manufacturer’s protocol, bladder cancer cell lines
were transfected using Turbofect (Thermo Fisher Scientific) in
DMEM or RPMI-1640. After transfection for 48 h, cell lines
were filtered by puromycin treatment (1 μg ml−1) for three days.
Quantitative RT–PCR (qRT–PCR) and western blotting (WB)
were applied to determine transfection efficiency at the mRNA
and protein levels, respectively.

qRT–PCR: Total RNAs from stably transfected cell lines
were extracted using TRIzol reagent (Invitrogen) and reverse
transcribed using the UeIris II RT-PCR System for First-Strand
cDNA Synthesis (US Everbright, China) according to the man-
ufacturer’s protocol. qRT–PCR was conducted using the CFX
Connect System (Bio-Rad, USA), and SYBR Green Mix (US
Everbright, China) was applied to determine mRNA expression
levels. The mRNA expression of GAPDH was used to normalized
and the relative expression of the target mRNAs was determined.
Sangon Biotech (Shanghai, China) designed and synthesized the
primers: Human CCL2, F-TCGCGAGCTATAGAAGAATCA, R-
TGTTCAAGTCTTCGGAGTTTG; Human CCL3, F-ATGCAGG
TCTCCACTGCTGC, R-TCAGGCACTCAGCTCCAGGTC;
Human CCL4, F-CCAAACCAAAAGAAGCAAGC, R-ACAG
TGGACCATCCCCATAG; Human CCL5, F-GAGTATTTC
TACACCAGTGGCAAG, R-TCCCGAACCCATTTCTTCTCT;
Human CXCL9, F-GAGTGCAAGGAACCCCAGTAG, R-
GGTGGATAGTCCCTTGGTTGG; Human CXCL10, F-TGGCA
TTCAAGGAGTACCTCTC, R-GGACAAAATTGGCTTGCAGGA;
Human S100A5, F-CATATGCCTGCTGCTTGGATTCTC, R-
GGATCCTCACTTGTTGTCCTCTAGAAAG; Mouse S100A5,
F-GCAAGCTGACCCTGAGTAGG, R-CGCTGTTTTTGTC
CAGGCTC; Human GAPDH, F-CTCAACTACATGGTCTACAT
GTTCCA, R-CTTCCCATTCTCAGCCTTGACT; Mouse GAPDH,
F-ACCACAGTCCATGCCATCAC, R-TCCACCACCCTGTTGCT
GTA.

Western Blotting (WB) Analysis: Cells were lysed with 100 μl
RIPA buffer (NCM biotech, China) accompanied with 1 μl
Phenylmethanesulfonyl fluoride (PMSF). The protein concen-
tration was quantified using a BCA Protein Assay Kit (NCM
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Biotech, China). Polyvinylidene fluoride (PVDF) membranes
were blocked for 1 h with 5% skim TBST solution at room tem-
perature. PVDF was incubated at 4 °C overnight with primary
antibodies: anti-S100A5 (Cat: 17924-1-AP, Proteintech, USA)
and anti-GAPDH (Cat: ab8245, Abcam, USA). After washing
with TBST for three times, the PVDF membrane was incubated
at room temperature for 1 h with horseradish peroxidase-
conjugated secondary antibodies. Finally, the proteins were
visualized with ECL system (Thermo Fisher Scientific).

ProcartaPlex Multiple Immunoassays: Cell culture super-
natants were collected from a 24-well plate after centrifugation
and detected multiple cytokines and chemokines (including:
CCL2, CCL3, CCL4, CCL5, CCL11, CTLA-8, CXCL1, CXCL8,
CXCL10, CXCL12, GM-CSF, IFN-𝛼, IFN-𝛾 , IL-1 𝛼, IL-1 𝛽,
IL-1RA, IL-2, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-12, IL-13,
IL-15, IL-18, IL-21, IL-22, IL-23, IL-27, IL-31, TNF-𝛼, TNF-𝛽)
using EPX340-12167-901 kit and Luminex detection platform
(ThermoFisher Scientific, Massachusetts, USA) according to
manufacturer’s instruction. After log2 transformation and
scaling, the fluorescence intensity was presented in a heatmap.

ELISA: Cell culture supernatants were collected from 24-
well plates, and the presence of the cytokine/chemokine proteins
CCL2, CCL3, CCL4, CCL5, CXCL9, and CXCL10 was determined
using a human ELISA kit (Proteintech, USA) and a Biotech mi-
croplate reader (ThermoFisher Scientific, USA) according to
the manufacturer’s instructions. The concentrations of different
cytokine/chemokine proteins were calculated based on Optical
Density (OD) values at a detection wavelength of 450 nm.

T Cell-Mediated Tumor Cell-Killing Assay: Human peripheral
blood mononuclear cells (PBMCs) were isolated from the pe-
ripheral blood of healthy donors by gradient centrifugation using
Lymphoprep (Cat: 0 7851; StemCell Technologies, USA). Written
informed consent was obtained from each donor. After removing
red cells by Red Blood Cell Lysis Buffer (Solarbio, China), PBMCs
were cultured in DMEM medium and activated to acquire T cells
for one week using ImmunoCult Human CD3/CD28/CD2 T cell
activator (25ul ml−1, Cat:10 970; STEMCELL Technologies, USA)
and recombinant human IL-2 (10 ng ml−1, Cat: 202-IL-050, R&D,
USA). Transfected T24, 5637, and their negative control cell lines
were cultured in 12-well plates overnight for adhesion and then
co-cultured with activated T cells for 72 h in the presence of
IL-2 (10 ng mL−1) and anti-CD3 antibody (100 ng ml−1, Thermo
Scientific, USA). After washing out T and dead cells with PBS,
crystal violet was used to stain the remaining adhered cancer
cells, and a microplate reader was used to detect OD values at a
detection wavelength of 570 nm. This study was approved by the
Ethics Committee of Xiangya Hospital, Central South University
(202104145).

CD8+ T Cell Migration and Inhibition Assay: First, human
CD8+ T cells were isolated from human PBMCs using Human
CD8+ T Cell Isolation Kit (Cat: 480 012, Biolegend, USA) by
magnetic bead separation and activated them with ImmunoCult
Human CD3/CD28/CD2 T cell activator and recombinant
human IL-2. Then, CD8+ T cell migration assay was conducted
using a 24-well transwell system with 6.5 mm diameter and 3 μm
pore size polycarbonate membrane (Corning, USA).[43] 600 μL
supernatant from different transfected T24 and 5637 cell lines
was added to the lower chamber, while 1 × 105 isolated CD8+

T cells were added to the upper chamber. The T cells migrated

into the lower chamber were collected and counted using flow
cytometry after 6 h incubation at 37 °C.

Murine CD8+ T cells were isolated from the spleens of
C57BL/6 mice using the Mouse CD8 T Cell Isolation Kit (Cat:
480 035, Biolegend, USA) by magnetic bead separation and then
activated with anti-CD3 (plate-coated, 5 μg mL−1) and anti-CD28
(soluble, 5 μg mL−1). After activation, 5 × 105 isolated murine
CD8+ T cells were cultured with S100A5 Mouse Recombinant
(15 μg mL−1; Cat: PRO-1084, ProSpec-Tany TechnoGene Ltd)
or placebo for 48 h. The cells were blocked with a Monensin
Solution (Cat: S1753, Beyotime, China) for 4 h before harvesting
for flow cytometry.

MTT Assay: Knockdown and overexpression of S100A5 and
their negative control cells (5 × 103 cells well−1) were seeded into
96-well culture plate. 20 μl methylthiazolyldiphenyl-tetrazolium
bromide (MTT, 5 mg ml−1, Sigma-Aldrich) was added to each
well at 0, 24, 48 and 72 h after cell adhesion, and incubated for 4 h
at 37 °C. Then 150 μl of dimethyl sulfoxide (DMSO) was added to
each well for 5 min at room temperature. A microplate reader was
used to detect the OD values at a detection wavelength of 490 nm.

Colony Formation Assay: Knockdown and overexpression of
S100A5 and their negative control cells (1 × 103 cells well−1)
were seeded in 6-well culture plates. Then cells were cultured in
an incubator at 37 °C for 8 days, and the medium was replaced
every three days. Cells were washed with PBS for three times,
fixed with formalin, and then stained with 0.1% crystal violet.

Wound Healing Assay: Lines were drawn (width 1 cm) on
the back of 6-well culture plate, and 5 × 105 cells were added to
each well. When the cell confluency reached more than 80%,
the back line was drawn perpendicular to the hole using the tip
of the pipe. The scratched cells were washed three times with
PBS. Fresh serum-free media were added and incubated for 24 h
at 37 °C. Images were captured using a microscope after three
washes with PBS.

Preparation and Characterization of Liposome@siS100A5:
Sangon Biotech (Shanghai, China) designed and synthesized
the siS100A5: sense- GUCACCACUUUCCAUAAAUAUTT,
and antisense- AUAUUUAUGGAAAGUGGUGACTT. SPC,
DOTAP, DSPE-PEG-2K, and cholesterol were dissolved in 2 mL
absolute ethanol. siS100A5 was first dissolved in sodium citrate
buffer solution (containing 25% ethanol at pH 4) and then slowly
added to the lipids. siS100A5 and the lipids were mixed and
incubated for 20 min. Finally, the unloaded siS100A5 was re-
moved using a polycarbonate membrane with a 50 nm diameter
to obtain liposome@siS100A5.

The morphology of the obtained liposome@siS100A5 was
examined using a transmission electron microscope (Hitachi,
HT7820, 120 kV, Japan). A Zetasizer Nano-ZS instrument
(ZEN3600 Malvern, UK) was used to measure the hydrodynamic
diameter (DLS) and zeta potential of the liposome@siS100A5.
Loading efficiency was calculated from the fluorescence spectra
obtained using a fluorescence spectrometer (Hitachi F-4600,
Japan). All experiments were conducted according to the previ-
ous studies.[44,45]

In Vivo Experiments: Purchased from the Department of Lab-
oratory Animals, Central South University, 28 C57BL/6 mice (fe-
male, 6 weeks) were randomly divided into four groups (n= 7 per
group). Next, 5× 105 S100A5 KD (sh-S100A5 group) and negative
control (shNC group) MB49 cells were injected subcutaneously
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into the right flank of two groups of mice respectively. When
tumor volume reached 100 mm3, 100 μg anti-mouse PD-1 (Cat:
BE0146, Bioxcell, USA) and IgG2a isotype (Cat: BE0089, Biox-
cell, USA) were injected intraperitoneally into sh-S100A5 groups
respectively (sh-S100A5 + anti-PD-1 group and sh-S100A5 +
IgG2a isotype group). The same for shNC group, namely, the
shNC + anti-PD-1 and shNC + IgG2a isotypes. The drugs were
administered every three days for five cycles. The mice was killed
by euthanasia and collected tumors two days after the last treat-
ment cycle or on the day of tumor volume ≥ 2000 mm3, tumor
diameter ≥ 2 cm, or on appearance of tumor ulceration. After tu-
mor volume measurement, the tumors were ground physically,
digested, and filtered by 70 μm cell strainers (BIOFIL, China) to
obtain single cell suspension for flow cytometry analysis.

To determine the anti-tumor efficiency of lipo-
some@siS100A5, 5 × 105 MB49 cells were injected subcu-
taneously into the right flank of the mice. When the tumor
volume reached 100 mm3, the mice were administered drugs in-
travenously every three days for five cycles as follow: (1) liposome
+ IgG2a isotype, (2) liposome@siS100A5 + IgG2a isotype, (3)
liposome + anti-PD-1, and (4) liposome@siS100A5 + anti-PD-1.
The injection dose was 100 μg for IgG2a isotype or anti-PD-1 and
3.4 μg for siS100A5 in each mouse. On days 3, 7, and 14 after
the first injection, an automated hematology analyzer (HF-3800,
HLife, China) and hematology chemistry analyzer (PointCare
V2, MNChip, China) were used to test the mouse whole blood
and blood biochemistry indexes, respectively. Two days after
the last treatment cycle, mice were euthanized. Tumors were
collected for flow cytometry analysis, and the heart, liver, spleen,
lungs, and kidneys were collected for hematoxylin and eosin
(H&E) staining. All experiments were approved by the Animal
Care and Use Committee of Xiangya Hospital, Central South
University (202104145).

Flow Cytometry Analysis: The Zombie Aqua Fixable Viability
Kit (Cat:423 102, BioLegend, USA) was used to remove dead
cells, and single cells were blocked with anti-mouse CD16/CD32
antibody (Cat:156 603, BioLegend, USA). Then, APC-Fire 750
anti-CD45 (Cat:103 153, BioLegend, USA), BV785 anti-CD11b
(Cat:101 243, BioLegend, USA), BV421 anti-CD3 (Cat:100 227,
BioLegend, USA), BV605 anti-CD8a (Cat:100 743, BioLegend,
USA), Super Bright 436 anti-CD279 (PD-1, Cat:62-9985-82,
Thermo, USA) were used to stain cell members for 30 min-
utes. A transcription factor Staining Buffer Set (Cat:424 401,
BioLegend, USA) was used to fix and permeabilize the cells.
Intracellular markers were stained for 50 minutes with PE
anti-GZMB (Cat:372 207, BioLegend, USA), PE-Dazzle 594
anti-IFN-𝛾 (Cat:505 845, BioLegend, USA), PE-CY7 anti-TNF-
𝛼 (Cat:506 324, BioLegend, USA), and APC anti-Perforin
(Cat:154 303, BioLegend, USA). Cytek DxpAthena Flow cytome-
ter (Cytek Biosciences, USA) was applied to detect stained cells,
and FlowJo software (version 10.8.1) was used to analyze the data.

Immunohistochemistry (IHC) and Immunofluorescence (IF):
TMAs were prepared according to the method reported
by Matthew et al.[46] and IHC was performed previously
described.[47] Multi-color IF of the Xiangya immune cohort was
performed using a multiple fluorescent IHC staining kit (Absin,
China). Anti-S100A5 (Cat: 17924-1-AP, Proteintech, USA) was
used, anti-CD8 (Cat: ab4055, Abcam, USA), and anti-PD-L1 (Cat:
ab213524, Abcam, USA) antibodies. In addition, the IHC scoring

of CD8, PD-L1 was determined, and S100A5 using a combined
system of 4-point scale and the percentage of stained cells. No
staining or absence of any stained cells was assigned a score of 0;
weak staining (faint yellow), a score of 1; moderate staining (pale
brown), a score of 2; and strong staining (brown), a score of 3. For
the percentage of stained cells, samples with < 25% of stained
cells were given a score of 1, those with 25–49% of stained cells
were given a score of 2, those with 50–74% of stained cells were
given a score of 3, and those with ≥ 75% of stained cells were
given a score of 4. The intensity and percentage scores were
then multiplied to obtain the protein expression score, which
was termed the IHC score. The samples were divided into high
S100A5 and low S100A5 groups based on the expression of
S100A5 protein, with a median cutoff value of 6. Moreover,
according to the previous study,[17] the samples were defined
as “inflamed phenotype” samples in which CD8+ T cells were
located in the tumor parenchyma and defined the samples as
“non-inflamed phenotype” samples in which CD8+ T cells were
located in the stroma (not in parenchyma) or no CD8+ T cells
either in parenchyma or stroma. Two independent pathologists
reviewed the TMAs. For conducting immunofluorescence (IF)
of mouse tissues, an anti-CD8 antibody (Cat: ab217344, Abcam,
USA) was used.

TissueFAXS Cytometry Panoramic Tissue Quantification Assay:
The TissueFAXS Cytometry panoramic tissue quantification
assay was conducted on the TMAs of 50 BLCA samples without
prior treatment, as previously reported.[48] One TMA sample was
stained with anti-S100A5 (Cat: 17924-1-AP, Proteintech, USA),
anti-CK19 (Cat: ab52625, Abcam, USA), anti-CD8 (Cat: ab237709,
Abcam), and anti-CD4 (Cat: ab133616, Abcam) antibodies. An-
other TMA was stained with anti-S100A5 (Cat: 17924-1-AP,
Proteintech), anti-CK19 (Cat: ab52625, Abcam), anti-CD16 (Cat:
16559-1-AP, Proteintech), and anti-CD68 (Cat: ab213363, Ab-
cam) antibodies. Briefly, TMAs were removed residual paraffin
and rehydrated using xylene and alcohol. Then TMAs were
washed with ddH2O for 5 min, followed by microwave treat-
ment. Afterward, the diluted primary antibody was applied to
incubate at 37 °C for 2 h and then washed by PBS twice. TMAs
were then incubated with the corresponding secondary antibody
at room temperature for 30 min and washed again with PBS.
These steps were repeated to complete the staining of the other
three markers. Finally, the nuclear dye (SN470) was applied at
room temperature for 5 min. TissueFAXS (TissueGnostics) with
a Zeiss Axio Imager Z2 Microscope System at ×20 magnification
was applied to acquire the images. For quantitative analysis,
StrataQuest software (TissueGnostics) was applied to quantify
the cell density of nucleus area per cell, expression per cell
and area per cell. For spatial analysis, the numbers of CD4+

T and CD8+ T cells were quantified according to the distance
gradients (0-25 μm, 25–50 μm, 50–100 μm, and 100–150 μm)
from S100A5+CK+ cells using StrataQuest software.

Statistical Analysis: Pearson’s or Spearman’s coefficients
were used to explore the correlations between variables. If the
variables fit a normal distribution, a t-test was used to analyze
the differences between groups. Otherwise, the Mann-Whitney
U test was used. Differences between categorical variables were
determined using Pearson’s chi-squared test or Fisher’s exact
test. K-M analysis was used to plot the survival curves and the
log-rank test to determine the significance. p < 0.05 was set as
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a significant criterion. All statistical tests were two-sided. All
analyses were conducted using the R software (version 4.1.3)
and GraphPad Prism (version 9.4.0).
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Supporting Information is available from the Wiley Online Library or from
the author.
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