
Databases and ontologies

CellAnn: a comprehensive, super-fast, and user-friendly

single-cell annotation web server

Pin Lyu 1,†, Yijie Zhai1,†, Taibo Li 2, Jiang Qian 1,*
1Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
2Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, United States

*Corresponding author. Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States.
E-mail: jiang.qian@jhmi.edu (J.Q.)
†Equal contribution.

Associate Editor: Peter Robinson

Abstract
Motivation: Single-cell sequencing technology has become a routine in studying many biological problems. A core step of analyzing single-cell
data is the assignment of cell clusters to specific cell types. Reference-based methods are proposed for predicting cell types for single-cell clus-
ters. However, the scalability and lack of preprocessed reference datasets prevent them from being practical and easy to use.

Results: Here, we introduce a reference-based cell annotation web server, CellAnn, which is super-fast and easy to use. CellAnn contains a com-
prehensive reference database with 204 human and 191 mouse single-cell datasets. These reference datasets cover 32 organs. Furthermore,
we developed a cluster-to-cluster alignment method to transfer cell labels from the reference to the query datasets, which is superior to the
existing methods with higher accuracy and higher scalability. Finally, CellAnn is an online tool that integrates all the procedures in cell annotation,
including reference searching, transferring cell labels, visualizing results, and harmonizing cell annotation labels. Through the user-friendly inter-
face, users can identify the best annotation by cross-validating with multiple reference datasets. We believe that CellAnn can greatly facilitate
single-cell sequencing data analysis.

Availability and implementation: The web server is available at www.cellann.io, and the source code is available at https://github.com/Pinlyu3/
CellAnn_shinyapp.

1 Introduction

Single-cell RNA-sequencing (scRNA-seq) is a genomic
method to detect gene expression levels at the single-cell level.
Even though it was invented <10 years ago, it has been
widely used to identify novel cell types and cell heterogeneity
during development and disease (Saliba et al. 2014; Wen and
Tang 2016; Baslan and Hicks 2017; Ofengeim et al. 2017;
Rozenblatt-Rosen et al. 2017; Potter 2018). The common
practice in scRNA-seq data analysis is first to cluster the cells
based on the similarity of the gene expression profiles in each
cell. The next step is cell annotation, assigning the specific cell
types to the clusters. Even though cell annotation is essential
to understand the biological properties of the cells, it is chal-
lenging because it requires domain knowledge in specific cells
or tissues.

Two major approaches exist for cell annotation. One ap-
proach utilizes the known marker genes for specific cell types.
Marker genes can be found in online databases such as
CellMarker (Zhang et al. 2019b) and PanglaoDB (Franzén
et al. 2019). Popular methods in this category include ScType
(Ianevski et al. 2022), scSorter (Guo and Li 2021), CellAssign
(Zhang et al. 2019a), and scCATCH (Shao et al. 2020).
However, this approach is not always successful due to the
limited knowledge of marker genes of some cell types. For ex-
ample, some poorly studied cell types have very few or no

marker genes. In addition, some known marker genes might
not be specific to a cell type as expected. The second type of
cell annotation approach is based on the reference datasets.
Several methods have been developed for this purpose, includ-
ing scClassify (Lin et al. 2020), Scibet (Li et al. 2020),
singleCellNet (Tan and Cahan 2019), scMAGIC (Zhang et al.
2022), and singleR (Aran et al. 2019). This type of approach
takes advantage of the published datasets that were carefully
studied by domain experts. Instead of explicitly extracting the
marker genes associated with each cluster, the cell types are
characterized by the gene expression profiles defined by many
variable genes. By comparing the expression profiles of query
clusters and annotated reference datasets, the cell types can be
“borrowed” from the reference datasets if the gene expression
profiles of the query and reference are similar enough.

A good reference-based cell annotation system should have
the following desirable features. First, we need a large set of
preprocessed reference datasets, which makes it easy for the
users to find the relevant reference datasets for their query
dataset. Unfortunately, most available tools rely on the users
to identify, download and process the reference dataset before
the users can perform the analysis. Second, a good annotation
system should not require sophisticated computational skills
to run the task. However, most reference-based methods re-
quire users to install the tools on their computers. Some tools
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are only available in specific computational languages such as
Python or R. Third, an ideal method should run fast even
with large reference or query datasets, and it should not re-
quire a large computer memory. Some advanced methods,
such as those employing deep learning approaches, have been
developed and have a good performance [scBERT (Yang et al.
2022), scDeepSort (Shao et al. 2021), ACTINN (Ma and
Pellegrini 2020), sigGCN (Wang et al. 2021), scIAE (Yin
et al. 2022), scNym (Kimmel and Kelley, 2021), SuperCT
(Xie et al. 2019), and EnClaSC (Chen et al. 2020)]. However,
these methods are often slow and require large memories and
computing resources, making them not suitable for an online
tool. Furthermore, many single-cell datasets are generated
from droplet-based platforms, which typically include cells on
the scale of hundreds of thousands or larger (Macosko et al.
2015; Zheng et al. 2017). The runtime required by several
widely used tools to analyze datasets of <10k cells can range
from tens of seconds to several days, especially for those that
predict the cell types at the single-cell level rather than at the
cluster level (Abdelaal et al. 2019; Huang et al. 2021).

In this work, we present a new cell annotation system,
CellAnn. The system includes more than 350 preprocessed
reference datasets, including the major tissue types in human
and mouse. Users can easily search the relevant reference
datasets for comparison. Furthermore, a newly designed algo-
rithm can produce the results with high accuracy and high
speed. Our algorithm assigns the cell types to single-cell clus-
ters, and therefore, the analysis can be done very fast. We
assessed the performance of our algorithm and showed it is
superior to existing methods. Finally, all the analyses are done
on a user-friendly online web server, which is available at
www.cellann.io.

2 Materials and methods

2.1 Data structure

The usage of CellAnn is straightforward. First, users can up-
load the average gene expression for each cluster (gene by
cluster matrix) to the system (Fig. 1; Step 1). Then users can
search the CellAnn database for one or multiple references
within the selected tissue type(s), such as “retina” or “liver”
(Step 2). The system will then compare the query dataset to
the selected reference dataset(s), and the cell annotation
results will be generated and made available for download
(Step 3). If users wish to visualize the results, they may upload
a single-cell coordinate file. The results of the cell annotation
and marked gene expression patterns can then be viewed and
examined (Step 4).

2.2 Source of CellAnn database

We downloaded the raw gene expression matrix and author-
annotated cell type information from UCSC Cell Browser
(cells.ucsc.edu), Single Cell Portal (singlecell.broadinstitu-
te.org), CELLxGENE (cellxgene.cziscience.com), and GEO
(Gene Expression Omnibus). We also collected single-cell at-
las datasets from HCL (https://db.cngb.org/HCL/) and MCL
(https://bis.zju.edu.cn/MCA/). We selected a diverse set of
data that covered as many tissue types as possible. For a given
tissue type, we preferred large datasets with many cell types.
We did not include the datasets from diseased samples (e.g.
cancers) in the current version.

2.3 CellAnn query dataset preparation

To calculate the average gene expression profiles for each
user-defined cluster, we summed up the raw gene expression
counts of all cells for each cluster, normalized the gene expres-
sion by total counts, multiplied by a scale factor of 1e5, and
took the natural logarithm of the obtained values [log(xþ1)].
We also provide tutorials and source code on the GitHub
page of CellAnn for both Seurat and Scanpy users (https://
github.com/Pinlyu3/CellAnn_shinyapp).

2.4 CellAnn reference dataset preparation

All the references in the CellAnn database are processed with
the following steps:

a) Preprocessing: First, after downloading the expression
matrix and annotation, we split some huge single-cell at-
las (e.g. “HCL,” “Tabula Muris”) into several smaller
datasets by tissue types. Next, we harmonized the gene
names for each dataset. If the gene names are not the of-
ficial gene symbol, we convert them to the GENCODE
42 (Human) and GENCODE M31 (Mouse) gene anno-
tations. Then, we normalize the gene expression values
of each cell by its total expression, multiply the result by
a scale factor (1e5), and take the natural logarithm of the
obtained values (log(xþ1)).

b) Preparing the reference-specific background reference
dataset: We introduce the background reference because
it can be used to calibrate the similarity between the
query dataset and selected reference datasets. For each
reference dataset, we integrate it with single-cell atlas
datasets (i.e. background) to obtain more specific marker
genes and comparable expression values across all tis-
sues. For human references, we used the “HCL” or
“Tabula Sapiens” datasets as a background, and for
mouse references, we used the “MCL” or “Tabula
Muris” datasets as a background.

Since our analysis will be performed at the cluster
level, we calculate the average gene expression level for
the clusters in the background and the reference dataset.
First, we used the “scVI” software (Lopez et al. 2018)
from scvi-tools (Gayoso et al.) to remove the batch effect
between the reference and background datasets at the
single-cell level. After integration, we obtained a com-
bined dimension space and a combined, corrected cell-
by-gene matrix that included all the single cells from the
given reference and the background.

Next, we obtain new clusters with all cells from both
background and a reference dataset on the combined
“scVI” dimension space using “FindNeighbors” and
“FindClusters” functions from Seurat. We then calcu-
lated the average expression matrix of these new clusters
using the combined, corrected single-cell gene expression
matrix. The average expression matrix of the new clus-
ters is denoted as Eb, in which rows represent genes and
columns represent combined clusters.

Next, we calculate the corrected average expression
values of all the cell types in the selected reference data-
sets based on the combined clusters. For some cell types
in the reference, the cells might be distributed to different
clusters after the new clustering. For each given cell type
in the reference, we calculate the percentage of cells in
the new clusters and obtain a matrix of percentage, Wb,
in which rows represent background clusters and

2 Lyu et al.

http://www.cellann.io
https://db.cngb.org/HCL/
https://bis.zju.edu.cn/MCA/
https://github.com/Pinlyu3/CellAnn_shinyapp
https://github.com/Pinlyu3/CellAnn_shinyapp


columns represent the cell types in reference. Then, we
calculate the cross product of matrix Eb and Wb to ob-
tain the corrected expression matrix, Er, in which rows
are genes and columns are the cell types in reference.

Finally, we used the “COSG” package to identify
marker genes across all the background clusters (denoted
as bg-Markers), which will be used to calculate the cor-
relation coefficient of gene expression between query
and reference-specific background.

c) Preparing the refined references: In some studies, authors
may label multiple adjacent clusters as a single major cell

type. Therefore, using the average expression of these
major cell types may ignore the variance of the sub-cell
types and confuse downstream analyses. To improve the
sensitivity of our analysis, we first split the entire refer-
ence dataset by major cell types with the function
“SplitObject.” Then, we re-performed clustering analysis
for each split dataset using author-provided cell similar-
ity graphs such as “UMAP” or “t-SNE.” If the authors
do not provide the coordinate information, we calculate
the UMAPs by the standard Seurat workflow. Next, we
use the “FindNeighbors” and “FindClusters” functions

Figure 1. Schematic diagram of the CellAnn workflow. CellAnn has four major steps. (A) uploading the gene expression profile of the query clusters,

(B) selecting references in the CellAnn database, (C) predicting cell types based on the selected references, and (D) checking marker gene expression

patterns, harmonizing multiple predicted cell type labels, and downloading the final result.
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with a resolution parameter of 0.3 to obtain refined clus-
ters and label them as sub-cell types. Next, we get the av-
erage expression matrix (denoted as Ersub) by summing
the raw counts in each sub-cluster and normalizing the
expression value as described before. Finally, we
calculate marker genes for original clusters (denoted as
main-Markers) and sub-clusters (denoted as sub-
Markers) using the “COSG” package.

2.5 Harmonize gene names between species

CellAnn enables users to perform cell type prediction across
species. After uploading a gene expression matrix, CellAnn
employs a predictive algorithm to determine the species from
which the query dataset originates. This is accomplished by
computing the overlap ratio of gene symbols between the in-
put matrix and human or mouse gene annotations obtained
from GENCODE 42 and GENCODE M31, respectively. If
the ratio of overlapping genes exceeds 50% for either human
or mouse gene symbols, CellAnn will label the query data
with the corresponding species. If fewer than 50% of genes
overlap, CellAnn will issue a “Warning” message, prompting
the user to review their input files. In cases where the query
data and reference datasets are from different species,
CellAnn automatically converts gene names in the query data
to enable compatibility with the reference datasets. The
orthologous genes file is downloaded from the database
(http://www.informatics.jax.org).

2.6 Comparison algorithm of CellAnn

We develop an algorithm to compare a query dataset and a
selected reference dataset. The algorithm consists of 3 mod-
ules (Fig. 2A).

Module 1. We first determine a cutoff from the comparison
of background and query datasets. To do so, we compute cor-
relations between the query clusters (Eq) and background ref-
erence datasets (Eb) with the expression value of bg-Markers.
We obtain nb *nq coefficient values, where nb and nq equal
the number of clusters in the background and query, respec-
tively. We then obtain a distribution of the nb *nq correlation
coefficients. Since the background reference contains a diverse
set of tissue types, most query cluster-background cluster
pairs are from different cell types. We assume that the ob-
served distribution composes a negative distribution (from
pairs with different cell types) and a positive distribution
(from pairs with the same cell types).

Based on the assumption, we decompose the density distri-
bution into one to three Gaussian distributions using the
mclust package in R. If the observed distribution is better fit-
ted by only one Gaussian distribution, the distribution is con-
sidered from different cell types. We then set the correlation
cutoff as the point whose cumulative probability exceeds 0.75
in the distribution. If two or three Gaussian distributions can
better explain the observed distribution, the distribution with
the largest l is considered from the same cell types, and the
remaining distributions are considered from different cell
types. For two Gaussian distributions, we set the intersection
point as cutoff. For three Gaussian distributions, we set the
cutoff as the point whose cumulative probability exceeds 0.75
in the second distribution. Finally, to avoid the extreme cutoff
values, we set the minimal and maximal cutoff values to 0.4
and 0.6, respectively, if the obtained cutoff falls out the range
of 0.4–0.6.

We then calculate the correlations between the query clus-
ters (Eq) and reference datasets (Er) according to the expres-
sion value of bg-Markers. For a given query cluster, if all its
correlations with reference cell types are lower than the cut-
off, we label it as an “unassigned” cluster. Otherwise, we go
to next Module.

Module 2. We next calculate the pairwise correlation coef-
ficients between the query clusters (Eq) and the sub-clusters
(Er-sub) in the reference (Fig. 2A, step 2) according to the ex-
pression value of main-Markers. We then obtain a distribu-
tion of the coefficients. Similar to the above module, we fit the
distribution with one to three Gaussian distributions and de-
termine a cutoff for this specific query dataset. For each query
cluster, if the maximal coefficient with the sub-clusters in the
selected reference is below the cutoff, the query cluster will be
assigned as “unassigned.” If only one correlation coefficient
for a given query cluster is above the cutoff, the query cluster
is assigned to the cell type associated with the sub-cluster in
the reference. If more than one coefficient is above the cutoff,
especially if the matched sub-clusters belong to different cell
types in the original annotation, we go to next Module.

Module 3. We perform additional statistical tests to deter-
mine the cell type of the query cluster. First, we select the top
three sub-clusters whose correlations are larger than the cut-
off. Next, we extract the marker genes of the top three sub-
clusters from the sub-Markers list. Then, we use the
Wilcoxon Rank-Sum test to make pairwise comparisons
among these three groups of marker genes to check whether
their expression values are significantly higher than the others
in the query cluster. Based on the statistical results, we assign
the cell type of the sub-cluster with the highest significance as
the predicted cell type of the given query cluster.

2.7 Evaluation of computational scalability

To measure the computational resources required for running
CellAnn and other comparable methods, we simulate a query
and several reference samples with different sizes from the
PBMC datasets. We first downloaded PBMC data from the
single-cell portal (SCP424). The original datasets contain a to-
tal of 31 021 cells from 8 different sequencing libraries. We
use the “inDrops” PBMC datasets as the query datasets. For
reference datasets, we perform downsampling from entire
dataset with sizes of 1k, 5k, 10k, 15k, 20k, and 25k.

We use the function “system.time()” in R to evaluate the
running time of all the methods. In addition, we use the R
package “Bench” to measure the maximum memory usage
when running all the software. All the efficiency tests were
performed on a Linux server with Intel(R) Xeon(R) Gold
6126 CPU processors and 790 GB physical memory.

2.8 Comparison with other cell annotation methods

We compare CellAnn with five competing methods, including
scmap, CHETAH, scClassify, scPred, and Seurat v4. To com-
pare the methods, we have prepared a total of 52 benchmark
tests using the “Tabula Muris” single-cell atlas dataset. The
“Tabula Muris” single-cell atlas contains single-cell data from
different tissues that were sequenced using two different plat-
forms: fluorescence-activated cell sorting (FACS) and droplet-
based sequencing (droplet). We often use datasets from one
platform as a reference and predict the cell types in datasets
generated from another platform.

We prepared both cell- and cluster-based inputs for these
competing methods as follows. For CHETAH, scClassify,
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scPred, and Seurat v4, both the query and reference datasets
are single-cell datasets. We use the log-normalized raw-counts
matrix as the cell-based expression profiles for both query
and reference datasets in these methods. For scmap, the query
datasets are cluster-based expression profiles, while the refer-
ence datasets are single-cell-based expression profiles. To pre-
pare the cluster-based inputs, we re-performed clustering
analysis with Seurat for each cell type in the query dataset
and calculated the average expression profile of all the new
clusters. For CellAnn, the query and reference datasets are
both cluster-based expression profiles. The background of the
query dataset is “Tabula Muris” datasets.

We used the following parameters for these methods. In
scmap-cluster, we set the similarity threshold to 0.5, and cells
with a predicted score below this threshold were labeled as
“unassigned.” In Seurat V4, default settings were used to find
anchors between the query and reference datasets. The num-
ber of principal components was set to 50, and cells with a
predicted score < 0.5 were also categorized as “unassigned.”
For scClassify, we constructed the hierarchical tree using the
“HC” method and classified the ensemble model using the
“WKNN” method. The “limma” method was used to select
genes, and both the “Pearson” and “cosine” methods were
employed to measure the similarity between single cells. In
CHETAH, we used all default parameters to train the model
and make predictions for the query datasets. In scPred, we
trained the reference datasets using the “svmRadial” model
and set the threshold for probabilities to classify cells into
groups at 0.55; cells below this threshold were labeled as

“unassigned.” Finally, in CellAnn, we did not adjust any
parameters during comparison, and default settings were
used.

3 Results

3.1 Reference dataset collection

Cellann database contains 204 and 191 nonredundant
scRNA-seq datasets for humans and mice, respectively. The
number of associated studies (papers) of these datasets in
CellAnn is significantly larger than other reference-based an-
notation tools (Fig. 3A and B). For example, CellAnn contains
single datasets from more than 109 (36) papers in Human
(Mouse). However, scClassify, Scibet, singleCellNet, and
singleR, four representative reference-based cell annotation
databases, include only 11(5), 31(17), 6(6), and 19(26)
papers, respectively (Fig. 3A).

The reference datasets cover most of the major tissue types
in the two species. Some tissue types are well-studied, such as
the brain, blood, airway, and lung. Therefore, more datasets
were obtained from these tissues. Most of the collected tissue
types have more than one single-cell datasets, allowing for
multiple-reference comparison with the query dataset.

3.2 Algorithm performance

We first evaluate the performance of our comparison algo-
rithm (Fig. 4). Using annotation in the reference dataset as
ground truth, we have six outcomes: correctly classified,
partially correctly classified, correctly unclassified, failed

Figure 2. The algorithm design of CellAnn. (A) The CellAnn algorithm consists of three modules: (1) Module 1: CellAnn calculates the correlations

between query clusters and clusters in reference and background. The cutoff is estimated based on the correlation between query clusters and

background references. (2) Module 2: CellAnn calculates the correlations and estimates correlation cutoffs between the query data and sub-clusters in

reference datasets. (3) Module 3: CellAnn performs the Wilcoxon rank-sum test to determine cell types further if a query cluster is similar to multiple sub-

clusters in the reference.
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classified, wrongly classified, and wrongly unclassified
(Fig. 4A). The first three are considered correct predictions,
while the latter three are wrong predictions.

To comprehensively assess the performance of our method,
we tested four types of situations (Fig. 4B). In Type 1, the cell
types in the query and reference datasets are exactly the same
but from different platforms. In Type 2, the cell types in the
query are the subset of the cell types in the reference. For
the first two types, we expect, in the ideal situation, to find all
the cell types for the query clusters. In Type 3, the cell types in
the reference are the subset of the cell types in the query.
Some query clusters are not expected to have an assignment
(i.e. unclassified). In Type 4, the cell types in the query and
reference are not overlapped. All the query clusters should be
unassigned. The performance in Types 3 and 4 comparison is
critical for a database search because the users might select
remotely similar or even irrelevant datasets as references.

We compared our algorithm with popular cell annotation
methods, including Scmap-cluster (Kiselev et al. 2018),
CHEATAH (de Kanter et al. 2019), Seurat (Hao et al. 2021),
SCPred (Alquicira-Hernandez et al. 2019), and scClassify (Lin
et al. 2020) (Fig. 4B and C). The performance of our algo-
rithm in Type I comparison is comparable with Seurat,
SCPred, and scClassify. They all achieved �0.99 correct pre-
dictions. However, Scmap-cluster and CHEATAH have lower
success rates of 0.90 and 0.71, respectively. In Type 2,
CellAnn reached a success rate of 0.94, outperforming other
methods. Furthermore, for types 3 and 4, CellAnn still has a
good success rate. However, CHEATAH, which has worse
performance in the types 1 and 2 comparisons, has a relatively
good success rate in types 3 and 4. This might be due to a

more stringent cutoff selection for CHEATAH. In contrast,
CellAnn uses an automatic query-specific cutoff selection,
which might be the reason for a high success rate in all types
of comparisons.

3.3 Speed and memory use

We then assess the speed and memory used for CellAnn and
other existing methods. We use the reference datasets with
different cell numbers and different numbers of clusters, rang-
ing from 1k to 25k cells and from 28 to 61 cell clusters
(Fig. 4D). CellAnn is the fastest and finishes the jobs within
10 s, making it suitable for an online cell annotation tool.
Seurat and Scmap-cluster are also fast, finishing the jobs
within minutes. The other three methods, CHETAH,
scClassify, and scPred are suitable small reference datasets.

Similarly, CellAnn is also efficient in memory use because it
is a cluster-based, rather than a cell-based approach (Fig. 4D).
The peak memory required for Cell Ann is around 1 GB with
the largest dataset (25k cells). Seurat requires around 5 GB
for the largest reference dataset. The memory needed for other
methods easily exceeds 10 GB if the reference datasets contain
more than 25k cells.

3.4 Case study

Multiple reference datasets can provide a more confident an-
notation. Here we use an example to demonstrate its usage.
We used one published human retina dataset as input (Voigt
et al. 2019), which included 43 clusters (Fig. 5A). We then se-
lected four relevant datasets as references (Han et al. 2020;
Hoang et al. 2020; Orozco et al. 2020; Gautam et al. 2021)
(Fig. 5B). The references have three datasets from the human

Figure 3. Reference datasets included in CellAnn. The bar plot compares the available datasets for each organ type in human (A) and mouse (B) included

in the CellAnn database and other reference-based cell annotation web services. The x-axis represents different organs, and the y-axis represents the

number of papers related to the corresponding organs.
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Figure 4. The performance and scalability of CellAnn. (A) Evaluation framework of CellAnn. According to the author’s annotation, predictions are classified

into “Correct Classified,” “Correct Classified (Partially),” “Wrong Classified,” “Failed Classified,” “Wrong Unclassified,” or “Correct Unclassified.” (B)

The benchmark results of 56 testing pairs for 6 different methods. Each bar indicates the composition of predicted cell types. Based on the overlapping of

cell types between query and reference datasets, we divided these test pairs into four groups: type 1, type 2, type 3, and type 4. The Venn diagrams on

the left show the relationships of type 1–type 4. (C) The bar plots indicate the composition of predicted categories of the average performance in a

collection of reference–testing pairs. (D) Benchmarking the efficiency of CellAnn. Left: the line plot shows the running time under the default settings of

each algorithm. Right: the line plot shows the peak memory usage of each algorithm. The x-axis is labeled by the number of cells and the clusters in the

references. The curves are truncated if a method is not scalable to a certain size of the references.
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Figure 5. A case study on cell type annotation with multiple references using CellAnn. (A) The UMAP plots show the query data and four different

reference datasets. The cells in the query data are colored by clusters, and the cells in the reference datasets are colored based on the author’s cell type

annotation. (B) The comparisons of alignment results by CellAnn with the author’s annotation in the query datasets. The left panel displays a table that

shows the predicted cell type labels by CellAnn. The right panel displays UMAP plots of the query datasets, with the predicted annotation and the

author’s original annotation. (C) The marker gene expression levels in both query and reference datasets, help the users to select the cell type when the

results from multiple reference datasets are inconsistent.
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retina or eye and one dataset from mouse retina. Using default
parameters, we obtained the predicted cell annotation for the
43 input clusters (Fig. 5C). The cell type labels from the four
datasets could be different. For example, both “bipolar” and
“BP” refer to the same cell type, while “Muller glia,”
“Muller,” and “Resting MG” are the Muller glia cell type.
Overall, the annotation from different references is consistent,
increasing our confidence level in the cell annotation.
However, some clusters have inconsistent annotations (see
highlighted blue boxes in Fig. 5C). The top marker genes of
the clusters obtained from the reference can be used to choose
the winners of the annotations for the input clusters. The sec-
ond to the last column is our summary annotation after inte-
grating the prediction from the four references, while the last

column shows the original annotation from the published in-
put dataset. The agreement between the prediction and the
original annotation suggested the high quality of the predicted
annotation.

3.5 User interface

We have designed an interactive web server for CellAnn
(www.cellann.io). To use the server, users first perform clus-
tering analysis using other methods (e.g. Seurat), and calculate
the average expression profiles for the clusters. Users can then
upload the cluster versus gene matrix to the server (Fig. 6).
The server will automatically check the number of clusters,
genes, and species based on the user’s input file. If the user’s

Figure 6. Example webpages associated with each step of the analysis. (A) Step 1: a window for uploading expression profiles of query data (1). (B) Step

2: a table for searching and selecting datasets in CellAnn (2), and a table for reviewing the selected datasets (3). (C) Step 3: a window for running CellAnn

and tuning parameters (4). a table for downloading predicted cell types (5). (D) Step 4: a window for uploading coordinate profiles (6), a search window for

alignment results and related marker genes (7), UMAPs for query and reference data that are colored by cluster, predicted cell type, author’s annotation

(for reference), and gene expression values (8), and a downloadable and editable table that users can review to see predictions and add their own custom

annotations (9).
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input is correct, users will be able to proceed to the next step.
Otherwise, a warning message will be shown.

Users are able to select one or more relevant datasets as
references. The current version of CellAnn contains 204 hu-
man and 191 mouse single-cell datasets, respectively. To facil-
itate the identification of relevant datasets, we have organized
the datasets into 32 organs. Users can search for the relevant
datasets by organ. We also provide a preview button for each
dataset, allowing users to preview the dimension plot for each
study and check which cell types are included in the reference
dataset.

The users can then run the analysis. While the whole analy-
sis procedure is automatic, users also have the option to set
the range of cutoff values in the user interface. The default
range for the cutoff value is 0.4 to 0.6. The analysis results
will be presented in a table format.

The final step is optional. If users upload an additional file
with the cell clustering coordinates, we will provide the visual-
ization of the annotation analysis. As an independent valida-
tion, users can also select marker genes for a particular cluster
from reference clusters and examine the expression level of
the genes in query clusters.

CellAnn is a freely accessible web server available at www.
cellann.io. The help page of the web server provides brief doc-
umentation. CellAnn is compatible with all commonly used
web browsers, including Safari, Chrome, Opera, Firefox, and
Microsoft Edge. The underlying data of CellAnn is also freely
accessible on the GitHub page of the web server.

4 Discussion

We develop a method, CellAnn, for single-cell annotation.
The method has the following unique advantages. First, it is a
cluster-based algorithm. Compared to cell-based methods, it
is very fast. This is important, especially if we want to com-
pare multiple reference datasets. Second, it contains many
preprocessed single-cell datasets as references. The large col-
lection of references makes it convenient to use and saves a lot
of time for the users. Third, the performance of our algorithm
is robust. One reason for the robustness is that we introduce a
background reference and use it to calibrate the choice of the
cutoff.

One interesting question is whether the cell types are dis-
crete or continuous. A cell type will undergo transcriptomic
changes under certain conditions, such as disease and aging.
Should we consider them as the same cell types or annotate
them as distinct diseased- or aged-cell types? In the current
version of CellAnn, we did not include the datasets with dis-
eases (e.g. cancers). We plan to include more datasets in the
next version so that the users will obtain not only the pre-
dicted cell types but also the associated conditions.

If users selected multiple reference datasets, we presented
the predicted cell types from each reference dataset and did
not provide a consensus score or an “averaged” result from
the multiple reference datasets. There are several practical
issues for this approach. First, we do not want to adopt a vot-
ing strategy to provide an averaged result because the quality
of the datasets is not the same. Second, the reference datasets
might use different cell type nomenclatures and make it diffi-
cult to “average” the results. For example, “Muller glia,”
“Muller,” and “MG” are the same cell type, and
“photoreceptor,” “rods,” and “cones” could be the same cell
type, too. To make things more complicated, “MG-1,”

“MG-resting,” and “MG-activated” could be the Muller glia
at different conditions. Therefore, we decided to keep the
original annotation from the publications and not try to stan-
dardize the cell-type annotation.

One potential problem for the reference-based methods is
that the methods rely on the quality of reference datasets and
the query dataset. The low quality of the query dataset or in-
correct annotation in the reference datasets will cause false
predictions. We will keep updating the database when new
datasets become available and believe that adding new data-
sets will make CellAnn even more powerful.
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