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Abstract

Gap junctions (GJs) are aqueous channels that allow cells to communicate via physiological 

signals directly. The role of gap junctional connectivity in determining single-cell functions has 

long been recognized. However, GJs have another important role: the regulation of large-scale 

anatomical pattern. GJs are not only versatile computational elements that allow cells to control 

which small molecule signals they receive and emit, but also establish connectivity patterns within 

large groups of cells. By dynamically regulating the topology of bioelectric networks in vivo, 

GJs underlie the ability of many tissues to implement complex morphogenesis. Here, a review 

of recent data on patterning roles of GJs in growth of the zebrafish fin, the establishment of left-

right patterning, the developmental dysregulation known as cancer, and the control of large-scale 

head-tail polarity, and head shape in planarian regeneration has been reported. A perspective in 

which GJs are not only molecular features functioning in single cells, but also enable global 

neural-like dynamics in non-neural somatic tissues has been proposed. This view suggests a rich 

program of future work which capitalizes on the rapid advances in the biophysics of GJs to 

exploit GJ-mediated global dynamics for applications in birth defects, regenerative medicine, and 

morphogenetic bioengineering.
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INTRODUCTION

Gap junctions (GJs), formed by connexin or innexins proteins, form aqueous channels 

directly connecting the internal cytoplasmic space of nearby cells for the transfer of ions and 

other small molecules (Phelan, 2005; Scemes et al., 2007). Along with ion channels, they are 

a key component by which most types of somatic cells organize into physiological networks 

(Fig. 1). The molecular biology and physiology of GJs, as well as their many roles in the 

nervous system, have recently been expertly reviewed (Sohl and Willecke, 2004; Steyn-Ross 

et al., 2007; Pereda et al., 2013; Baker and Macagno, 2014). Here, we focus not on the 
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cellular-level signaling mechanics of GJs, but on their role in determining large-scale pattern 

formation. Tissue and organ patterning includes embryonic morphogenesis, regeneration of 

limbs and other organs in a range of model species, and continuous tumor suppression 

in adult metazoan organisms. Coordinating cell behaviors in vivo toward the creation and 

repair of complex structures depends on a tight coordination among cells. This coordination 

is implemented by a rich system of information-bearing signals that propagate throughout 

the body. Because GJs enable small molecule physiological signals (e.g., ion flow) to pass 

among cells, they serve as an important modality for cell–cell communication (Trosko, 

2007). In this overview, we focus on intercellular channel functions of GJs, and do not 

discuss permeability-independent functions of connexin proteins (Dang et al., 2003, 2006; 

Vinken et al., 2012; Clasadonte and Haydon, 2014) or hemichannels.

GJ-mediated intercellular signaling functions in parallel with the better-understood secreted 

gradients of extracellular signaling molecules (Ben-Zvi et al., 2011; Rogers and Schier, 

2011; Hironaka and Morishita, 2012). GJ channels are restricted to small molecules (unlike 

extracellular signaling, which is often mediated by sizeable proteins). However, GJ signaling 

networks are extremely versatile because they allow cells to control coupling at the 

transcriptional, translational, and physiological levels (Solan and Lampe, 2014). GJs can 

be gated by a range of regulatory inputs (phosphorylation, voltage, pH, etc.) (Peracchia, 

2004) and depending on their specific connexin composition, can exercise considerable 

selectivity over permeant molecules (Goldberg et al.,2004). Because of this, GJ-coupled cell 

networks can set up very rich patterns of connectivity in vivo—potentially, with far greater 

complexity than is possible for diffusing chemicals. Thus, it is no surprise that now classical 

(Chuang-Tseng et al., 1982; Weir and Lo, 1982; Warner, 1985; Guthrie and Gilula, 1989; 

Lo, 1996) and recent data have implicated gap junctional communication (GJC) in a range 

of patterning events in both vertebrate and invertebrate model systems (Sutor and Hagerty, 

2005; Elias and Kriegstein, 2008; Ahir and Pratten, 2014; Irion et al., 2014; Merrifield and 

Laird, 2015).

GJs are a powerful mechanism for coordinating long-range signaling during pattern 

regulation, which is only beginning to be understood. Cells often upregulate gap junctional 

communication when they need to share ions with their neighbors (Aslanidi et al., 1991; 

Larre et al., 2006). Thus, GJC is a perfect conduit for information flow during development, 

which depends on the ability of cells and tissues to communicate. The converse, however, is 

also paramount—embryos contain independent compartments (Rela and Szczupak, 2004; 

Sutor and Hagerty, 2005) that must remain isolated for proper morphology to result. 

Mutations in GJ genes are now known to be involved in a wide spectrum of patterning 

defects (Table 1); however, the true impact of GJC will be realized not only through 

ever finer-resolution analysis of the protein dynamics in single cells, but also through an 

appreciation of their contribution to network dynamics. Here, we review several non-neural 

contexts in which GJ-mediated signals instruct growth and form. We also present a novel 

perspective on this field, proposing that GJs may underlie information processing during 

somatic remodeling that is very similar to the role of these electrical synapses (Bennett, 

1997) in implementing plasticity and memory in the brain. This hypothesis sheds new 

light on emerging data in this exciting field and suggests a research program focused on 

understanding the global dynamics of GJ-mediated physiological networks.
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GJS IN CELLULAR REGULATION

The first patterning tasks required of any animal is embryogenesis—the remarkable self-

assembly of a complex body from the descendants of a single egg cell. This process 

necessarily involves partitioning the embryo into diverse components with different fates 

and functions.

Endogenous Expression and GJC-Dependent Domains

Embryos of frog, fruit fly, fish, and nematodes have long been known to possess 

compartments—discrete regions of GJ-coupled cells with distinct selectivity of permeable 

signals (Lo and Gilula, 1979; Weir and Lo, 1982, 1984; Blennerhassett and Caveney, 1984; 

Pitts et al., 1988; Bozhkova, 1998). For example, the wing imaginal disk in Drosophila 
is subdivided into a number of communication compartments during differentiation (Weir 

and Lo, 1984). Such developmental domains are cell groups with distinct physiological 

properties, which thus could underlie the diversification and patterning of different 

embryonic regions. Early mollusk development includes a number of specific GJC patterns 

that functionally determine cell determination (de Laat et al., 1980). Chick limbs exhibit 

a gradient of GJC along the AP axis (Coelho and Kosher, 1991). The highest GJC was 

observed in cells adjacent to the zone of polarizing activity, while no GJC was present at 

the opposite end of the limb bud. Mesenchymal tissues in the middle of the limb had an 

intermediate level of dye coupling and it has been hypothesized that polarizing region cells 

communicate to anterior mesenchyme cells via GJs (Allen et al., 1990).

The potential complexity of GJ-based regionalization is augmented by the fact that GJs 

composed of different connexin subunits provide a degree of functional compensation (Vink 

et al., 2004), but also confer the ability to sense different signals upon cells that express them 

(Elfgang et al., 1995). For example, homomeric Cx32 channels are permeable to both cAMP 

and cGMP, whereas heteromeric Cx32/Cx26 channels retain permeability to cAMP but 

prevent transfer of cGMP (Bevans et al., 1998). Indeed, substitution studies in tissues such 

as lens showed that distinct connexins play different roles in development, forming signaling 

conduits that are not interchangeable (White, 2002). In addition to molecular selectivity, GJs 

also enable rectification and unidirectional transfer (Robinson et al., 1993; Bruzzone and 

Giaume, 1999; Zhang et al., 2003; Fan et al., 2005; Palacios-Prado et al., 2014), enabling 

embryogenesis to take advantage of a very rich and dynamic set of signaling paths. For 

example, unidirectional junctions are thought to form between Cx32 and Cx43 (Robinson et 

al., 1993; Xin and Bloomfield, 1997), potentially allowing an embryo to establish one-way 

signaling paths.

GJC and Stem Cells

Pattern formation is the result of a tight spatiotemporal regulation of cell proliferation, 

differentiation, migration, and programmed cell death. Recent data have shown that GJ-

mediated signaling is a powerful regulator of these properties, especially in stem cells 

(Oviedo and Levin, 2007; Wong et al., 2008). GJs are involved in regulating multipotency 

(Dyce et al., 2014), differentiation (Bani-Yaghoub et al., 1999; Zhang et al., 2002; Araya 

et al., 2003; Gu et al., 2003b; Hirschi et al., 2003; Araya et al., 2005; Li et al., 2015), 

Mathews and Levin Page 3

Dev Neurobiol. Author manuscript; available in PMC 2023 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



self-renewal (Hitomi et al., 2015), proliferation (Paraguassu-Braga et al., 2003; Pearson et 

al., 2005; Starich et al., 2014), and motility (Huang et al., 1998a; Xu et al., 2001; Zahler 

et al., 2003; Marins et al., 2009; Kotini and Mayor, 2015). Neural stem cells exhibit a 

unique signature based on GJC and ion transporters, and GJC based on Cx43 and Cx45 

is essential for their survival and proliferation (Cai et al., 2004). For example, the GJ 

protein Zero Population Growth (zpg) is required for germ cell differentiation in Drosophila 

ovary. In the absence of ZPG, the stem cell daughter destined to differentiate instead dies 

(Gilboa et al., 2003). Germ line stem cells differentiate upon losing contact with their 

niche, which likely involves GJC; as an example, it has been proposed that GJ-mediated 

cAMP signaling between blastomeres and somatic cells results in changes in somatic cell 

gene expression (Burnside and Collas, 2002). Many instances of GJC-dependent regulation 

is bidirectional, with several cell types exchanging instructive information, such as occurs 

in the communication between stem cells and their neighbors in spermatogenesis during 

germline differentiation (Smendziuk et al., 2015).

Pigmentation Control Networks

One of the exciting recent developments is the elegant merging of genetic evidence for GJC 

roles with a mathematical analysis of the resulting pattern formation that has taken place in 

the context of zebrafish pigment patterning. In 1953 Alan Turing wrote an article entitled 

“The chemical basis of morphogenesis.” In it, Turing describes a mathematical analysis of 

reaction-diffusion systems that could account for the formation of stable periodic patterns 

in organisms. His system consisted of two substances with differing diffusion rates. One 

of those unknown compounds was an activator that could enhance its own formation and 

that of the other unknown compound, the inhibitor. The inhibitor not only was capable of 

inhibiting the formation of the activator, but it also possessed the faster diffusion rate of the 

two (Turing, 1953). The model predicted self-organization of spatial patterns, which would 

change as the size of the organism changed, but the chemical identity of the morphogens 

was unknown (Schiffmann, 2005). Confirmation came in 1995 when Kondo and Asai found 

that pigmentation patterns on angelfish changed as the fish grew, and showed a traveling 

wave that behaved similar to the computer simulations of Turing’s reaction-diffusion system 

(Kondo and Asai, 1995). In order to elucidate the molecules that played the role of the 

activator and inhibitor, research began to focus on zebrafish pigmentation patterns due to the 

increasing amount of molecular tools available for experimentation in that model organism 

(Asai et al., 1999; Kondo, 2002; Iwashita et al., 2006; Watanabe et al., 2006; Yamaguchi et 

al., 2007; Watanabe and Kondo, 2014).

It was found that the zebrafish leopard mutation, which confers spots instead of the typical 

stripes, gives rise to distinct pigmentation changes that suggested a reaction-diffusion wave 

as the mechanism controlling pigment pattern (Asai et al., 1999). Interestingly, it was then 

discovered that the leopard mutation is in connexin41.8 (Watanabe et al., 2006), suggesting 

that in this case of pigment system morphogenesis, the relevant signaling molecules may 

be moving through GJs. The zebrafish mutant, jaguar, also showed changes in pigmentation 

pattern. This mutant had irregular spacing of its stripes that was caused by a mutation in the 

gene for the inward rectifying potassium channel 7.1 (Kir7.1) (Iwashita et al., 2006). Since 

Kir7.1 is responsible for maintaining transmembrane voltage potential and is required in the 
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black pigment cells (melanophores), experiments were done to determine how membrane 

potential may be involved in pigment patterning changes. These experiments found that 

melanophore membrane potential was more depolarized in the jaguar mutants and that this 

interfered with the transient depolarization signal conferred by contact with xanothopores, 

the yellow pigment cells. Loss of this transient signal resulted in melanophores that stayed in 

close contact with xanothopores, rather than moving away from each other as was the case 

in the wildtype (Inaba et al., 2012).

Further research by Kondo et al. showed that interactions between the two main pigment 

cells, xanothophores and melanophores, also involved Delta/Notch signals. These signals 

were activated in the cells by long processes that connect the different chromatophores. 

The xanothophore processes is short and presents the Delta ligand that binds to the 

Notch receptor on the membrane of the melanophore and promotes its survival. If the 

melanophore is near a xanothophore then it can bind to the Delta ligand and survive. This 

relationship would satisfy the requirement for an activator with a short range. In addition, 

the melanophores have a long process that reach out to xanothophores, but after a certain 

distance they can no longer reach, resulting in long-range inactivation (Hamada et al., 2014; 

Watanabe and Kondo, 2014). However, it is possible that Delta/Notch works in conjunction 

with a molecule that still depends on diffusion through GJs (Hamada et al., 2014). Indeed, 

recent work on mutated Connexins 41.8 and 39.4 show that heterotypic GJs do play a part 

in zebrafish pigmentation patterning. These experiments also show that a third class of 

chromatophore called an iridophore is involved in patterning on the trunk of the animal but 

not on the tail, and that this relationship is possibly mediated by molecules that are diffused 

by GJs (Bullara and Decker, 2015; Irion et al., 2014; Kondo, 2002; Takagi and Kaneko, 

2005). Together, these studies form an elegant body of work on the relationship of voltage 

and gap junctional signaling in pattern regulation.

The theoretical discussion as to the identity of these diffusible molecules has suggested the 

GJC-permeable molecules cAMP and ATP may be the relevant Turing couple. Whereby 

cAMP is the short range activator and ATP a long range inhibitor (Schiffmann, 1991). 

However, the small molecule serotonin may also play a role in the reaction-diffusion model 

of zebrafish coloring pattern formation, as it does in other examples of GJC-regulated 

patterning (Blackiston et al., 2015; Fukumoto et al., 2005b; Gairhe et al., 2012). Recently it 

was found that the zebrafish leopard mutation was correlated with behavioral abnormalities 

that pointed to lowered levels of serotonin transport and that treatments with serotonergic 

drugs resulted in altered pigmentation patterns (Maximino et al., 2013; Stewart et al., 2013).

GJC and Nerve Sprouting Control

In addition to development, GJs are also important for physiological maintenance (Maeda 

and Tsukihara, 2011), regeneration (Umino and Saito, 2002; Hoptak-Solga et al., 2008), and 

remodeling. A key cell type involved in these processes is the neuron. Axonal processes 

must interact with surrounding tissues and make decisions about direction and magnitude 

of sprouting, in order to correctly pattern and maintain innervation to target organs. The 

signaling underlying this, and the involvement of GJs, was recently revealed by using a 

transplantation assay in which eye primordial from a fluorescently labeled donor embryo 
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were transplanted onto the flank of a host (Vandenberg et al., 2014). Normally, the ectopic 

eye produced one major nerve bundle, which extended to the host’s spinal cord. However, 

when the host cells were depolarized, the eye instead generated a huge overproliferation of 

nerve which spread throughout the tissue. Testing a number of transduction mechanisms for 

this effect on nerve growth, the authors showed that inhibiting GJC in the host abolished the 

ability of depolarization to cause hyperinnervation from the implanted organ. The authors 

showed that the effect only applied to ectopic innervation (not the host’s native nerve 

pattern), and that serotonergic signaling was both required for the hyperinnervation and 

could rescue the blockade of GJC. A model was advanced in which ectopic nerve, searching 

for guidance cues, was making proliferation and extension decisions based on serotonin 

molecules arriving via GJs. As will be seen in the discussion of left-right patterning below, 

the movement of serotonin via GJs, under an electrophoretic force, is a conserved theme 

among a number of patterning systems.

GJs in Cancer

Another example in which GJs play an important role is the occasional defection of cells 

away from the normal anatomical plan toward carcinogenesis (Omori et al., 1998; Mesnil et 

al., 2005; Trosko, 2005) and subsequent metastasis (Defamie et al., 2014). In a sense, cancer 

is the derangement of developmental patterning—a disease of geometry (Rubin, 1985; 

Maffini et al., 2005; Soto and Sonnenschein, 2011; Tarin, 2012; Chernet and Levin, 2013a). 

Cancer cells abandon correct morphogenesis in favor of unrestrained growth reminiscent 

of unicellular organisms prior to the appearance of multicellularity and to the GJ-mediated 

coupling of cells to other cells within a larger somatic context (Loch-Caruso and Trosko, 

1985). Reduction of GJ-dependent communication with other somatic tissues is an important 

early step in the process in which cells begin to treat the rest of the body as an “external 

environment” within which they must survive by any means necessary.

Studies have long noticed that lowered GJC was associated with induction of tumorigenesis 

(Potter, 1980; Yamasaki et al., 1984; Loch-Caruso and Trosko, 1985); normal tissue 

generally possesses a much higher degree of GJC than tumor tissue, and a loss of GJC 

accompanies early steps in neoplastic transformation (Pitts et al., 1988). A neoplastic 

phenotype can be induced in cell culture by ectopic closing of GJs using pharmacological 

agents or dominant-negative constructs (Omori and Yamasaki, 1998). Most interestingly, 

neoplastic characteristics can be suppressed by ectopic induction of GJC in tumor tissue 

(Mehta et al., 1991; Rose et al., 1993; Hellmann et al., 1999). Connexin32-deficient mice 

have a 25-fold increased incidence of spontaneous liver tumors (Temme et al., 1997), and 

Connexin32 is also an anti-invasive agent in renal cell carcinoma (Yano et al., 2006). Thus, 

gap junctional isolation is known to be a tumor-promoting agent (Loewenstein and Kanno, 

1966; Loewenstein, 1969, 1979, 1980; Rose et al., 1993; Yamasaki et al., 1995; Leithe et al., 

2006; Mesnil et al., 2005). This is consistent with a view of GJs as mediating morphogenetic 

cues that could be keeping cells under differentiation and growth limitation consistent with 

adult morphostasis. It should be noted, however, that a few studies have indicated the 

opposite (Stoletov et al., 2013), for example the finding that Connexins 26 and 43 mediate 

metastasis in melanoma and breast cancer (Stoletov et al., 2013), and a role for GJs in 

promoting metastasis by transfer of cGAMP (Chen et al., 2016).
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The fact that some connexins are pro-, and others anti-oncogenic, or even can exert both 

types of effects in different contexts (El-Saghir et al., 2011; Sin et al., 2012), is less puzzling 

if GJs are considered not as typical proteins that induce or suppress a particular phenotype, 

but rather as conduits for cell–cell communication. The outcome is expected to be a function 

of what signals arrive via the GJs (Mendoza-Naranjo et al., 2007; Lim et al., 2011), and are 

thus hard to predict from knowledge of the connexin type, because it’s partially dependent 

on the neighboring cells, and physiological parameters that dictate the open/closed state 

of the GJs and what permeant molecule might be traversing it. This has implications for 

therapies targeting GJs in cancer and other diseases (Kandouz and Batist, 2010; Grek et al., 

2014; Cogliati et al., 2016), because it shifts the focus onto the signaling molecules and their 

transfer profiles, in addition to targeting connexin gene products themselves.

In Xenopus, cells expressing KRAS mutations make tumor structures; the incidence of 

tumors can be significantly reduced, despite the strong presence of the oncogenic mutation, 

by hyperpolarizing cells in vivo by misexpression of hyperpolarizing ion channels (Chernet 

and Levin, 2013b). Remarkably, however, this also works if cells at the opposite end of the 

animal are targeted (Chernet and Levin, 2014). How can such long-range communication 

of physiological state occur? Functional experiments implicated the movement of serotonin 

and butyrate in bioelectric control of tumorigenesis (Blackiston et al., 2011; Lobikin et al., 

2012; Chernet and Levin, 2014), and a recent study looked at the role of GJs in this process. 

Chernet et al. showed that loss of GJC taking place within nascent tumor sites, within 

remote host tissues, or between the host and the prospective tumor region significantly 

lowered the incidence of tumorigenesis, with the most pronounced suppression taking place 

when GJC inhibition occurred far from the oncogene-expressing cells (Chernet et al., 2015). 

In contrast, overexpression of wild-type Connexin26 increased tumor incidence. The authors 

presented a mechanistic model, based on an oscillating signal that propagates through GJs 

and controls proliferation, that quantitatively explained these puzzling data (and made an 

unexpected, and subsequently validated, prediction about the role of the left–right axis in 

this process).

From Single Cell Properties to Multiscale Pattern

Active GJ communication allows cells to make sophisticated decisions comparing relative 

levels of specific compounds between themselves and their neighbors (Moreno, 2008), and 

to integrate information across anatomical distances. Thus, they underlie the transmission 

of physiological patterning signals (Levin and Mercola, 1998b; Levin and Mercola, 1999; 

Warner, 1999; Levin and Mercola, 2000; Lecanda et al., 2000; Pizard et al., 2005; Levin, 

2007; Jin et al., 2008; Schiffmann, 2008; Dobrowolski et al., 2009; Oviedo et al., 2010). 

Cells utilize GJs to communicate directly with their neighbors, or with more distant cells 

via tunneling nanotubes—extended cell processes with GJs at their end (Wang et al., 2010; 

Wittig et al., 2012; Antanaviciute et al., 2014; Sherer, 2013; Rimkute et al., 2016).

Some of the earliest data implicating GJs in development came from studies with functional 

antibodies. Introduction of antibodies raised to specific portions of connexin proteins in 

mouse embryos resulted in developmental defects (Becker et al., 1995). In Xenopus, 

microinjection of antibodies has been reported to disrupt axial patterning (Warner et 
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al., 1984); the treated embryos contained differentiated mesodermal derivatives such as 

notochord and muscle tissue and Warner et al. argued that GJC has a role in pattern 

formation per se, rather than in the induction of specific cell types.

In invertebrate systems, Caenorhabditis elegans and Drosophila have been paramount in 

revealing GJC roles via genetic approaches. Numerous defects were observed in a C. elegans 
innexin-3 mutant, including rupture of hypodermis, failure of elongation, and failure of 

pharynx to attach to anterior (Starich et al., 2003). Likewise, epithelial organization and 

polarity of the embryonic epidermis is dependent on heteromerization of innexins 2 and 3 in 

Drosophila (Bauer et al., 2004; Lehmann et al., 2006). Establishment of the proventriculus 

requires Innexin-2, which is a target of Wingless signaling (Bauer et al., 2001, 2002). This 

work is particularly interesting because it links GJC to a canonical signaling pathway. Wnt 

signaling is likewise upstream of GJC patterns in vertebrates (Olson et al., 1991; Olson and 

Moon, 1992; van der Heyden et al., 1998; Ai et al., 2000), suggesting possible conservation 

of signaling modules involving GJC. Interestingly, overexpression of Cx43 provides a partial 

recovery of the formation of the cerebellum in Wnt-1 knock-out mice (Melloy et al., 2005), 

strengthening the link to the Wnt pathway and suggesting that establishing ectopic domains 

of cell:cell communication may be a useful modality to control certain patterning defects. 

Gene targeting studies of connexins in mice have provided evidence that GJs are important 

for cardiac septation (Kirchhoff et al., 2000) and morphogenesis of the outflow tract (Gu 

et al., 2003a) and endocardial cushions (Kumai et al., 2000). Many of these effects appear 

mediated by effects on the behavior of neural crest (Ewart et al., 1997; Lo et al., 1997; 

Huang et al., 1998a,b; Sullivan et al., 1998; Lo et al., 1999; Waldo et al., 1999; Waller et al., 

2000; Xu et al., 2001; Li et al., 2002).

One major contribution of GJs to large-scale patterning is by sculpting signaling via 

developmental bioelectricity—spatial gradients of distinct resting potential across tissues 

which instructs pattern regulation in embryogenesis and regeneration (Bates, 2015; Levin 

and Stevenson, 2012; Levin, 2012a,a,b). GJs both determine cellular voltage (by allowing 

current from nearby cells) and in turn are regulated by resting potential (Peracchia, 2004). 

They, thus, implement physiological feedback loops with complex behavior, akin and 

parallel to the bidirectional coupling between genes and the transcription factors they 

encode. These regulatory layers function in parallel (Fig. 2), each supporting unique 

dynamics that instruct pattern regulation and physiology. The brain and non-neural tissues 

both exploit GJ networks for processing information; indeed, there are remarkable parallels 

between the way bioelectric signaling, gene regulatory networks, and signals from the 

environment integrate within and outside the CNS, to generate instructive cues (Fig. 3). We 

next discuss a number of specific recent examples.

GAP JUNCTIONAL COMMUNICATION IN GROWTH AND PATTERNING OF 

THE ZEBRAFISH FIN

Zebrafish fin patterning is an excellent model of joint formation due to the ability of the 

fin to regenerate once amputated, and the continuation of fin growth in adult animals. The 

caudal fin is made up of 16–18 fin rays, which are made up of multiple bone segments 
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separated by multiple joints (Sims et al., 2009). GJs have been shown to regulate the 

morphology of bone segments and joints in the zebrafish fins. The fin length mutant short 
fin (sof) was found to be caused by mutations in the expression of Connexin43 (Cx43) 

protein (Iovine et al., 2005). Analysis showed that reduced GJC caused by lower expression 

of Cx43 or missense alleles reduces the total number of dividing cells that form the fin ray 

segments, resulting in shorter segments. However, Cx43 could also be allowing the diffusion 

of signaling molecules from proximal regions to distal regions acting as a biological ruler 

that could inform the formation of new segments that extend the length of the fin (Hoptak-

Solga et al., 2007). The new bone segments in the fin are dependent on new joint formation 

that occurs in a proximal to distal manner. Cx43 was found to take part in joint formation 

by first determining the location of the future joint in the mesenchymal compartment. Later, 

the Cx43 proteins polarize themselves toward the medial surface of the newly differentiating 

cells that will form the new joint. Lowered levels of Cx43 resulted in premature joint 

formation and small fins, while increased expression resulted in joint failure and large fins 

(Hoptak-Solga et al., 2007).

Recently, microarray investigation into the mechanism by which Cx43 exerts its effect on 

fin size found that expression of the gene encoding the signaling molecule Semaphorin3d 

(Sema3d) was perturbed in Cx43 mutants. Semaphorins are involved in the patterning 

of a variety of tissues and organs. The semaphorin receptors Neruopilin2a (Nrp2a) and 

PlexinA3 (PlxnA3), were found to be involved in the changes in cell proliferation and 

joint forming phenotypes associated with Cx43 expression in fin formation, respectively 

(Ton and Iovine, 2012). Cx43 involvement in suppressing joint formation was also found to 

influence the timing of expression of the homeobox gene that encodes the transcription 

factor Even Skipped 1 (Evx1). Overexpression of Cx43 resulted in loss of evx-1 and 

decreased expression resulted in evx-1 expression that was more distal than wildtype and led 

to the premature expression of the genes involved in joint formation (Ton and Iovine, 2013).

The other gene identified in the microarray investigation into downstream effects of changes 

in Cx43 expression, was hyaluronan and “proteoglycan link protein 1a” (hapln1a). Hapln1a 

is a protein that links the carbohydrate polymer, hyaluronic acid (HA) with proteoglycans in 

the extracellular matrix (ECM). This link stabilizes HA creating the right ECM environment 

that works in parallel with the Sema3d pathway for correct fin formation (Govindan 

and Iovine, 2014). Further studies on Cx43 expression in zebrafish and how it affects 

fin formation have found that the gene called “establishment of cohesion1 homolog 2” 

(esco2) is responsible for regulating Cx43 levels. ESCO2 is an acetyltransferase that 

modifies cohesion proteins that are responsible for joining sister chromatids during mitosis. 

Mutations in esco2 cause disruptions in mitosis that increase cell apoptosis and decrease 

cell proliferation. Together, these data reveal elements both upstream and downstream of 

connexin function. However, the perturbation in mitosis caused by the mutant form of esco2 

in humans could not completely explain the phenotype seen in the resulting syndrome. This 

syndrome, called Robert’s syndrome is characterized by craniofacial abnormalities and limb 

malformation that could be a more severe form of oculodentodigital dysplasia (OCDD) that 

arises from mutations in the human Cx43 (Banerji et al., 2016).
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GJS AND LEFT-RIGHT PATTERNING

Establishing Vertebrate Laterality

All vertebrates, and many invertebrates, exhibit a fundamental asymmetry of the bilateral 

bodyplan, with some internal organs (the heart, viscera, and brain) consistently biased 

to one side of the midline (Speder et al., 2007; Vandenberg and Levin, 2009). Early 

discoveries of left- and right-specific transcriptional signaling cascades had suggested 

that each side develops independently (Levin, 1998; Ramsdell and Yost, 1998). However, 

surgical experiments in the chick showed that in the absence of the right side, the left-sided 

(and not directly manipulated) tissue became confused, sometimes failing to turn on left-

sided markers such as Sonic hedgehog and Nodal (Levin and Mercola, 1999). Seeking a 

mechanistic understanding of why distant tissue is required for laterality decisions, gap 

junctional communication was tested as a mechanism to coordinate sidedness decisions 

across the whole early embryo in frog and chick models (Levin and Mercola, 1998b). The 

data showed that either universal blockade of GJs with dominant negative connexins, or 

universal expression of constitutively-open connexins, randomized both the expression of 

laterality marker genes and the sidedness of the internal organs. Targeted misexpression 

experiments in the frog showed that normal asymmetry requires open GJC across the 

embryos’ dorsal side, while lack of GJC is required across the ventral midline. These 

endogenous differences in GJC had been shown to be set up by Wnt pathway signaling as 

part of dorso-ventral axis determination (Olson et al., 1991; Olson and Moon, 1992).

A model was proposed, in which signals traversed the blastoderm in a chiral (left to right) 

manner, propagating through GJs and accumulating on one side of a midline zone of 

junctional isolation (Levin and Nascone, 1997; Levin and Mercola, 1998a). This scheme 

was suggested by the molecular functional data, although LR asymmetric GJ transfer was 

actually present in earlier data examining connectivity among frog blastomeres (Turin and 

Warner, 1980; Guthrie, 1984; Guthrie et al., 1988; Nagajski et al., 1989). Subsequent work 

identified the neurotransmitter serotonin (Fukumoto et al., 2005a,b; Adams et al., 2006; 

Vandenberg et al., 2012) as one left-right morphogen that moves through GJs (long before 

the nervous system appears) to control downstream gene expression via HDAC1-dependent 

chromatin modification (Carneiro et al., 2011) and several proton pumps and potassium 

channels that provide the electrophoretic force for unidirectional accumulation of charged 

morphogens (Levin et al., 2002; Adams et al., 2006; Aw et al., 2008; Morokuma et al., 

2008; Aw et al., 2010). These mechanisms and the role of GJs in left-right axial patterning 

appear to be implemented very similarly in chick and frog, despite quite different early 

embryonic architectures. In chick, the relevant connexin appears to be Cx43, which is also 

important for laterality in zebrafish, where it is required for morphogenesis of the Kupffer’s 

Vesicle (Hatler et al., 2009). Together, these data have also led to quantitative models of the 

distribution of serotonin through long-range GJ paths, and a study of the main system-level 

behaviors of this electrophoretic system (Esser et al., 2006; Zhang and Levin, 2009). A 

number of open questions remain, including possible roles of unidirectional transfer (by 

distinct connexins expressed in neighboring cells).
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Innexin-Based GJs also Pattern the Nematode LR Axis

Interestingly, despite a completely different bodyplan and long evolutionary distance, GJs 

are also involved in LR patterning in the nematode C. elegans. An elegant set of studies 

(Chuang et al., 2007) focused on neural lateralization showed that establishing left-right 

asymmetry in C. elegans olfactory neurons involves Ca++ signaling, tight junctions, and 

communication through GJs. The central nervous system of C. elegans contains two 

bilaterally symmetrical odor sensory neurons (AWC). During late embryogenesis only 

one of these neurons will express the str-2 G-protein coupled olfactory receptor. The 

determination of which neuron is going to express str-2 (AWCON) is stochastic, and the 

remaining neuron acquires the AWCOFF phenotype. Chuang et al. identified nsy-5, a gene 

encoding a member of the innexin/pannexin GJ family of proteins as nsy-5 mutants are 

unable to sense odorants normally processed by AWCON neurons. Reduction of nsy-5 
function resulted in both neurons having an AWCOFF phenotype. NSY-5 can form functional 

hemichannels and provide electrical coupling between cells. Genetic approaches showed 

that nsy-5 has specific site of actions within different neuronal cell bodies. Strikingly, 

nsy-5 can act autonomously to induce the future AWCON neuron based on a feedback 

mechanism between both AWC neurons. Subsequent work showed that calcium levels in 

non-AWC sensory neurons, determined the AWCON bias, demonstrating that a network of 

neurons communicate with AWC via signaling dependent on nsy-5 to determine asymmetric 

expression of the str-2 gene. It was also found that the modulation and propagation of the 

calcium signals was not mediated by serotonin or inositol triphosphate (IP3) (Schumacher 

et al., 2012). It is important to note that NSY-5 mediated connectivity also works in parallel 

with the NSY-4 claudin, which is related to the gamma transmembrane protein subunit of 

voltage-activated calcium channels and genetically down-regulates calcium channels which 

inhibits the calcium signaling pathway in the AWCON cell (VanHoven et al., 2006; Chuang 

et al., 2007). Inhibition of the calcium signaling pathway, calcium-calmodulin-dependent 

kinase II (CaMKII)-MAP kinase, is also achieved by an unknown nsy-5 mechanism and also 

by the mir–71 miRNA that is stabilized by nsy-4 and nsy-5 (Alqadah et al., 2013). Once 

AWC asymmetry is achieved by nsy-5 and nsy-4, maintenance of that asymmetry depends 

on olfactory signaling, transcriptional regulation including the zinc finger transcription 

factor die-1, and TGF-β signaling (Cochella et al., 2014; Hsieh et al., 2014).

The data revealed some striking similarities between how GJs are used in invertebrates to 

their functions in vertebrate development (Levin, 2002). In chick and frog embryos, the left 

and right sides of the embryos communicate with each other to correctly assign left-right 

identity before the onset of asymmetric gene expression. In both Xenopus and C. elegans, 

both over- and under-expression of GJ proteins lead to defects in laterality. The native 

pattern of communication mediated by GJs in both vertebrates and nematodes is between 

the Left and Right sides and involves a zone of junctional isolation (in this case, provided 

by an extracellular matrix layer). Moreover, the experiments by Chuang et al. revealed an 

asymmetry in how the left and right AWCs respond to nsy-5 expression, mirroring the 

differences in gap-junctional permeability that has been described on the left and right sides 

of the early frog embryo (Guthrie et al., 1988). Crucially, the discovery of this intrinsic bias 

in C. elegans shows that as in frog and chick, the communication via GJs does not initiate 

left–right information but functions as an intermediate step of the pathway.
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GAP JUNCTION-MEDIATED SIGNALING IN HEAD PATTERNING

Long-Range Control of Brain Formation

The developing brain must coordinate its growth and morphogenesis. In Xenopus embryos, 

it was recently shown that brain size and patterning is in part regulated by endogenous 

gradients of transmembrane resting potential (Pai et al., 2015a). Experimentally modulating 

resting potential (by expressing hyperpolarizing or depolarizing channels) in neural cells, 

or even in distant (ventral) cells, could control cell proliferation and overall patterning in 

the nascent brain. This effect was mediated by gap junctional communication: blocking 

GJC either genetically or pharmacologically rescued hyperpolarization-triggered brain 

malformations, and prevented ventral hyperpolarization from inducing proliferative effects 

in the brain. The authors suggest that GJC is involved in coordinating growth across long 

distances in the embryo, allowing the developing brain to match its proliferative profile to 

the rest of the body.

Moreover, induction of specific voltage gradients via ion channel misexpression was shown 

to induce ectopic brain tissue in posterior regions (Pai et al., 2015a). Interestingly, brain 

markers are also induced in neighbors of cells that misexpress the brain-inducing channels. 

However, with time, these neighboring cells turn off the ectopic brain markers, leaving only 

the cells whose Vmem is continuously set to a brain-specific pattern to be able maintain 

brain fate. The authors speculate that the brain-inducing bioelectric state is spread non-cell-

autonomously via GJs, but with progressive restriction of GJ communication as development 

proceeds and individual tissue compartments refine, cells that do not drive abnormal resting 

potentials with their own channels go back to their normal fates. This normalization also 

works in the opposite direction, often enabling neighbors to suppress aberrant functions in 

cells with unique resting potentials that can otherwise induce foci of ectopic eyes (Pai et al., 

2012) or tumors (Chernet and Levin, 2013b).

Species-Specific Head Morphology During Planarian Regeneration

Planarian flatworms are complex creatures, with a true brain, bilateral symmetry, a complex 

behavioral repertoire, and many body organs (Sarnat and Netsky, 1985; Gentile et al., 

2011). They also have the remarkable ability to regenerate completely from partial body 

fragments (Reddien and Sanchez Alvarado, 2004; Salo et al., 2009; Lobo et al., 2012). Their 

capacity for self-repair serves as a paradigm case of dynamic morphostasis and continuous 

remodeling toward a specific target morphology. While many details of molecular pathways 

required for correct stem cell differentiation and regenerative capacity are becoming clear 

(Handberg-Thorsager et al., 2008; Aboobaker, 2011), the mechanisms that determine the 

correct shape of the head, and cease growth and remodeling when that shape is achieved, are 

almost completely unknown (Lobo et al., 2012, 2014). Examining physiological inputs into 

this process, we recently asked two questions: (1) could modification of overall bioelectric 

network connectivity give rise to coherent patterning changes during regeneration, and 

(2) is it possible to obtain evolutionarily relevant patterns. The results suggested that 

shifting among different regions of planarian morphospace (Stone, 1997) is possible by 

physiological perturbation alone (Emmons-Bell et al., 2015).
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When GJC was systemically disrupted in fragments of Girardia dorotocephala (GD), it 
induced the expected finer-grain Vmem regionalization among the endogenous bioelectric 

network (since GJC can normally act to establish isopotential cell fields). Remarkably, the 

resulting worms regenerated heads with an altered shape morphology that quantitatively 

resembles that of multiple other flatworm species (Emmons-Bell et al., 2015). This 

resemblance was more than skin deep: not only was the external shape of the head converted 

to the shapes of distant planarian relatives, but they also manifested different species-specific 

brain morphologies and stem cell distributions. The exact same treatment of a cohort of 

GD worms produced four types of worm heads in characteristic frequencies (proportional to 

their evolutionary distance from GD). It is not yet known whether this stochastic property is 

a consequence of the still relatively crude method of network topology perturbation (soaking 

in GJ blocker such as octanol), or whether it is an intrinsic aspect of the dynamics of this 

system. The ability to induce a different species’ head shape in a genetically wild-type worm 

suggests that the bioelectric network is a profound regulator of species-specific morphology. 

It remains to be seen whether changes in the dynamics of bioelectrical circuits have been 

widely exploited by evolution to explore variations of anatomical structure.

How to infer the large-scale outcomes (which kind of head, how many heads, etc.) from 

cell-level properties and signals? This question has been addressed for gene regulatory 

networks using dynamical state spaces built to describe transcriptional circuits have been 

used to map complex system behavior (Huang, 2011; Huang et al., 2009; Halley et al., 

2012). More directly relevant to physiological networks, similar approaches have been 

used to understand global behaviors of electrical activity in neural networks during decision-

making. Importantly, however, in planarian regeneration, as in the brain, circuit dynamics 

are not directly revealed from ion channel expression data but are complex and nonlinear. 

Such dynamics must be modeled quantitatively to understand their emergent properties 

(Cervera et al., 2015; Law and Levin, 2015). One possibility is that different anatomical 

outcomes correspond to specific attractors in the dynamical state space of the bioelectric 

network formed by the planarian body; in this paradigm, bioelectric perturbations can shift 

the system from a default (genome-specified) attractor to another nearby one (Fig. 4). We 

are currently working to computationally model this process, to quantitatively map stable 

attractors to underlying physiological details, and thus gain more control over the resulting 

shapes.

GAP JUNCTIONAL SIGNALING UNDERLIES ANATOMICAL PATTERN 

MEMORY

In order for a bisected worm to regenerate as two normal worms, the cells at the posterior-

facing edge of the wound must make a tail, while those at the anterior-facing edge must 

make a head. This simple fact reveals that the adult stem cells which implement regeneration 

in each blastema are not locally controlled: those cells were direct neighbors until the scalpel 

separated them, and thus have identical positional information, and yet they form completely 

different structures. Local position is not sufficient for blastema cells to know what shape to 

build; rather, they must communicate with the remaining tissue to decide what anatomical 

structures must be formed. Searching for the mechanism of this long-range coordination, 
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(Nogi and Levin, 2005) found that inhibition of GJC in the species Dugesia japonica for just 

2 days resulted in subsequent regeneration of worm fragments forming heads at both ends 

(Nogi and Levin, 2005; Oviedo et al., 2010). These bipolar forms were viable, and could 

also be phenocopied by RNAi targeting 3 Innexins. By itself, this supported a role for GJ 

communication in anterior-posterior patterning in this species of flatworm. However, the real 

surprise came when the 2-headed worms were analyzed long after the GJ blocker (octanol) 

was gone (as shown by HPLC).

Weeks later, when these 2-headed animals had their heads and tails amputated again (in 

plain water, with no further perturbation), the same 2-headed phenotype resulted (Fig. 5), 

and this was repeated upon subsequent rounds of amputations (Oviedo et al., 2010). These 

data showed that a transient perturbation of physiological cell:cell communication via GJs 

could stably change the pattern to which the animal regenerates upon damage—its target 

morphology. This represents a clear example of physiological change permanently rewriting 

major anatomical features, despite a normal genome—a novel aspect of epigenetics in the 

original sense of the word (Noble, 2015). While chromatin modification processes may be 

involved, they are not a sufficient explanation for the effect, since the ectopic heads (tissue 

which might be suggested to have been epigenetically reprogrammed into a head state from 

its original tail identity) are discarded at each generation of cutting. What remains is a 

normal gut fragment, which has been reprogrammed to form 2 heads, not 1, upon future 

regeneration; the information about basic anatomical polarity and body organization must be 

stored in a distributed form throughout the animal.

GJS AS ELECTRICAL SYNAPSES IN BIOELECTRIC NETWORKS: 

FUNCTIONAL IMPLICATIONS

Synapses among cells are a key component of multi-cellularity, enabling cell–cell 

communication and information processing necessary for complex patterning and adaptive 

(regulative) physiology (Baluska and Mancuso, 2014). GJs are an especially important type 

of synapse because of the ability to regulate current based on voltage—this makes them 

similar to transistors or memristors (Jo et al., 2010; Pershin and Di Ventra, 2010), which 

are a basic unit of computation or logic gates. The central nervous system utilizes both 

chemical and electrical synaptic transmission. Chemical synapses use extracellular bursts 

of neurotransmitter release to relay digital information between adjacent cells. Electrical 

synapses use GJs to directly connect the interiors of the cells to one another, which results 

in a local and long-range relay of analog information through small molecules or changes 

in resting membrane potential (Pereda, 2014). These electrical synapses have been found to 

be particularly important in the imprinting of emotional memories, such as fear conditioning 

(Bissiere et al., 2011).

The main connexin in the mammalian brain is Connexin36, but there appear to be other 

connexins involved as well (Baker and Macagno, 2014). The regulation of connexin 

expression and the post-translational gating of the channels affects the strength of electrical 

synapses as does the nature of the connection formed by distinct connexin hemichannels. 

GJs that are formed by heterotypic channels comprised of different connexins have different 
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conductivities than homotypic channels comprised of identical connexins (Palacios-Prado 

et al., 2014). Electrical synapses are bidirectional, but not necessarily equally conductive 

in both directions (Marder, 2009; Palacios-Prado, 2009). They are also not dependent on 

action potentials; therefore they are capable of sensing the simultaneous sub-threshold 

depolarizations of a population of connected cells. In neurons, this detection can result 

in synchronous firing or asynchronous firing due to changes in neuronal thresholds and 

frequency of firing (Saraga et al., 2006; Gutierrez and Marder, 2013). The synaptic strength 

of a neuron can be determined by these thresholds and is modulated by the “coupling 

potential” that is imparted on the neurons by the GJ conductance but also by the capacitance 

and resistance of the connected neurons (Pereda et al., 2013). One of the most important 

functional features implemented by these versatile electrical gating elements is that of 

plasticity: history-dependent conductive processes.

Plasticity of electrical synapses occurs when the strength of the electrical synapse is 

changed by any one of a number factors related to prior electrical activity (Postma et al., 

2011). Neighboring inhibitory chemical synapses can change the coupling potential between 

cells by shunting away excitatory currents (O’Brien, 2014). Ion channel expression and 

activation in neurons can change the resistance of connected cells (Curti and Pereda, 2004). 

Neurotransmitters can also change the conductivity of the GJs themselves (Piccolino and 

Neyton, 1984). Dopamine is able to increase cAMP, activating cAMP-dependent protein 

kinase A (PKA) that phosphorylates sites on Cx36 and decreases its conductance (Urschel 

et al., 2006). Other neurotransmitters including nitric oxide, histamine, and noradrenaline 

also have a regulatory effect on GJ conductance (Hatton and Yang, 1996; Rörig and 

Sutor, 1996; Zsiros and Maccaferri, 2008). Glutamate from local glutamatergic synapses 

has a potentiating role on electrical synapses by increasing the availability of calcium that 

activates CaMKII, which then phosphorylates sites on Cx36 that are both unique to and 

the same as PKA (Alev et al., 2008). This binding further affects the plasticity of the 

GJ conductivity, usually resulting in an increase of coupling (Pereda et al., 2013). In this 

way, memory and computational circuits can be formed as physiological state changes alter 

GJ-dependent connectivity shaping subsequent intercellular signaling dynamics, resulting 

in feedback loops that can stabilize transient bioelectric states into stable cascades of 

downstream signaling pathways.

An important source of neuronal activity modulation in the brain is the astrocyte. 

These are specialized cells that support neuronal metabolism and housekeeping, provide 

a structural framework, and are capable of releasing a variety of signaling molecules 

called gliotransmitters including glutamate, D-serine, and ATP to affect neuronal spiking 

thresholds (Hamilton and Attwell, 2010). Astrocytes have many processes and each one 

can connect to a large number of neurons. Although astrocytes do not form GJs with 

neurons, they do form GJs between themselves. These GJs allow the passage of calcium 

waves that are induced in response to patterns of neuronal activity, which are conveyed 

to astrocytes via glutamate (Wade et al., 2011). The propagation of these calcium waves 

through GJs is important for the coordination of neuronal groups that are not directly linked 

to one another, as these waves are capable of influencing any neuron that is coupled to 

the astrocytic network through which it is propagating (Pereira and Furlan, 2010). The 

coordination of information processing in astrocytes via GJ network plasticity is thought 
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to underlie important aspects of cognitive information-processing in the brain (Verwey and 

Edwards, 2010; Stehberg et al., 2012). Since many of the same mechanisms (bioelectric 

signaling, calcium waves, cAMP, etc.) occur in numerous other somatic cell types, it is 

possible that some of the patterning plasticity observed during regulative development 

and regeneration could be implemented by brain-like circuits of GJs that stabilize altered 

downstream signaling events as a function of prior physiological state.

CONCLUSION

What are the GJ-Permeable Signals?

What sorts of signals endogenously traverse GJs during patterning? In general, a variety of 

small molecules and metabolites are thought to permeate GJs, including cAMP (Burnside 

and Collas, 2002; Webb et al., 2002; Bedner et al., 2003), ATP (Bao et al., 2004; Pearson et 

al., 2005), cGAMP (Chen et al., 2016), Ca++ (Toyofuku et al., 1998; Blomstrand et al., 1999; 

Paemeleire et al., 2000), serotonin (Wolszon et al., 1994; Fukumoto et al., 2005b; Gairhe et 

al., 2012; Hou et al., 2013), and histamine (Chaturvedi et al., 2014). These are in general 

impossible to watch traversing GJ in situ, as these molecules are too small to be labeled 

(fluorescently) without radically altering their properties. However, in addition to small 

molecule metabolites, several recent reports have demonstrated that molecules much larger 

than the normal ≈1 kDa size cutoff can penetrate through GJs under some circumstances 

(Brooks and Woodruff, 2004; Valiunas et al., 2005). These include siRNA’s (Wolvetang et 

al., 2007; Katakowski et al., 2010; Lim et al., 2011; Rimkute et al., 2016) and even the 

protein calmodulin (Brooks and Woodruff, 2004; Woodruff, 2005); one possibility is that the 

crucial parameter is shape, not overall size, and that long, thin molecules may be able to 

traverse GJ channels. The alignment of such molecules to facilitate GJC-mediated transfer 

could be provided by an endogenous electric field (Woodruff, 2005). Understanding the full 

range of endogenous permeant signals is an important area for future investigation.

Junctional selectivity can result in radically different permeabilities of GJs to different 

types of molecules (Bevans et al., 1998; Goldberg et al., 1999; Nicholson et al., 2000; 

Goldberg et al., 2002). This may have important consequences for the morphogenetic 

system, and means that studies of this process in vivo may be strongly dependent upon 

the experimental probe used. For example, at 7.5 days, the mouse embryo was found to 

be subdivided into at least nine GJC compartments with respect to Lucifer Yellow (LY) 

transfer, but only two domains with respect to ionic coupling (Kalimi and Lo, 1989). In the 

loach (Misgurnus fossilis), LY, fluorescein, and DAPI showed consistent differences in their 

ability to transfer between tissues during mesoderm induction and patterning (Bozhkova and 

Rozanova, 2000). Moreover, the chemical selectivity of the GJs connecting early embryonic 

cells changes appreciably during loach development (Bozhkova, 1998), suggesting that 

embryonic patterning can utilize regulation of not only the amount of GJC but also of 

the various types of molecules being passed through the GJs. Significant advances can 

be expected to result from future development of versatile fluorescent methods to reveal 

patterns of distinct GJ paths in vivo.
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GJC and Bioelectricity: Two Key Components of Computational Networks

In addition to chemical metabolites, one of the most important signals propagated through 

GJ paths is current. This allows GJs to demarcate isopotential compartments of cells with 

similar Vmem (Sherman and Rinzel, 1991). This is thought to underlie normalization of 

aberrant founder cells in the production of ectopic brain tissue (Pai et al., 2015a) or tumors 

(Chernet et al., 2015). GJs and resting potential are bidirectionally linked, since Vmem can 

regulate GJ opening, while GJs regulate the sharing of Vmem among neighboring cells, but 

are not interchangeable. Genetic crosses have revealed that in the zebrafish tail, connexins 

and ion channels have distinct roles (Hoptak-Solga et al., 2008; Perathoner et al., 2014). And 

in the case of voltage control of nerve sprouting (Blackiston et al., 2015), depolarization 

cannot induce the hyperinnervation phenotype if GJ is shut down. Indeed, GJs allow 

multiple cells to act as one in response to electric fields (Cooper, 1984; Tsutsui et al., 

2014) and alter their bioelectric dynamics (Baigent et al., 1997; Donnell et al., 2009). One of 

the best recent linkages between physiology and transcriptional regulation was characterized 

in the highly GJ-coupled heart tissue, in which Wnt1 controls the bioelectrical gradient via 

regulation of the L-type calcium channel (Panakova et al., 2010).

Thus, one mechanism by which GJ activity regulates pattern formation is by shaping 

endogenous bioelectric gradients. The importance of these gradients have been confirmed by 

numerous functional studies implicating spatiotemporal Vmem differences as an instructive 

parameter for cell behavior and large-scale patterning (Jaffe, 1981; Nuccitelli, 2003; McCaig 

et al., 2005; Funk, 2013; Levin, 2014b). Ion channel-mediated changes in Vmem not 

only affects individual cell behaviors such as proliferation, differentiation, apoptosis, and 

migration (Sundelacruz et al., 2009), but also determines large-scale parameters such as 

organ size, shape, and axial patterning of the entire body (Beane et al., 2011; Perathoner 

et al., 2014). In a range of vertebrate and invertebrate model systems, Vmem regulates 

the formation of the brain, eye, wing, and face, and controls patterning along the anterior–

posterior and left–right axes during embryonic development (Levin et al., 2002; Dahal et 

al., 2012; Pai et al., 2015a). Moreover, experimental control of bioelectric gradients has 

enabled induction of regenerative ability in non-regenerative contexts (Tseng et al., 2010; 

Leppik et al., 2015), induced reprogramming of gut tissue into complete eyes (Pai et al., 

2012), and normalized tumors (Chernet and Levin, 2013b). Electrical synapses (GJs) and 

neurotransmitters like serotonin are a key component of several patterning systems, having 

been implicated in embryonic left–right asymmetry, bone patterning, tumor suppression, and 

brain size control (Levin and Mercola, 1998b; Iovine et al., 2005; Levin, 2007; Chernet et 

al., 2015; Pai et al., 2015a). As in the brain, these elements often work together, such as the 

bioelectrically controlled movement of serotonin through GJs during left–right patterning 

and control of nerve growth (Levin et al., 2006; Blackiston et al., 2015).

In addition to the known downstream targets (Pai et al., 2015b) of the bioelectric signals 

propagated and limited by GJ paths, specific molecular endpoints for GJ include NFATc1 

downstream of Cx37 signaling (Kanady et al., 2015), semaphorin downstream of Cx43 

function (Ton and Iovine, 2012), and numerous targets of SP1 and SP3 transcription factors 

(Stains et al., 2003; Stains and Civitelli, 2005). Because so many downstream targets are 

impacted by GJC, it is a kind of master regulator node, like Ca++ (Slusarski and Pelegri, 
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2007) signaling or the RAS gene (Jindal et al., 2015). Thus, one of the exciting aspects of 

GJC function, as discussed above in the context of selecting alternate head morphologies 

in planaria, is the ability to regulate large-scale system-wide properties by targeting a 

single element GJC (or even individual connexins). An interesting recent example is the 

demonstration that decreasing Connexin36 GJ coupling compensates for overactive KATP 

channels to restore insulin secretion and prevent hyperglycemia in a mouse model of 

neonatal diabetes (Nguyen et al., 2014). GJs will surely play an increasing role in the 

understanding and management of circuit disorders, in the fields of birth defects and cancer 

(Huang et al., 2009).

Next Steps: Finer-Scale Reductive Studies

Confocal microscopy uncaging and FRET methodologies will greatly facilitate the study 

of endogenous GJC paths in embryos (Bedner et al., 2003; Braet et al., 2003; Cannell 

et al., 2004; Dakin et al., 2005; Di et al., 2005). Key future research areas include the 

characterization of factors which set up patterns of differential GJC in various embryonic 

tissues (at the transcriptional level, as well as at the level of controlling GJC states, such as 

by endogenous patterns of pH and voltage gradients (Ek-Vitorin et al., 1996; Morley et al., 

1997; Calero et al., 1998; Francis et al., 1999; Gu et al., 2000), and the mapping of paths 

which exist in and between different tissues to molecules of various charges and sizes.

Experiments in mouse (and other systems) must, of necessity, be performed in the 

context of multiple connexin knock-outs, since it is becoming increasingly clear that 

due to compensation and redundancy, single loss of GJ genes can obscure important 

phenotypes (Simon et al., 2004). Indeed, knock-in of dominant negative mutants with 

different specificities for endogenous connexin families is likely to reveal many important 

and novel roles (Paul et al., 1995; Fiorini et al., 2004; Beahm et al., 2006). Likewise, 

more sophisticated technologies allowing expression of dominant negative mutants restricted 

in space and time during development will allow the circumvention of embryonic lethal 

phenotypes and likely to lead to the discovery of novel patterning mechanisms (Becker et 

al., 1992; Bakirtzis et al., 2003). While we now have some understanding of downstream 

transcriptional changes that occur when gap junctional signaling is perturbed (Kim et 

al., 2005), next generation sequencing analysis of GJC-inhibited tissues may lead to the 

discovery of proximal early response genes to GJC-permeable morphogens. Perhaps the 

most impactful tool would be the ability to selectively close or open GJ channels, in the way 

that optogenetics currently allows for ion channel function (Bernstein et al., 2012).

Next Steps: Systems-Level Integration

Perhaps even more important than increasing the molecular resolution with which we 

understand GJ function at the cellular level, is the converse task of synthesizing reductive 

data into a systems view of cellular networks coupled by dynamic GJC paths. Long-range 

GJ-mediated signaling, and feedback loops such as the one implemented by calmodulin, 

which regulates GJC (Peracchia et al., 1983; Burr et al., 2005; Dodd et al., 2008) but 

is itself a GJ-permeable signal (Brooks and Woodruff, 2004; Woodruff, 2005), ensure 

regulatory modes that cannot be captured via simple pathway models. Especially important 

is the investigation of GJs in reducing the impact of physiological variability and noise in 

Mathews and Levin Page 18

Dev Neurobiol. Author manuscript; available in PMC 2023 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



individual cells to facilitate robustness (Hallett, 1989), and their converse roles in sharpening 

cell responses to weak stimuli (Cooper, 1984). Because of the inherent complexity and 

nonlinearity of the behavior of such networks, the first task is systems-level modeling. 

Theoretical analyses of GJC signaling have begun via mathematical models (Cooper, 1984; 

Cooper et al., 1989; Vogel and Weingart, 1998; Nygren and Giles, 2000; Hofer et al., 

2002; Vogel and Weingart, 2002; Fortier and Bagna, 2006; Cervera et al., 2015), and 

in future work it will be very important to apply these to the understanding of specific 

patterning processes in embryonic and regenerative morphogenesis (Esser et al., 2006; 

Zhang and Levin, 2009). Such models, especially as they become integrated with bioelectric 

and transcriptional networks, will become an essential tool for understanding endogenous 

pattern formation and developing interventions to control complex remodeling events for 

regenerative medicine and bioengineering applications.

A Speculative Hypothesis: Somatic Memories

Beyond modeling the biophysics of GJ-coupled cells, the field will truly mature when it 

also develops conceptual tools to explain information and computation propagating through 

GJ-coupled cell networks (Friston et al., 2015; Pezzulo and Levin, 2015). GJs are known 

to be important for memory and computation in the brain (Wang and Belousov, 2011; 

Wu et al., 2011; Dere and Zlomuzica, 2012), and the ability of most general anesthetics 

to serve as GJ uncoupling agents have motivated models of cognition and consciousness 

based on GJ-mediated integration across the brain (Mantz, 1992; Juszczak and Swiergiel, 

2009). Interestingly, recent work has applied the same types of Hebbian plasticity concepts 

to understand the function of the heart (Chakravarthy and Ghosh, 1997; Zoghi, 2004) and 

pancreas (Goel and Mehta, 2013). We have recently extended the parallelism between brain 

and non-neural tissues’ use of GJ-dependent synapses by proposing that target morphologies 

for regenerating systems are encoded via a memory-like mechanism within somatic tissues 

(Friston et al., 2015; Pezzulo and Levin, 2015). Because of the molecular and functional 

similarity in the use of GJs in the brain and in non-neural patterning tissues (Fig. 3), 

it is possible that circuits that guide self-limiting, flexible remodeling and regeneration 

programs are implementing true memories. The central involvement of electrical synapses 

and the holographic-like nature of patterning information that can be stably re-written 

(e.g., permanently 2-headed planaria) suggest models in which the target morphology is 

actually stored (encoded) within the real-time current dynamics, perhaps akin to storage of 

spatial memory in neural networks or similar proposed processes of memory in non-neural 

tissues (McConnell et al., 1959; Turner et al., 2002; Zoghi, 2004; Levin, 2011; Baluska 

and Mancuso, 2012; Levin, 2012b; Shomrat and Levin, 2013). This view makes two major 

predictions, currently being addressed in our lab. First, it suggests that models taken from 

cognitive neuroscience for understanding the system-wide dynamics of neural networks 

(Balduzzi and Tononi, 2009; Friston, 2010; Ebner and Hameroff, 2011; Friston, 2013; Hoel 

et al., 2013; Pezzulo et al., 2015) may be appropriate formalisms for efficient prediction and 

control of morphogenesis.

Second, it suggests that patterning could be controlled top-down, in a complementary 

approach to today’s focus on bottom-up (molecular-level) interventions. If GJ-coupled 

tissues are indeed information processing agents as they are in the brain, then it may be 
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possible to efficiently exploit the plasticity and Hebbian-like learning capabilities facilitated 

by connexins in non-neural tissues by literally training them to desired outcomes: providing 

positive and negative reinforcement for collections of cells undergoing morphogenesis to 

encourage specific types of growth patterns. As with training in cognitive animal models, 

rewarding for final outcome (as opposed to directly regulating molecular signaling at each 

point in the tissue) may allow bioengineers to capitalize on the inherent modularity and 

plasticity of pattern formation (Sullivan et al., 2016). This may enable the induction of 

desired anatomical patterning changes without facing head-on the complexity explosion that 

stymies attempts to construct complex organs such as limbs directly.

Training non-neural tissues and treating them like “neural” networks with plasticity and 

memory could be feasible as shown by recent studies that heart and pancreas cells are 

capable of memory. The repolarization of the ventricles in the heart, referred to as the 

T-wave, can be inverted using atrial pacing. Depending on the duration and frequency of 

that pacing, the inversion strength and duration of inversions after pacing are increased, 

displaying a Hebbian-like memory (Rosenbaum et al., 1982; Chakravarthy and Ghosh, 1997; 

Zoghi, 2004). Networks of pancreatic islet beta-cells release insulin due to calcium waves 

that travel through GJs, and display a loss in GJC in response to heightened levels of glucose 

that can be modeled using learning theories also based on Hebbian-like memory (Benninger 

et al., 2008; Goel and Mehta, 2013). These data suggest that GJ-based plasticity outside 

the brain could be exploited to offload the computational complexity of micromanaging 

pattern of physiology onto the cells themselves (as occurs during reward circuit shaping in 

behavioral training). A whole new paradigm for medicine that incorporates tissue training 

could arise if these two important tissues can be physiologically entrained to correct certain 

heart arrhythmias and insulin secretion disorders.

Looking to neuroscience for examples of how neural networks are trained can inform new 

strategies to train non-neural cellular networks for desired GJC. A number of neuronal 

plasticity studies grow neurons on microelectrode arrays (MEAs) that can then be used 

to monitor the patterns of firing neurons and to also deliver electrical impulses that can 

stimulate the firing of certain neurons in the network (DeMarse and Dockendorf, 2005; le 

Feber et al., 2008; Franke et al., 2012; Pimashkin et al., 2013). Cardiomyocytes, pancreatic 

islet cells, and fibroblasts can all be monitored for electrical activity using MEAs (Parak et 

al., 1999; Bornat et al., 2010; Pfeiffer et al., 2011; Spira and Hai, 2013; Schönecker et al., 

2014). However, the appropriate method for training GJ connectivity in non-neural networks 

might differ from neuronal networks.

Adaptive learning in neural networks in vitro requires an appropriate stimulation and 

feedback mechanism. In two studies, which utilized extracellular microelectrode arrays, low 

frequency stimulation was delivered to a culture of dissociated rat cortical neurons or murine 

hippocampal neurons via a stimulation electrode, and the spiking frequency was read on the 

other recording electrodes. Whenever the output at a specific recording electrode was over 

a certain threshold that considers previous output (response-to-stimulus ratio), then the next 

recurrence of the low frequency stimulation at the stimulation electrode was delayed (Shahaf 

and Marom, 2001; Pimashkin et al., 2013). This strategy for training neuronal networks has 

shown more promise than open-looped strategies, since it results in more space exploration 
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and greater changes in connectivity (le Feber et al., 2010). Indeed, closing the loop by 

using embodied networks that are capable of interpreting spiking outputs as instructions 

for robotic movement and in turn take sensory information from those robots and translate 

them into changes in stimulation patterns is showing great promise as way to demonstrate 

neuronal plasticity (Bakkum et al., 2004, 2008; Chao et al., 2008). Linking spiking outputs 

to flight simulator software controls with one stimulating electrode for pitch and the other 

stimulating electrode for roll can be used to train neuronal networks to fly a plane in the 

simulator and be able to correct for changes in headwind (DeMarse and Dockendorf, 2005). 

New optogenetic stimulation of action potentials allows for even better time resolution of 

output spiking due to the lack of an artifact that occurs when using electrode stimulation 

(Dranias et al., 2013).

Adapting these neuronal training techniques to non-neural GJs can be achieved using 

electrodes and optogenetics to change membrane potentials and thus affect the GJC between 

those and surrounding cells. While the details could be connexin- and cell-specific, one class 

of training strategies could deliver dopamine or glutamate as ways to provide GJ-modulatory 

feedback to the network. Microfluidics can be used to implement stimulation and also to 

directly measure the GJC between cells (Bathany et al., 2012). Real-time monitoring of 

calcium wave patterns using transgenic cell lines could also provide better measurement of 

output (Shigetomi et al., 2010).

Thus, one way to control the patterning outcome of GJ-coupled cell networks may be 

to modify their information content, whether by rewriting shape memories directly (via 

optogenetic-like approaches), or providing stimuli that exploit learning. Whether the neural 

computation analogy turns out to be the best way of understanding GJ dynamics, it is clear 

that GJs are a central hub for cellular information. Cells rely on GJ-permeable signals to 

regulate their individual activities toward large-scale construction, remodeling, and repair of 

complex anatomical structures. Thus, gaining predictive control over GJ dynamics is likely 

to be at the forefront of future efforts to exploit the ability of biological systems to regulate 

not just gene expression and physiology, but three-dimensional structure. The implications 

will be not only in fields like birth defects, regenerative medicine, and cancer, but are likely 

to impact evolutionary biology, unconventional computation, and the design of robust hybrid 

technologies. The technological revolution precipitated by the introduction of transistors in 

electronics was driven not only by their physical properties, but also by the appreciation of 

their unique computational capabilities. GJs support similar functions at the cellular level, 

with similar implications for computational capabilities of GJ-coupled networks (Scarle, 

2008; Simon, 2009). Thus, it may not be unreasonable to predict that fully understanding 

and making use of GJ signaling dynamics in biological tissues may lead to the same scale of 

revolutionary advances in basic biology and applied biomedicine.
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Figure 1. 
Gap junctions form bioelectric circuits in the brain and beyond. (A) Neurons are often 

coupled by gap junctions, which allows electrical activity to propagate and integrate across 

cells. (B) The same scheme, involving ion channels to set Vmem levels and gap junctions 

to communicate bioelectric state to neighboring cells, is present in most somatic tissues. 

(C) Non-neural cells assemble into GJ-coupled networks that have many of the properties 

of neural networks. Manipulating the function of somatic tissues during pattern formation, 

by modulating GJ activity, makes use of two basic approaches, using pharmacological or 
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genetic techniques to target connectivity (GJ gating, akin to synaptic plasticity) or resting 

potential (ion channels, akin to intrinsic plasticity). Graphics courtesy of Alexis Pietak and 

Jeremy Guay.
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Figure 2. 
Information in physiological circuits instructs pattern formation. Gap junctions are key 

regulators of bioelectric cell state. (A) Like gene regulatory networks, which contain 

numerous feedback loops among gene loci, gap junctions, and ion channels both regulate 

and are regulated by resting potential. This establishes an autonomous layer of physiological 

dynamics that is coupled to transcriptional cascades, but has its own unique information and 

functions. Modulating bioelectric dynamics by induced changes of GJC results in large-scale 

alterations of pattern formation, including hyperinnervation (B), left-right organ inversions 

(B′), and multiple head formation in regenerating planaria (B″). Graphics courtesy of 

Alexis Pietak and Jeremy Guay.
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Figure 3. 
Parallelism between brain and body. (A) In the brain, DNA sets the structure of the central 

nervous system—the hardware. Electrical circuit dynamics process information and store 

memories, resulting in experience-dependent (and self-organizing) patterns that control 

muscles resulting in the movement of the animal in three-dimensional space. Experiences 

(external sensory stimuli) and reagents targeting GJs, ion channels, and neurotransmitters 

alter the electric dynamics. Computational pipelines are beginning to be developed and 

applied to dynamics observed via EEG and MRI imaging, to extract the semantics—the 

memories represented by these bioelectric states. (B) In somatic tissues of developing 

or regenerating organisms, DNA sets the complement of connexins, ion channels, and 
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neurotransmitter machinery in all cells—the hardware. Bioelectric dynamics (slow patterns 

of resting potential within tissues) process information and establish prepatterns for gene 

expression and morphogenesis, resulting in chemical signal-dependent (and self-organizing) 

patterns that control cell functions like migration and differentiation, resulting in anatomical 

changes that move the body through morphospace. Stimuli (chemical and other signals) 

and reagents targeting GJs, ion channels, and neurotransmitters alter the electric dynamics. 

Computational pipelines need to be developed and applied to these dynamics as imaged with 

voltage-sensitive dyes and GJ tracers, to extract the semantics—the instructive anatomical 

patterns represented by these bioelectric states. Graphics by Jeremy Guay of Peregrine 

Creative and Alexis Pietak. Neural decoding panel in (A) is reproduced with permission 

from Naselaris et al., 2009. Voltage pattern panel in (B right) is courtesy of Douglas J. 

Blackiston.
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Figure 4. 
Morphogenetic memories visualized as attractors in GJ network state space. GJ dynamics 

may offer an opportunity to understand information processing, not only molecular 

biophysics, but also of pattern formation regulated by physiological cell–cell signaling. 

One way to visualize planarian regeneration is (A) as the function of a large network 

of electrically coupled cells. Some such networks have been shown (in computational 

neuroscience and artificial intelligence research) to have a planaria-like property of 

holographic memory storage: a trained network can recreate the entire pattern despite 

deletions of the pattern or of the network components. A well-accepted mathematical 

paradigm for understanding the global properties of such networks is as an energy 

landscape, with attractors corresponding to specific stable modes of the network. In our 

analogy, amputation raises the energy of the system, temporarily pulling it out of the 

attractor to which the system tends to return. One hypothesis is that these networks are 

responsible for storing the pattern of a normal planarian, and when damaged, issuing 

cell-level commands (differentiate, proliferate, and other instructions) that restore the 

anatomy (in parallel to how recall of complex geometric memories can be triggered by 

stimuli and induce goal-directed behavior in cognitive science studies of animal behavior). 

This hypothesis makes a prediction: that coherent changes in patterning will result from 

experimentally induced changes of the bioelectric network’s topology or dynamics. (B) It 

has been shown (Emmons-Bell et al., 2015) that altering the bioelectric connectivity in 

G. dorotocephala results in regeneration of one of four discrete head types. On this view, 
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amputation of head and tail causes the system to move to an unable state from its basin 

of attraction. Partial interruption of gap-junction communication between cells (reduced 

connectivity and thus altered dynamics of the network) induces head wounds to regenerate 

(yellow arrows) new heads that resemble closely-related flatworm species that are regions of 

stability in the regeneration morphospace landscape (left to right: Schmidtea mediterranea, 
Dugesia japonica, and Philbertia felina) as well as heads of the original species in the 

center basin. The probability of regenerating a certain head shape is proportional to the 

evolutionary distance from Girardia dorotocephala. These states are non-permanent (shallow 

basins of attraction) and over time will remodel into their final morphological state (white 

dashed arrows) to the deepest and most stable basin of attraction of the original head shape. 

(C) The same process can be modeled as a neural-like network, with stable modes visualized 

as stable attractors (a.k.a. memories in neural nets), which lead to specific instructive signals 

regulating proliferation, migration, and differentiation that induces different but coherent 

patterning outcomes. Graphics by Alexis Pietak.
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Figure 5. 
Stable inheritance of target morphology change after GJ network perturbation. A normal 

planarian has a head and tail, and regenerates each at the appropriate end of an amputated 

fragment (A). When cut into thirds, and the middle fragment is briefly exposed to octanol, 

which temporarily blocks long-range bioelectrical signaling between the wound and mature 

tissues, a 2-headed worm results (B). GJC, gap junctional communication. Remarkably, 

upon further rounds of cutting in plain water (long after the octanol has left the tissues, as 

confirmed by HPLC), the 2-headed form is recapitulated (C,D; images of 2-headed worms 
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provided by Fallon Durant.). This change in the animal’s target morphology (the shape to 

which it regenerates upon damage) appears to be permanent, and persists across the animal’s 

normal reproductive mode (fissioning), despite the fact that the genomic sequence has not 

been altered. Chromatin modifications alone do not explain this, because the posterior 

wound cells, which could have been epigenetically reprogrammed to a head fate, are thrown 

away at each cut: the information encoding a bipolar 2-head animal is present even in the 

normal gut fragment—it is distributed throughout the body. We propose that this information 

is a kind of memory, encoded in electrical networks of somatic cells coupled by gap 

junctions, and is stored at the level of bioelectrical dynamics, not genetics.
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