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Abstract

Fewer than half of all patients with advanced-stage high-grade serous ovarian cancers (HGSCs) 

survive more than five years after diagnosis, but those who have an exceptionally long survival 

could provide insights into tumor biology and therapeutic approaches. We analyzed 60 patients 

with advanced-stage HGSC who survived more than 10 years after diagnosis using whole-genome 

sequencing, transcriptome and methylome profiling of their primary tumor samples, comparing 

this data to 66 short- or moderate-term survivors. Tumors of long-term survivors were more likely 

to have multiple alterations in genes associated with DNA repair and more frequent somatic 

variants resulting in an increased predicted neoantigen load. Patients clustered into survival groups 

based on genomic and immune cell signatures, including three subsets of patients with BRCA1 
alterations with distinctly different outcomes. Specific combinations of germline and somatic 

gene alterations, tumor cell phenotypes and differential immune responses appear to contribute to 

long-term survival in HGSC.

Patients diagnosed with advanced HGSC have a 5-year survival rate of 41%1, and fewer than 

15% survive more than 10 years2. Treatment usually consists of debulking surgery followed 

by adjuvant platinum and paclitaxel-based chemotherapy, or increasingly, neoadjuvant 

chemotherapy and interval debulking surgery3. Tumor stage and the extent of surgical 

removal are important clinical predictors of patient survival4,5.

HGSC has the highest frequency of germline alterations in homologous recombination DNA 

repair genes including BRCA1 and BRCA26–8 and is among the most chromosomally 

unstable of any cancer type9 with near ubiquitous somatic TP53 alterations 7,10. 

Prognostic biomarkers include gene expression-based molecular subtype11, CCNE1 gene 

amplification12, tumor immune cell infiltration13, and tumor DNA repair status14–16. 

Approximately 50% of HGSC have defects in homologous recombination-mediated DNA 

repair pathway genes 7,14 and homologous recombination defective cancers show increased 

sensitivity to platinum and inhibitors of poly(ADP-ribose) polymerase 1 (PARPi)17–20. 

Patients with germline BRCA1 or BRCA2 mutations have a longer 5-year survival than 

noncarriers6,21, although this survival advantage is lost in patients with BRCA1 mutations 

over time22.
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A subgroup of patients with HGSC with apparently poor prognosis disease at presentation 

have a remarkable response to treatment and extraordinary long-term survival, including a 

small number with incomplete removal of macroscopic disease following surgery23. The 

extent to which known clinical, immune and molecular biomarkers can explain exceptionally 

long survival in HGSC is unclear. Here, we genomically characterize patients with HGSC 

who have survived more than 10 years after diagnosis.

Results

Long-term survivor cohort

We accessed Australian and United States ovarian cancer biobanks with detailed, 

longitudinal clinical follow-up data collection to ascertain 60 long-term survivors (overall 

survival (OS) greater than 10 years from diagnosis). These were compared with patients 

from our earlier study14 that included 34 short-term survivors (OS < 2 years) and 32 

moderate-term survivors (OS ≥ 2 and <10 years; Extended Data Fig. 1a). All patients had 

advanced-stage HGSC (stage IIIC–IV), and 70% (42/60) of long-term survivors were alive 

at last follow-up, including 72% (43/60) with macroscopic residual disease at the conclusion 

of primary surgery, which is a well-accepted adverse prognostic factor (Extended Data Fig. 

1b and Supplementary Table 1). Among the long-term survivors with residual disease were 

a subset with no disease recurrence (51%, 22/43), indicating an exceptional response to 

primary treatment.

Pervasive DNA repair pathway alterations

We analyzed data from whole-genome sequencing (WGS; mean coverage 64× tumor and 

40× normal DNA), RNA sequencing (RNA-seq; average 115 million paired reads) and 

methylome analysis on 126 cases: primary tumor samples from 60 long-term survivor 

patients, and leveraging existing sequencing data from our previous study14, 7 of the 

included long-term survivors, 34 short-term survivors and 32 moderate-term survivors 

(Supplementary Tables 2–4).

The combined germline and somatic homologous recombination alteration rate in long-term 

survivors (76.7%, 46/60) and moderate-term survivors (78.1%, 25/32) were similar but were 

higher compared with short-term survivors (38.2%, 13/34; P = 0.0012; Fig. 1a). These 

included germline mutations in BRCA1, BRCA2, BRIP1, PALB2 and RAD51C, somatic 

mutations in BRCA1, BRCA2, ATM, CDK12, PTEN, RAD51B, RAD51C and RAD51D 
(Supplementary Tables 5 and 6) and promoter methylation in BRCA1 and RAD51C. 
Consistent with previous findings24,25, CCNE1 gene amplification was largely mutually 

exclusive with BRCA1 (false discovery rate adjusted P value (Padj) = 0.0169; co-occurrence 

in 1/126 primary tumors, 0.79%) and BRCA2 alterations (Padj = 0.4554; co-occurrence in 

zero cases; Supplementary Note and Fig. 1b) and more prevalent in short-term survivors 

(Fig. 1a). The tumors of six long-term survivors showed CCNE1 amplification (Fig. 1b), an 

unexpected finding, as it is an established poor prognostic marker associated with primary 

platinum resistance12,14. Inference of immune cell subsets from transcript data26 revealed 

enrichment of activated CD4 memory T cells (Padj = 0.0050) and CD8 T cells (Padj = 
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0.0100) in CCNE1 amplified tumors in long-term survivors (n = 6) compared to short-term 

survivors (n = 11; Supplementary Note).

We found examples of multiple co-occurring mutations in genes involved in chromosome 

stability and DNA repair (Fig. 1b), most commonly due to structural variants that interrupted 

open reading frames. Long-term survivors had a higher proportion of tumors (28.3%, 17/60) 

with three or more altered DNA repair genes compared to moderate-(15.6%, 5/32) and 

short-term survivors (5.9%, 2/34; P = 0.0224; Fig. 1c). Patients whose tumors exhibited 

three or more DNA repair gene alterations had longer OS (median OS, 11.2 years) compared 

to those with two (median OS, 5.8 years), one (median OS 8.6 years) or no DNA repair gene 

alterations (median OS, 2.2 years; P = 0.0136; Fig. 1d). DNA repair pathway alterations 

were ranked from highest to lowest cancer cell fraction in each sample, finding that the 

majority were clonal in the first- (95.4%, 83/87) and second-ranked alterations (72.1%, 

31/43), whereas in tumor samples with more than two DNA repair alterations, the third and 

fourth alterations were more likely to be subclonal (Supplementary Note).

Homologous recombination-deficient (HRD) tumors rely on error-prone DNA repair 

such as non-homologous end joining, which generates distinct mutational scars27. We 

confirmed the functional impact of homologous recombination alterations using CHORD28, 

integrating base substitution, small-scale insertion and deletion (indel), and structural 

rearrangement signatures to classify tumor genomes as BRCA1-type HRD, BRCA2-type 

HRD, or homologous recombination proficient (Fig. 1b). Among tumors considered to 

be HRD (CHORD score >0.5), for almost all (97.1%, 67/69), we identified the likely 

homologous recombination gene alteration driving the signature. Although generally either 

the BRCA1-type or BRCA2-type score was dominant, some tumors showed evidence of a 

mixture of both signatures, and in some cases, this finding could be attributed to two or 

more altered homologous recombination genes (Fig. 1b). MMAY00758 was a long-term 

survivor patient who experienced >11 years progression-free and had three homologous 

recombination pathway gene alterations, with a germline RAD51C missense mutation and 

somatic structural variants in BRCA1 and BRIP1 and evidence of both BRCA2-type (0.68) 

and BRCA1-type (0.27) HRD scores (Fig. 1b; for additional examples, see Supplementary 

Note). Mutations in CDK12 have been postulated to contribute to an HRD phenotype29; 

however, an assessment of mutational scarring indicated that these tumors were homologous 

recombination intact (Fig. 1b).

Recurrent mutations in long-term survivors

We confirmed our previous findings14 of ubiquitous TP53 mutations, infrequent 

nonsynonymous single-nucleotide variants (SNVs) and indels in other cancer-associated 

genes, and common somatically acquired structural variants and copy-number alterations 

(Supplementary Data 1–3, Supplementary Table 7 and Supplementary Note), including 

disruption of RB1, NF1, PTEN and RAD51B. MYH9, EZH2, ARID1B, TBL1XR1, 
ARID1A, YWHAE, CREBBP, RHOA, ATRX, AXIN1 and STAG1 were identified as 

also disrupted by gene breakage (Padj < 0.1; Supplementary Data 2). Despite frequent 

gene breakage in HGSC, only two recurrent in-frame gene fusions were identified (USP7-
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CARHSP1 and KIF1B-PGD), both at a frequency of 1.6% (2/126 primary tumors; 

Supplementary Note).

Somatic alterations were enriched in specific cancer-associated genes among the survival 

groups (Extended Data Fig. 2). Given the limited number of independent HGSC whole 

genomes, we used more readily available gene expression information7,30 to validate 

findings. Among tumor suppressor genes frequently inactivated in long-term survivors, 

low mRNA expression of ARID1B, RB1 and NF1 was associated with longer OS 

(Supplementary Table 8; P< 0.05). ARID1A and ARID1B, two cancer-associated genes 

involved in switch/sucrose non-fermentable (SWI/SNF) signaling, were both commonly 

disrupted by structural variants and had a combined somatic alteration rate of 30% (18/60) 

in long-term survivors, compared to 15.6% (5/32) and 17.6% (6/34) in moderate- and 

short-term survivors, respectively (Extended Data Fig. 2a). We also noted copy-number 

variants (CNVs) involving cytokines (for example, CXCL9 and IFNG) occurred at different 

frequencies in the survival cohorts (Supplementary Note).

Disease recurrence in long-term survivors

Tumor collection during recurrence and long-term survival are both uncommon events, 

but we obtained samples from four patients at relapse (Fig. 2a). Tumor-specific somatic 

alterations indicated that in all patients, samples were consistent with recurrence of their 

primary tumor rather than a new malignancy (Fig. 2b,c and Supplementary Note). BRCA1/2 
reversion mutations commonly impart acquired treatment resistance31 but were not detected 

in the relapse samples of three patients with BRCA1 mutations.

Patient MWMH00552 experienced 13.5 years of disease-free remission before progressing 

rapidly and dying 18 months later from progressive disease. Remarkably, although a large 

deletion over RB1 was found in the primary tumor, the emergent clone at recurrence lacked 

this deletion and the patient experienced relatively short duration responses to subsequent 

chemotherapy (Fig. 2c,d). Patient MAOC00944 had two different RB1 deletions in their 

primary and relapse sample (Fig. 2d) and was still alive at last follow-up (>10 years) 

despite brain metastases. These findings support our observations here and previously23 that 

co-occurrence of RB1 and BRCA1 mutations are associated with favorable response and 

outcome.

Patient MWMH00758 experienced cycles of recurrence and remission following an initial 

progression-free interval of >6 years. The primary tumor had amplification of chemokines 

(CXCL9, CXCL10 and CXCL11) and was classified as the C2/immunoreactive molecular 

subtype11 (Fig. 2c), and this classification was maintained at first and second relapse, 

consistent with the notion that the favorable immune subtype imparted a degree of tumor 

control over a lengthy period. Patient MAOC01893 had a solitary recurrence removed 3 

years after diagnosis and then remained progression-free and was alive at last follow-up, 15 

years after diagnosis (Fig. 2a). Of these four cases, the genomic alterations in the recurrent 

tumor in MAOC01893 was most similar to the primary tumor (Fig. 2b). However, although 

the primary tumor showed amplification of CXCL9, CXCL10 and CXCL11 and was C2/

immunoreactive molecular subtype11, consistent with good outcome, the recurrence was 

C1/mesenchymal molecular subtype and lacked amplification of the chemokine genes (Fig. 
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2c). This finding suggests that the recurrence represented a treatment-resistant clone with 

features associated with worse outcome and the patient may have experienced a substantial 

clinical benefit from surgical removal.

Mutational signatures across survival groups

To identify genomic variation patterns that define survival subgroups, we evaluated the 

contribution of previously identified genome-wide mutational signatures, including base 

substitution signatures32, indel signatures32 and ovary-specific rearrangement signatures33 

(that is, Ovary_A to Ovary_G; Methods and Supplementary Tables 9 and 10). Based on the 

most prominent 27 signatures (mean relative exposure >0.04 across all 126 samples), we 

performed unsupervised clustering of primary tumor samples. Samples segregated into seven 

clusters (SIG.1–7; Fig. 3) with distinct molecular phenotypes (summarized in Extended Data 

Fig. 3a), with SIG.1, SIG.4, SIG.6 and SIG.7 associated with longer survival (progression-

free survival, P = 0.0044; OS, P < 0.0001; Extended Data Fig. 3b,c).

Clusters SIG.1 (n = 14), SIG.2 (n = 25) and SIG.3 (n = 13) were characterized by the tandem 

duplication (>100 kb) phenotype34,35 associated with loss-of-function CDK12 mutations 

and CCNE1 amplification (Padj = 0.0004; Extended Data Figs. 3d and 4a). Tumors in these 

groups were homologous recombination proficient (Padj < 0.0001), and patients were older 

at diagnosis (Padj = 0.0020; Extended Data Figs. 4b and 5a). Despite having homologous 

recombination proficient tumors with a high frequency of CCNE1 amplification (43%, 

6/14), features typically associated with poor outcomes, cluster SIG.1 mostly comprised 

of long-term survivors (64%, 9/14; median OS not reached). Tumors in cluster SIG.1 had 

a high number of duplications (Padj < 0.0001) and inversions (Padj = 0.0029), a higher 

mutation burden and neoantigen count (Padj < 0.0001), somatic alterations in RAD51B 
(50%, 7/14; Padj = 0.0276) and enrichment of indel signatures 1 and 2 (Padj < 0.0001; 

Extended Data Fig. 5b), both thought to be caused by slippage during DNA replication and 

associated with defective DNA mismatch repair32. By contrast, SIG.2 and SIG.3 tumors 

had fewer mutations and structural variants, the lowest predicted neoantigen burdens and a 

lack of DNA repair gene alterations and were associated with the shortest survival (median 

OS, 1.7 and 2.4 years, respectively). SIG.3 tumors were also enriched for rearrangement 

signature Ovary_D (unknown driver; Padj = 0.0002) and double-base substitution (DBS) 

signature 11 (unknown etiology; Padj < 0.0001), whereas SIG.2 tumors were enriched 

for single-base substitution (SBS) signature 5 (unknown etiology; Padj < 0.0001), indel 

signature 4 (unknown etiology; Padj < 0.0001) and DBS signature 7 (Padj < 0.0001), thought 

to be associated with defective DNA mismatch repair.

Cluster SIG.4 tumors (n = 27) were highly enriched for BRCA2-type nonclustered 1- to 

100-kb deletions (consistent with rearrangement signature Ovary_A; Padj < 0.0001), DBS 

signature 4 (unknown etiology; Padj < 0.0001), indel signature 6 (associated with HRD; Padj 

< 0.0001) and alterations in BRCA2 (Padj < 0.0001), as well as multiple other DNA repair 

pathway genes (Padj < 0.0001; Fig. 3 and Extended Data Figs. 3–5). Cluster SIG.4 genomes 

had the highest median mutation burden and neoantigen count and almost all (25/27, 93%) 

had a high BRCA2-type CH0RD score (Padj < 0.0001). Consistent with the previously 
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identified BRCA2/deletion HGSC subgroup36, cluster SIG.4 had the highest survival rate 

(21/27 (78%) long-term survivors), with a median OS of 11.9 years.

BRCA1-altered tumor subgroups with differential outcomes

Clusters SIG.5 (n = 22), SIG.6 (n = 9) and SIG.7 (n = 16) were characterized by 

BRCA1 alterations (100%, 100% and 94%, respectively, Padj <0.0001), but the three groups 

had distinctly different survival outcomes (Extended Data Figs. 3 and 4). All showed 

nonclustered 1- to 100-kb tandem duplications, enrichment of rearrangement signature 

Ovary_G, and BRCA1-type HRD scores (Padj < 0.0001; Fig. 3 and Extended Data Figs. 

3–5), consistent with their BRCA1 mutational status. Of the BRCA1 groups, cluster SIG.7 

had the highest proportion of long-term survivors (75%, 12/16; median OS, 10.4 years), 

followed by SIG.6 (56%, 5/9; median OS, not reached) and SIG.5 (27%, 6/22; median OS, 

4.5 years).

In a subset analysis considering only the BRCA1-altered clusters, the key mutational 

signatures driving these clusters were DBS signature 2 in SIG.5 (Padj = 0.0050), 

rearrangement signature Ovary_A in SIG.6 (Padj = 0.0092) and SBS signature 40 (unknown 

etiology) in SIG.7 (Padj = 0.0092; Supplementary Note). DBS signature 2 is proposed to 

be associated with tobacco smoking and/or exposure to acetaldehyde, which is a constituent 

of cigarette smoke but also a metabolite of alcohol32. Self-reported smoking history was 

available for 84.9% (107/126) of cases, and across the seven mutational signature clusters, 

SIG.5 had the highest frequency of smokers (66.7%, 12/18; Padj = 0.5092; Extended Data 

Fig. 4b). We compared the relative contribution of all mutational signatures between never-

smokers (n = 60) and ever smokers (n = 47), and the most predominant mutational signature 

in smokers was DBS signature 2 (Padj = 0.5490; Supplementary Note). Of all the mutational 

signature clusters, SIG.5 had the youngest age of diagnosis (Padj = 0.0020; Extended Data 

Fig. 5a), consistent with these patients being at a higher risk of developing cancer due to 

combined BRCA1 deficiency and a history of smoking.

The prominence of rearrangement signature Ovary_A in cluster SIG.6 indicates there is 

a mixture of BRCA1 and BRCA2 deficiency in this subgroup; this was corroborated by 

a higher prevalence of BRCA2-type nonclustered 1- to 100-kb deletions in SIG.6 relative 

to SIG.5 and SIG.7 (Extended Data Fig. 3d) and the detection of both BRCA1-type and 

BRCA2-type HRD scores in SIG.6 tumors (Fig. 3). Tumors with combined BRCA1 and 

BRCA2 loss of function may have greater sensitivity to platinum chemotherapy. Indeed, 

despite cluster SIG.6 having a high proportion (56%, 5/9) of suboptimal residual disease 

(>1 cm) following surgical cytoreduction (Padj = 0.6131), this BRCA1 subgroup had the 

longest progression-free survival (median 9.9 years, P = 0.0044), indicating SIG.6 tumors 

were particularly platinum chemosensitive (Extended Data Figs. 3 and 4).

Patterns of DNA methylation

To determine whether tumor DNA methylation profiles were associated with exceptional 

outcomes, we performed consensus clustering of the 1% most variable CpG sites (number 

of probes = 3,645) across all 126 primary tumors. Compared to mutational signatures, 

differential DNA methylation patterns were less discriminatory, with the five distinct 
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methylation clusters (MET.1, n = 46; MET.2, n = 14; MET.3, n = 17; MET.4, n = 19; 

MET.5, n = 30) showing moderate to weak associations with progression-free (P = 0.1949) 

and OS (P = 0.0587; Extended Data Fig. 6). The strongest genomic difference between 

methylation clusters was BRCA1 alteration status, with enrichment of BRCA1-altered 

tumors (72%, 33/46) in cluster MET.1 (Padj < 0.0001; Supplementary Note). Patients 

in MET.1 had a relatively poor survival (median OS, 5.7 years) compared to MET.2 

(median OS, 11.9 years), the most closely related cluster in the dendrogram. The most 

striking differences between the two groups were the proportion of smokers (MET.1 64% 

(23/36) vs. MET.2 8.3% (1/12), Padj = 0.0225) and younger age of MET.1 patients (Padj 

= 0.0059). Therefore, the MET.1 cluster also identifies a subset of BRCA1-altered tumors 

associated with smoking and a relatively poor survival, largely overlapping with cluster 

SIG.5 (Supplementary Note).

Tumor mutation burden and immune transcriptional patterns

Ovarian cancer was among the first documented examples of an association between 

lymphocytic infiltration and survival37, an observation confirmed in large patient 

cohorts13,38 and individual case reports39. We therefore characterized mutational burden 

as a driver of immune response within the survival groups (Fig. 4 and Supplementary 

Note). Consistent with a previous report40, long-term survivor tumor samples had a 

higher tumor mutation burden (median of 4.66 mutations/Mb) compared to short-term 

(3.27 mutations/Mb) and moderate-term survivors (3.25 mutations/Mb, P = 0.0003), and 

concordantly, long-term survivors had the highest number of predicted neoantigens (P < 

0.0001; Fig. 4e). Both moderate- and long-term survivor tumors had more structural variants 

compared to short-term survivors (P = 0.0012; Fig. 4e). Tumor neoantigen count was more 

strongly associated with better survival (hazard ratio (HR) = 0.71, 95% confidence interval 

(CI) = 0.56–0.91, P = 0.0069) compared with the number of mutations (HR: 0.75, 95% CI: 

0.59–0.96, P = 0.0202) and structural variants (HR: 0.79, 95% CI: 0.63–1.0, P = 0.0482; Fig. 

4f).

We compared primary tumor gene expression profiles between survival groups using fast 

gene set enrichment analysis (FGSEA41) and observed significantly perturbed MSigDB 

hallmark gene sets42 (FGSEA Padj < 0.05; Extended Data Fig. 7a). The top five 

enriched gene sets between long-term survivors and short-term survivors were E2F 

targets (overexpressed or ‘up’ in long-versus short-term survivors), epithelial mesenchymal 

transition (down), allograft rejection (up), interferon gamma response (up) and G2M 

checkpoint (up; FGSEA Padj < 0.0001; Extended Data Fig. 7a; Supplementary Data 4). 

Tumors in long-term survivors had an increased expression of cell proliferation-related 

genes PCNA and MKI67 (Extended Data Fig. 7b), indicating that tumor cells in long-

term survivors may have exceptionally deregulated cell cycle progression and increased 

proliferation. This is consistent with our previous finding that Ki-67-positivity of tumor 

cell nuclei, a marker of proliferation, is significantly higher in patients with prolonged 

progression-free survival and OS23.

We used an established deconvolution method26 to estimate the abundance of immune 

cell types from bulk RNA-seq data (Supplementary Tables 11, 12). CIBERSORTx 
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absolute scores correlated with CD8+ T cell density, both in the tumor epithelium (P < 

0.0001) and the stromal compartment (P = 0.0002), which were previously quantified by 

immunohistochemistry23 in a subset of primary tumors (n = 54; Supplementary Note). 

Scores of the most prominent cell populations (detected in >5% of samples) were treated 

as a continuous variable and correlated with survival. Activated memory CD4 T cells (HR: 

0.44, 95% Cl: 0.23–0.85, P = 0.0144) and plasma cells (HR: 0.68, 95% Cl: 0.49–0.95, P = 

0.0249) were associated with improved OS, whereas resting mast cells (HR: 1.44, 95% Cl: 

1.15–1.78, P = 0.0013) and M2 macrophages (HR: 1.46, 95% Cl: 1.09–1.96, P = 0.0119) 

were associated with an increased risk of death (Extended Data Fig. 7c).

Unsupervised clustering of primary tumor samples using the computationally estimated 

immune cell densities identified five patient groups associated with differential survival 

outcomes (1MM.1–5; Fig. 5). Patients in cluster 1MM.3 (n = 22) had the longest 

progression-free survival (median 6.3 years, P < 0.0001) and OS (median 15.0 years, P 
< 0.0001), with tumor samples enriched for plasma cells, activated memory CD4 T cells, M1 

macrophages and resting natural killer (NK) cells (Padj < 0.0001; Extended Data Fig. 8a). 

Cluster 1MM.1 patients (n = 32) had the second longest OS (median 10.5 years) and were 

particularly enriched for CD8 T cells, activated NK cells, regulatory T cells and follicular 

helper T cells (Padj < 0.0001). Tumor genomes in clusters 1MM.1 and 1MM.3 had the 

highest and second highest neoantigen burden respectively (Padj = 0.0007; Extended Data 

Fig. 8b). By contrast, samples from cluster 1MM.2 (n = 23) have the lowest neoantigen 

burden, the shortest OS (median 1.7 years), and were enriched for resting mast cells and 

dendritic cells (Padj < 0.05). Concordantly, samples in cluster 1MM.2 were predominantly 

classified as the C1/mesenchymal molecular subtype (78.3%, 18/23), whereas samples in 

clusters 1MM.1 and 1MM.3 were predominantly the C2/immunoreactive molecular subtype 

(46.9% (15/32) and 54.5% (12/22) respectively; Padj < 0.0001; Extended Data Fig. 9a). 

Consistent with having an active immune response, 1MM.1 and 1MM.3 tumors had higher 

densities of CD8+ T cells in the tumor epithelium compared to other clusters (Padj = 0.0281; 

Extended Data Fig. 8b).

Although the two long-term survival immune clusters 1MM.1 and 1MM.3 were 

characterized by elevated HRD scores (scarHRD mean, Padj = 0.0439; BRCA2-type 

CHORD, Padj = 0.0859; Extended Data Fig. 8b), no particular DNA repair gene alteration 

was associated with the immune clusters (Extended Data Fig. 9b). In a subgroup analysis, 

differences in immune cell composition were observed between the BRCA1-altered 

mutational signature clusters: the most notable being elevated expression of the activated 

NK cell signature in clusters SIG.6 and SIG.7 compared to SIG.5 (SIG.5 versus SIG.6 Padj 

= 0.0760, SIG.5 versus SIG.7 Padj = 0.0580; Supplementary Note). Concordantly, immune 

cluster 1MM.1, which is enriched with the activated NK cell signature, was the dominant 

immune cluster in both SIG.6 (44.4%, 4/9) and SIG.7 (43.8%, 7/16) and the least abundant 

immune cluster in SIG.5 tumors (13.6%, 3/22; P = 0.4688; Fig. 6a and Supplementary 

Note).
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Predictors of long-term survival

We considered the key features identified in this study, finding seven were individually 

associated with OS (Fig. 6b and Supplementary Table 13; univariable Cox regression 

model), including the number of DNA repair gene alterations (three or more HR: 0.39, 

95% CI: 0.20–0.75, P = 0.0054), activated CD4 memory T cells (HR: 0.47, 95% CI: 0.31–

0.72, P = 0.0004), BRCA2-type HRD (HR: 0.48, 95% CI: 0.27–0.86, P = 0.0144), PCNA 
expression (HR: 0.51, 95% CI: 0.40–0.65, P < 0.0001), plasma cells (HR: 0.60, 95% CI: 

0.44–0.82, P = 0.0015), neoantigen count (HR: 0.71, 95% CI: 0.56–0.91, P = 0.0069) 

and residual disease (HR: 2.38, 95% CI: 1.09–5.17, P = 0.0290). When combined in a 

multivariable regression model, four features were statistically associated with OS, including 

HRD type (BRCA2-type HR: 0.33, 95% CI: 0.17–0.66, P = 0.0018; BRCA1-type HR: 0.45, 

95% CI: 0.25–0.82, P = 0.0086), PCNA expression (HR: 0.50, 95% CI: 0.38–0.67, P < 

0.0001), plasma cells (HR: 0.54, 95% CI: 0.37–0.78, P = 0.0011) and residual disease (HR: 

3.15, 95% CI: 1.37–7.21, P = 0.0067; Supplementary Table 14).

Discussion

Cancer studies have focused on the determinants of treatment failure (that is, primary 

and acquired drug therapy resistance), with comparatively little attention on those patients 

who exceed expectations, despite their potential to provide therapeutic insights23,43,44. By 

accessing samples and data from studies that collectively include over 3,800 patients with 

HGSC, we were able to perform whole-genome characterization of HGSC in 60 exceptional 

survivors.

Conceivably, exceptional survival in HGSC may be determined by a dominant rare event or 

by the interaction of multiple factors that are individually common but due to chance are 

infrequent in combination. Our finding of the association of survival with a variety of factors 

involving the patient’s genome, tumor somatic mutational profile, and immune response 

strongly supports the latter explanation and is consistent with a diversity of molecular and 

clinical pathways to long-term survival in HGSC23,40.

Synthetic lethality induced by PARPi on a BRCA altered background provides a potent 

example of the clinical effect of simultaneously targeting DNA repair processes45. In a 

genetic parallel, we found that co-occurring alterations in DNA repair pathway genes are 

associated with long-term survival. In some instances, this was associated with evidence 

of both BRCA1-type and BRCA2-type HRD within a tumor, often due to structural 

variants that inactivate homologous recombination pathway genes. Indeed, inactivation of 

homologous recombination pathway genes by structural variants is a common and perhaps 

unappreciated source of HRD in HGSC14,46,47. It is plausible that multiple genetic defects 

in DNA repair may render tumor cells exceptionally sensitive to chemotherapy, as recently 

reported in an exceptional responder with metastatic breast cancer44, or perhaps impede the 

development of resistance.

We previously reported23, and validated here, how co-occurrence of RB1 and BRCA1 or 

BRCA2 loss-of-function mutations is associated with long-term survival. Interestingly, RB1 

has a non-canonical function in homologous recombination DNA repair48 in addition to cell 
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cycle regulation. Our comparison of primary and relapse tumor samples in a small number 

of patients provided additional evidence for a key role of co-occurring RB1 and BRCA1 
mutations in exceptional response and good outcome.

One of the strongest associations with long-term survival were markers of enhanced 

proliferation. While enhanced proliferation is generally associated with aggressive cancer 

phenotypes, faster replication may also render cells more susceptible to chemotherapy. 

Higher proliferative counts in long-term survivors could also relate to a reduced ability 

of the cells to enter a quiescent state, which has been associated with the development 

of treatment resistance in lung49 and ovarian cancer50. A subset of long-term survivors 

had CCNE1 amplification and evidence of enhanced immune activity, suggesting that 

an engaged tumor-immune microenvironment can overcome the poor primary treatment 

response typically associated with CCNE1 amplification and homologous recombination 

proficiency.

The determinants of long-term survival in HGSC are complex, and progress will depend 

on detailed discovery studies43 and validation of specific findings in large, clinically 

annotated patient cohorts with long follow-up51. Refining comparisons43 will also be 

key, as exemplified by the three subsets of patients, all with BRCA1 mutations but with 

distinctly different survival outcomes. Clusters SIG.5 and MET.1 identify a subgroup of 

more aggressive BRCA1-driven tumors associated with a younger age of onset, whose 

unique genomic signature associated with tobacco or alcohol exposure, relatively lower NK 

cell infiltration and/or less frequent compounded HRD may drive a diminution in survival. 

A recent study found that cigarette smoking is associated with worse survival among women 

with germline BRCA1/2 mutations compared to noncarriers52. Furthermore, a large cohort 

study of asymptomatic individuals found that NK cell activity decreases in smokers in 

a dose-dependent manner53, indicating a plausible link between smoking-associated NK 

cell deficit and an elevated risk of malignancy, particularly in BRCA1 mutation carriers. 

Collectively our molecular data support the observation that survival outcomes in women 

with BRCA1-altered HGSC may be influenced by prior mutagen exposure, a potentially 

modifiable risk factor.

We have identified distinct HGSC subgroups separated by mutational processes, DNA 

methylation and immune response, and found that differential outcomes may be associated 

with compounding lifestyle-related exposures, surgical outcomes, anti-tumor immune 

activity, cell cycle deregulation and/or disruption of multiple DNA repair pathways. 

Although most of our patients predate the introduction of PARPi, given that response to 

platinum is predictive of PARPi sensitivity19, our findings may also provide insights into 

long-term PARPi response.

Online content

Any methods, additional references, Nature Portfolio reporting summaries, source data, 

extended data, supplementary information, acknowledgements, peer review information; 

details of author contributions and competing interests; and statements of data and code 

availability are available at https://doi.org/10.1038/s41588-022-01230-9.
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Methods

Study participants and patient samples

This project was conducted with approval from the Peter MacCallum Cancer Centre Human 

Research Ethics Committee, the Western Sydney Local Health District Human Research 

Ethics Committee and the Mayo Clinic Institutional Review Board. The study population 

consisted of women diagnosed with epithelial ovarian cancer between 1980 and 2019, 

enrolled in the Australian Ovarian Cancer Study (AOCS), the Gynaecological Oncology 

Biobank at Westmead Hospital (Sydney) and the Mayo Clinic. Participation in these 

studies was voluntary (patients were not compensated), and written informed consent was 

provided by all participants. Women with histologically confirmed high-grade serous ovarian 

carcinoma and survival time available (n = 3,824) were considered for the study.

Inclusion criteria.—Cases were selected as follows: (i) histologically confirmed high-

grade (grade 2 or 3) serous ovarian, fallopian or peritoneal carcinoma; (ii) International 

Federation of Gynecology and Obstetrics stage IIIC or IV disease; (iii) primary treatment 

incorporating a platinum-based agent; (iv) fresh-frozen tumor obtained during primary 

debulking surgery and matched blood samples available or previously analyzed14. Survival 

categories were defined as follows: (i) short-term survivors had died less than 2 years from 

diagnosis, (ii) moderate-term survivors had survived at least 2 years since diagnosis but died 

before 10 years and (iii) long-term survivors had an OS of at least 10 years after diagnosis 

(Extended Data Fig. 1a). This definition of long-term survival is consistent with previous 

studies23,54. To confirm high-grade serous carcinoma, all eligible cases underwent pathology 

review as previously described23.

Clinical definitions.—Progression-free survival was defined as the time between 

histological diagnosis and disease progression, as determined by imaging or CA125 serum 

levels according to the Gynecological Cancer Intergroup criteria, or death. OS was defined 

as the time interval between histological diagnosis and death (all causes) or date of last 

follow-up. Never-smokers were those participants who had self-reported never smoking (or 

having smoked less than 100 cigarettes in their lifetime) before diagnosis.

Cohorts.—Sequencing of 73 patients was previously described14 (7 long-term survivors, 

34 short-term survivors and 32 moderate-term survivors) as part of the International Cancer 

Genome Consortium (ICGC) Ovarian Cancer project. Additional sequencing of samples 

from 53 long-term survivors was performed here as part of the Multidisciplinary Ovarian 

Cancer Outcomes Group (MOCOG) study. Genomic data from the ICGC and MOCOG 

cohorts were uniformly processed and analyzed for the current study. The analysis cohort 

consisted of 126 female patients with HGSC (Extended Data Fig. 1a), diagnosed between 

the ages of 29 and 81 years (Extended Data Fig. 1b and Supplementary Table 1).

Biospecimens.—Normal DNA was isolated from peripheral lymphocytes or 

lymphoblastoid cell lines using the salting out method, the QIAamp DNA Blood Mini 

Kit (QIAGEN) or the FlexiGene DNA Kit (QIAGEN) using the AutoGen FlexSTAR+ 

instrument according to the manufacturer’s instructions. Tumor DNA was extracted from 
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fresh frozen cryosectioned tumor tissue using either the DNeasy Blood & Tissue Kit 

(QIAGEN), the AllPrep DNA/RNA/miRNA Universal Kit (QIAGEN) or the Gentra 

Puregene Kit (QIAGEN) according to the manufacturer’s instructions. Tumor RNA 

was extracted from fresh frozen cryosectioned tumor tissue using the mirVana miRNA 

Isolation Kit (Ambion/Life Technologies), the AllPrep DNA/RNA/miRNA Universal Kit 

(QIAGEN) or the RNeasy Mini Kit (QIAGEN) using the QIAcube automated system 

according to the manufacturer’s instructions. DNA was quantified using the Qubit dsDNA 

BR Assay (Invitrogen), the Lunatic spectrometer (Unchained Labs) and the Quant-iT 

PicoGreen dsDNA Assay Kit (Invitrogen). RNA quality and quantity were assessed using 

the Bioanalyzer RNA 6000 Nano assay (Agilent) and the NanoDrop Spectrophotometer 

(Thermo Fisher Scientific).

Molecular assays

Single-nucleotide polymorphism (SNP) arrays and quality control.—Tumor 

and matched normal DNA was assayed with the Infinium OmniExpress-24 BeadChip 

arrays, arrays scanned and data processed using Genotyping module 2.0.3 software 

in GenomeStudio 2.0.3 to calculate logR ratios and B-allele frequencies according 

to manufacturer’s instructions (Illumina) at the Australian Genome Research Facility 

(AGRF; Melbourne, Australia). HYSYS55 was used to confirm correspondence 

of normal and tumor DNA, and tumor cellularity was assessed using qPure56 

and ASCAT57, based on B-allele frequencies for ~67k common probes between 

HumanOmni2.5–8v1_A, HumanOmni25M-8v1–1_B, InfiniumOmniExpress-24v1–2_A1 

and InfiniumOmniExpress-24v1–3_A1 SNP array platforms. Tumor DNA samples with 

estimated tumor cellularity >40% proceeded to WGS and methylation arrays. B-allele 

frequencies were also used to visually inspect profiles across tumor and germline samples.

Methylation arrays.—Quality assessment was performed by QuantiFluor (Promega) and 

500 ng tumor DNA was bisulfite converted with the EZ DNA Methylation kit (Zymo 

Research) and assayed using the Infinium MethylationEPIC BeadChip arrays according to 

manufacturer’s instructions (Illumina) at the AGRF.

WGS.—Sequence libraries were generated from tumor and matched normal genomic 

DNA using the KAPA HyperPrep PCR-free library preparation kit (Roche) according 

to manufacturer’s instructions. Sequencing was carried out by the Kinghorn Centre for 

Clinical Genomics Sequencing Laboratory (Sydney, Australia) on the HiSeq X Ten System 

(Illumina) to a minimum base coverage of 30-fold for normal DNA and 60-fold for tumor 

DNA samples.

RNA-seq.—Quality assessment was performed using the Bioanalyzer RNA 6000 Nano 

assay (Agilent), finding a median RNA integrity number of 9.0 (range 4.7 to 10). Libraries 

were generated using Illumina Stranded mRNA Prep and 150-bp paired-end sequencing was 

performed to a minimum of 100 million reads on Illumina NovaSeq 6000 instruments at the 

AGRF in accordance with the manufacturer’s instructions.
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Processing of whole-genome sequence data

FASTQ files were assessed for sequencing quality using FASTQC (v0.11.8) and for 

contaminants using FastQ Screen58 (v0.11.4). The files were trimmed of adapters, 

low-quality bases and N content using fastq-mcf from ea-utils (v1.05). Sequence 

data were mapped to the human genome reference GRCh37 b37 using BWA mem59 

(v0.7.17-r1188), producing BAM files. BAM files were then sorted, lanes merged and 

duplicates marked using Picard Tools (v2.17.3). Bases were recalibrated using GATK60 

BaseRecalibrator (v4.0.10.1). Coverage was calculated using GATK DepthOfCoverage 

(v3.8–1-0-gf15c1c3ef), and metrics such as insert size distribution, OxoG, base quality, 

GC bias and quality distribution were generated using Picard Tools (v2.17.3). GATK 

HaplotypeCaller (v4.0.10.1) was used on germline BAMs to generate Genomic Variant Call 

Format files, which were used as the ‘Panel of Normal’ for Mutect2 variant calling. Tumor 

purity and ploidy was estimated using FACETS61 (v0.6.1).

Variant detection

Germline variant calling.—Germline base substitution and INDEL variants were called 

using VarDictJava (v1.5.7 with -r = 2 -Q = 10 -f = 0.1) for genes of interest (Supplementary 

Table 5).

Somatic base substitution and INDEL calling.—Four variant calling tools were 

used to call somatic base substitutions and INDELs, as follows: Mutect2 (ref. 60) 

(v4.0.11.0 with defaults), VarDictJava62 (v1.5.7 with -r = 2 -Q = 10 -V = 0.05 -f 

= 0.01), Strelka2 (ref. 63) (v2.9.9 with defaults), and VarScan2 (ref. 64) (SAMtools65 

v1.9 for mpileup and VarScan2 v2.4.3 with-min-coverage 7-min-var-freq 0.05-min-freq-for-

hom 0.75-p-value 0.99-somatic-p-value 0.05-strand-filter 0). Variant calls from all four 

tools were then decomposed (that is, multiallelic to biallelic) and normalized (that is, 

left trimmed) using vt66 (v0.57721). The passing variants for each caller were then 

processed using GATK ReadBackPhasing (v3.8-1-0-gf15c1c3ef with-phase-QualityThresh 

10-enableMergePhasedSegregatingPolymorphism-sToMNP-min_base_quality_score 10-

min_mapping_quality_score 10-maxGenomicDistanceForMNP 2). The main purpose 

of running this tool was to combine contiguous SNVs to multinucleotide variants 

(for example, a DBS). The variant call format (VCF) files per caller were then 

merged using GATK CombineVariants (v3.8-1-0-gf15c1c3ef with -genotypeMergeOptions 

UNIQUIFY-priority Strelka2, Mutect2, VarScan2, VarDictJava). The combined VCF was 

split and left trimmed using vt. Any variants that failed all callers were excluded. 

The VCF was annotated for homopolymers and tandem repeats using GATK Varian-

tAnnotator (v3.8-1-0-gf15c1c3ef with-reference_window_stop 1000-A HomopolymerRun-

A TandemRepeatAnnotator). High-confidence variants were those that passed at least two 

callers, had at least one variant containing read in each strand, were not in the Duke and 

DAC blacklisted regions and were not in the list of FrequentLy mutAted GeneS (FLAGS67).

Structural variant detection.—Four callers were used to identify somatic structural 

variants: Manta68+ BreakPointInspector (v1.5.0), GRIDSS69 (v2.0.1), Smoove (v0.2.2) 

and SvABA70 (v134). Structural variant calls were separated into germline and somatic 

VCFs. For each germline/somatic VCF from the four callers, a custom R script used the 

Garsed et al. Page 15

Nat Genet. Author manuscript; available in PMC 2023 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



StructuralVariantAnnotation and rtracklayer71 libraries to merge the SVs and generate a 

combined VCF from the four callers. A value of 10 was used for the maxgap parameter 

along with the strand orientation of the method findBreakpointOverlaps to identify common 

structural variants across the callers. Structural variants were annotated as duplication, 

deletion, inversion or translocation using a simple event type classifier provided by the 

GRIDSS package. Breakpoints called by at least two callers were deemed high confidence.

CNV detection.—SNP pileup frequencies on common SNPs (dbSNP build 151, reference 

= GRCh37.p13, N = 37,906,831) were generated for tumor and normal BAMs. Pileups 

were generated using the snp-pileup tool (with-pseudo-snps 100-min-map-quality 10-min-

base-quality 10-max-depth 5000-min-read-counts 15,0) as provided by the developers of 

FACETS61 (v0.6.1). The pileups were then used for cnv_facets (v0.13.0), which is a 

convenience tool for FACETS that executes all necessary steps to generate a VCF from 

the BAMs. Various values of pre-processing and processing cvals along with nbhd-snp were 

used for the analysis. The settings with the most robust CNV calls and purity agreement 

with the SNP array data were used for further analysis. The settings used for FACETS were 

(-nbhd-snp=500-cval=50 1000-depth=15 5000).

Whole-genome duplication and whole-genome loss.—Whole-genome duplication 

percentages were assessed using previously established methods72. Briefly, the percentage 

genome with a major copy number (MCN) of greater than or equal to two was calculated. 

The same method was applied to assess whole-genome loss, where percentage genome with 

a total copy number of less than or equal to one was calculated.

Annotation of variants in genes of interest

High-confidence base substitutions and INDELs were filtered to remove (1) variants 

with less than four supporting reads and/or variants without bidirectional read support, 

(2) all silent (synonymous) mutations with no prior evidence of being pathogenic, (3) 

common variants with a global minor allele frequency > 0.001 in the Genome Aggregation 

Databse (gnomAD) v2.1.1 (https://gnomad.broadinstitute.org/) and (4) variants previously 

found to be benign or low clinical significance in one or more mutation databases 

(https://www.ncbi.nlm.nih.gov/clinvar/, https://brcaexchange.org/). Structural variants that 

were detected within a gene footprint were considered truncating if the variant was (1) a 

translocation that breaks the gene anywhere between the translation start site and the first 

base of the final coding exon, (2) a deletion, duplication, or inversion that spans one or more 

exons (unless it only spans the final coding exon) or (3) a deletion, duplication or inversion 

that results in a frameshift within an exon (unless it is within the final coding exon). CNVs 

were considered pathogenic if (1) a region of homozygous deletion (gene level copy number 

= 0) spans the whole gene or a coding exon (unless it only spans the final coding exon), or 

(2) a region of amplification (gene level copy number ≥7) spans the whole gene.

Evidence of mutation was sought from both WGS and RNA-seq data, and manual 

review of germline and somatic variants in genes of interest was carried out using 

Integrative Genomics Viewer73. Manually curated genes and pathogenic variants with 

supporting evidence are listed in Supplementary Tables 5–7. Mutations reported in 
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Supplementary Tables 5–7 were only those deemed pathogenic, that is truncating mutations 

(nonsense, splice site, frameshift, deletions, duplications, inversions and translocations that 

disrupt the coding transcript) and missense variants previously reported as pathogenic 

or likely pathogenic in curated mutation databases (https://tp53.isb-cgc.org/, https://

www.ncbi.nlm.nih.gov/clinvar/, https://brcaexchange.org/)

Homologous recombination pathway analysis

In addition to pathogenic germline and somatic mutations in genes involved with 

homologous recombination and DNA repair (Supplementary Tables 5 and 6), the promoter 

methylation status of BRCA1 and RAD51C was determined in tumor samples using 

methylation array data and gene expression (Supplementary Methods). Tumor samples 

with multiple potential driver gene alterations were assigned to a primary alteration 

category in the following order of preference: (1) germline mutation in homologous 

recombination gene (BRCA1, BRCA2, BRIP1, PALB2, RAD51C, or RAD51D), (2) 

somatic promoter methylation of BRCA1 or RAD51C, (3) somatic mutation in homologous 

recombination gene (BRCA1, BRCA2, BRIP1, PALB2, RAD51C, or RAD51D), (4) somatic 

CDK12 mutation, (5) somatic CCNE1 amplification, (6) somatic mutation in putative 

homologous recombination gene (BARD1, BLM, CHEK2, FANCA, FANCD2, FANCE, 
FANCI, FANCM, PTEN, ATM, ATR, or RAD51B), (7) somatic mutation in mismatch 

repair gene (MSH2, MSH6, PMS1, or PMS2), (8) wild-type(no germline or somatic 

homologous recombination alteration, CDK12 mutation, CCNE1 amplification, or mismatch 

repair mutation). Where multiple potential driver mutations were identified, the variant allele 

frequency and/or mutational signatures were used to assign the likely driver.

Multiple DNA repair pathway alterations.—To determine the number of DNA repair 

alterations per sample, all independent germline and somatic alterations were tallied in the 

following gene sets: (1) homologous recombination pathway genes, (2) putative homologous 

recombination pathway genes, (3) mismatch repair genes and (4) CDK12 and RB1.

Homologous recombination deficiency.—Homologous recombination deficiency was 

estimated in tumor samples using CHORD28 and scarHRD74.

Mutational signatures

Mutational signatures were generated for high-confidence variants as described above. 

Variants for each sample were converted into catalogs or categories of mutational spectra 

for SBSs, DBSs and INDELs using the R package ICAMS v2.0.10.9001 (https://github.com/

steverozen/ICAMS) and the function ‘VCFsToCatalogs’. Each type of mutational catalog 

contains a number of contexts based on the COSMIC definitions32, namely 96 contexts 

for SBSs, 78 contexts for DBSs and 84 contexts for INDELs. This provides a sample 

by mutation context matrix per SBS, DBS and INDEL type. Structural variant signature 

catalogs consisting of 32 contexts were generated using the R package signature.tools. 

lib33 (v0.0.0.9000) and the function ‘bedpeToRearrCatalogue’. The SBS, DBS and INDEL 

catalogs were then fit to the COSMIC Mutational Signatures v3.2 database (https://

cancer.sanger.ac.uk/signatures/), and the structural variant catalogs were fit to the ovary-
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specific rearrangement signatures (https://signal.mutationalsignatures.com/). Further details 

on mutational signature fitting and clustering are described in the Supplementary Methods.

Neoantigen prediction

HLA types were generated using HLA-VBSeq75 (v11_22_2018) for neoantigen prediction 

as follows. Unmapped reads and reads mapped to HLA regions were extracted usingjvarkit 

samviewwithmate (ec2c236) and converted to FASTQ files using samtools view (v1.9) 

along with Picard Tools SamToFastq (v2.17.3); these were then mapped using BWA 

mem (v0.7.17-r1188) to the HLA v2 database based on IMGT/HLA Database76 release 

3.31.0 and Japanese HLA reference dataset for HLA estimation. The HLA types were 

fed into pVACtools77 pVACseq (v1.3.5) to identify and construct neoantigens from the high-

confidence variants. Briefly, high-confidence coding variants in VCF format were annotated 

using the VEP (v92.4) plugin ‘Downstream’, which provides the predicted downstream 

protein sequence and the change in length relative to the reference protein, and the plugin 

‘Wildtype’, which includes the transcript protein sequence in the annotation. RNA read 

counts for the annotated variants were generated using bam_readcount_helper.py and added 

to the VCF using vatools vcf-readcount-annotator. Normalized transcripts per million were 

added using vatools vcf-expression-annotator. Finally, pVACseq was run against this final 

annotated VCF for both MHC Class I and MHC Class II predictions.

RNA-seq data processing and quality control

Initial quality control checks on raw FASTQ files were performed using FastQC (v0.11.8). 

Reads were trimmed for low quality, adapters, N content and poly(A) tails using fastq-mcf 

(v1.05), and contamination assessed using FastQ Screen (v0.11.4). Reads were mapped to 

the human reference GRCh37.92 using the STAR78 two pass method (v2.6.0b). Mapped 

reads were sorted using Picard Tools (v2.17.3). Additional quality control after mapping 

was performed using Picard Tools CollectRnaSeqMetrics (v2.17.3) and RSeQC79 (v2.6.4). 

Counts were generated on the Ensembl release GRCh37.92 gene annotation using HTSeq80 

(v0.10.0). Counts were generated on the exons only using the ‘intersection-nonempty’ mode.

Raw counts data were filtered to only include protein coding genes. To remove lowly 

expressed genes, the data were converted to CPM (counts per million = number of reads 

mapped to a gene × 106/total number of mapped reads), and only genes where at least 10 

samples had a CPM of greater than 0.5 were kept for further processing. The data were 

normalized using the trimmed mean of M values (TMM) method in edgeR81 and batch 

effects removed using the removeBatchEffect function of limma82. Further details on batch 

correction and expression analyses are provided in the Supplementary Methods.

Methylation data processing and quality control

Methylation data quality control assessment and processing were performed using the R 

package minfi83 (v1.32.0). Probes failing detection (P >0.01), SNP positions and cross-

reactive probes (as collected in https://github.com/sirselim/illumina450k_filtering) were 

excluded. Data were normalized using the minfi function ‘preprocessFunnorm’ (Functional 

normalization as described previously84), and beta values were generated. Probes were 

annotated to the Ensembl release GRCh37.92 gene transfer format annotation. Beta values 
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for samples from EPIC and 450k arrays were combined to contain shared probes and batch 

corrected using the ‘ComBat’ function in the R package sva85 (v3.34.0).

Statistical analyses

Differences in proportions of categorical variables between groups were assessed by the 

chi-square or Fisher’s exact test as appropriate. Continuous variables were evaluated using 

either a Kruskal-Wallis test or a Mann-Whitney test. The Kaplan-Meier methodology was 

applied to estimate and plot progression-free and OS probabilities and the corresponding 

time to event were compared between groups using the log-rank (Mantel-Cox) test. For 

display purposes, the x axis in Kaplan-Meier plots is capped at 15 years. Outcomes 

were assessed using univariable and multivariable Cox proportional hazards models, for 

continuous and categorical features, using the ‘coxph’ function of the R package survival 

(v3.2–7) with default parameters. Continuous variables were scaled and centered across the 

cohort using the R function ‘scale’. Correlations between continuous variables were assessed 

by Spearman correlation. All statistical tests were two sided and considered significant when 

P < 0.05. The Benjamini-Hochberg procedure was applied to correct P values for the impact 

of multiple testing, with false discovery rate-adjusted P values denoted by Padj. R (v3.6.3) 

and Prism (v9.2.0) were used for statistical analyses.

Reporting summary

Further information on research design is available in the Nature Portfolio Reporting 

Summary linked to this article.
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Extended Data

Extended Data Fig. 1: Patient cohort.
a, Overview of patients (n = 126) and tumor samples analyzed in this study. In addition 

to paired germline and primary tumor samples in all patients, 5 relapse tumor samples 

were also analyzed from 4 long-term survivor patients. OS, overall survival. b, Clinical 

characteristics of patients by survival group. All patients received primary platinum therapy. 
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aKruskal–Wallis, bChi-square, or clog-rank Mantel–Cox test P values comparing survival 

groups reported.

Extended Data Fig. 2: Frequently altered cancer genes across survival groups.
a, Overview of somatic alterations in driver genes detected by GRIN, dNdScv, GISTIC, 

and/or in cancer-associated genes (COSMIC Cancer Gene Census) that are enriched in 

a survival group relative to another survival group. From left: two-sided Fisher’s test of 

the difference in proportions of altered samples between survival groups, triangles and 

color indicate direction of the log odds ratio (LOR; blue = down, pink = up), asterisks 

indicate P value < 0.05 (see Supplementary Table 6 for P values), P values were not 

adjusted for multiple comparisons; role of gene in COSMIC Cancer Gene Census (TSG, 

tumor suppressor gene); genomic alterations split by survival groups, bars at the top 

indicate the number of alterations in each listed gene per patient; bar plot of the number 
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of samples with an alteration (alteration type indicated by color); bar plots showing the 

proportion of alteration types per gene; P values were calculated using the genomic random 

interval (GRIN) statistical model (one-sided) for recurrent structural variants (SV) (see 

Supplementary Data 2 for GRIN P values), the dNdScv likelihood-ratio test (two-sided) 

for recurrent base substitutions and small-scale deletions and insertions (see Supplementary 

Data 1 for dNdScv P values), and GISTIC2 permutation-of-markers test (one-sided) for 

recurrent copy-number variants (CNV) with red indicating amplification and blue indicating 

deletion (see Supplementary Data 3 for GISTIC2 P values), P values were adjusted for 

multiple comparisons using the Benjamini-Hochberg procedure (dNdScv, GISTIC2) or 

the robust false discovery rate procedure (GRIN) and are shown as negative log10 P 
values and capped at 0.001 for display purposes. Each patient (column) is annotated 

with survival group (LTS, long-term survivor; MTS, moderate-term survivor; STS, short-

term survivor). Below the alterations are bar plots indicating somatic mutation burden 

in variants per megabase (Mb); SV count including duplications, deletions, inversions 

and intrachromosomal rearrangements; and the proportion of the tumor genome that is 

duplicated (WGD) or lost (WGL). b, Pairwise comparison of the alteration frequencies 

between survival groups for genes in the COSMIC Cancer Gene Census. The difference in 

relative alteration frequency is shown on the x-axis and the P value (Fisher’s test, two-sided) 

is shown on the y-axis. Symbols of genes with P values < 0.05 are displayed. Multiple 

hypothesis correction was not applied in this analysis as adjusted P values were all greater 

than 0.1. Alterations in this analysis included non-synonymous mutations, homozygous 

deletions, amplifications and structural variants in coding genes that are expressed.
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Extended Data Fig. 3: Key features of mutational signature clusters and associated survival 
outcomes.
a, Summary of the key clinical and genomic features of each mutational signature cluster. 

Clusters are ordered top to bottom by lowest to highest proportion of long-term survivors 

(LTS) in each cluster. HR, homologous recombination; LOH, loss-of-heterozygosity; 

SV, structural variant; MTS, moderate-term survivor; STS, short-term survivor; DUP, 

duplications; DEL, deletions; INV, inversions. b, Kaplan–Meier analysis of progression-free 

and c, overall survival in patients stratified by signature clusters. P values calculated by 
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Mantel–Cox log-rank test and dotted lines indicate median survival. d, Boxplots summarize 

the proportion (y-axis) of clustered and nonclustered rearrangements by size (x-axis) and 

type, for each mutational signature cluster (SIG.1 n = 14, SIG.2 n = 25, SIG.3 n = 13, 

SIG.4 n = 27, SIG.5 n = 22, SIG.6 n = 9, SIG.7 n = 16); boxes show the interquartile range 

(25–75th percentiles), central lines indicate the median, whiskers show the smallest/largest 

values within 1.5 times the interquartile range and values outside it are shown as individual 

data points. Del, deletions; tds, tandem duplications; inv, inversions, tra, interchromosomal 

translocations; Kb, kilobase; Mb, megabase.
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Extended Data Fig. 4: Categorical features of mutational signature clusters.
a, Proportion of patients affected by gene alterations per mutational signature cluster. Genes 

are ordered by significance using Fisher’s exact test (two-sided) and clusters are ordered 

by the proportion of long-term survivors. b, Proportion of patients with categorical features 

per cluster. Features are ordered by significance using Fisher’s exact test (two-sided) and 

the clusters are arranged by the proportion of long-term survivors. The Fisher’s test P 
values displayed in (a) and (b) are Benjamini-Hochberg adjusted P values. Features include 

homologous recombination (HR) status, homologous recombination deficiency (HRD) type, 
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number of DNA repair pathway alterations, survival group (LTS, long-term survivor; 

MTS, moderate-term survivor; STS, short-term survivor), status at last follow-up (D, dead; 

P, progressed and alive; PF, progression-free and alive), self-reported smoking status, 

DeepCC molecular subtype (C1, mesenchymal; C2, immunoreactive; C4, differentiated; C5, 

proliferative), and neoadjuvant treatment (Y, yes; N, no).

Extended Data Fig. 5: Clinical and genomic features of mutational signature clusters.
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a, Boxplots summarize numerical, clinical and genomic features by mutational signature 

cluster; points represent each sample, boxes show the interquartile range (25–75th 

percentiles), central lines indicate the median, whiskers show the smallest/largest values 

within 1.5 times the interquartile range, red triangles indicate the mean, and dotted lines join 

the means of each cluster to visualize the trend. The Kruskal–Wallis test P values displayed 

are Benjamini-Hochberg adjusted P values. Features are ordered by their significance and 

clusters are ordered by the proportion of long-term survivors. CD8 scores were available 

for n = 54 primary tumors as previously measured by immunohistochemistry23 and scored 

as density of CD8+ T cells (average cells/mm2, y axis) in the tumor epithelium (TE). 

HRD, homologous recombination deficiency; DEL, deletions; DUP; duplications; SV, 

structural variants; Mb, megabase; ITX, intrachromosomal rearrangements; LOH, loss-of-

heterozygosity; INV, inversions. b, Bubble plot summary of mutational signature enrichment 

across signature clusters. The dendrogram is reused from the signature clustering (Fig. 3) 

to order the mutational signature types (columns). Mutational signature clusters (rows) are 

sorted by the proportion of long-term survivors in each cluster, indicated in brackets. The 

color and size of bubbles indicate the z-score scaled values of the mean signature exposure 

per cluster. Bubbles with a z-score of greater than or equal to 1 have a black border and 

bubbles with a z-score of greater than 0.5 but less than 1 have a gray border. Bordered 

bubbles have asterisks filled in to indicate Kruskal–Wallis test P values adjusted for multiple 

testing using Benjamini-Hochberg correction.
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Extended Data Fig. 6: DNA methylation clustering of primary tumor genomes.
a, Heatmap of methylation data following consensus clustering of primary tumors (columns) 

based on the standardized CpG probe intensities (M-values) of the 1% most variable 

CpG probes (rows; number of probes = 3,645) across all primary tumor samples (n 
= 126). The heatmap scale shows the beta values. Five methylation clusters were 

identified (MET.1–MET.5), and each patient (column) is annotated with survival group 

(LTS, long-term survivor; MTS, moderate-term survivor; STS, short-term survivor), age at 

diagnosis (quartiles), and self-reported smoking history. Tumor samples are also classified 

according to CCNE1 amplification (amp) status, BRCA1 alteration status, CIBERSORTx 

absolute (abs) immune scores (quartiles), and molecular subtype11 (C1, mesenchymal; C2, 
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immunoreactive; C4, differentiated; C5, proliferative). Bars in the bottom panel represent 

the BRCA1 (orange) and BRCA2 (blue) type homologous recombination deficiency 

(CHORD28) scores of each tumor sample. b, Kaplan–Meier analysis of progression-free 

(PFS) and overall survival (OS) in patients stratified by methylation clusters. P values 

calculated by Mantel–Cox log-rank test and dotted lines indicate median survival in years 

since diagnosis.

Extended Data Fig. 7: Transcriptional phenotypes in long-term survivors.
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a, Clustered heatmap summarizing gene set enrichment analysis (GSEA) using the hallmark 

Molecular Signatures Database (MSigDB) gene sets. Direction and color of triangles relate 

to the normalized enrichment score (NES) as generated by FGSEA. P values (two-sided) 

were calculated using the FGSEA default Monte Carlo method; the size of the triangles 

corresponds to the negative log10 Benjamini-Hochberg adjusted P value (Padj). The columns 

are split by survival groups (STS, short-term survivor; MTS, moderate-term survivor; LTS, 

long-term survivor), with the direction of enrichment denoted by the group in the heading 

(numerator) versus the two other groups labeled below. b, Boxplots summarize expression of 

MKI67 and PCNA proliferation gene markers across the survival groups (left; STS n = 34, 

MTS n = 32, LTS n = 60); points represent each sample, boxes show the interquartile range 

(25–75th percentiles), central lines indicate the median, and whiskers show the smallest/

largest values within 1.5 times the interquartile range. Differential expression analysis was 

performed using DESeq2 to determine fold change (right) of gene expression between 

survival groups (two-tailed Wald test, both unadjusted P values and Benjamini-Hochberg 

adjusted P values (Padj) are shown). c, Forest plot (left) indicates the hazard ratio (HR, 

squares) and 95% confidence interval (CI; whiskers) for overall survival calculated using 

a univariate Cox proportional hazard regression model based on the LM22 immune cell 

types detected by CIBERSORTx analysis (n = 126 patients). Cell types are arranged by 

HR. P values < 0.05 are colored red (*P < 0.05, **P < 0.01) and were not adjusted 

for multiple comparisons. Absolute enrichment scores per cell type across the cohort are 

shown in boxplots (right); boxes show the interquartile range (25–75th percentiles), central 

lines indicate the median, whiskers show the smallest/largest values within 1.5 times the 

interquartile range and values outside it are shown as individual data points.
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Extended Data Fig. 8: Genomic and clinical features of immune clusters.
a, A condensed bubble plot of the various LM22 cell types used for the immune clustering 

(IMM.1 n = 32, IMM.2 n = 23, IMM.3 n = 22, IMM.4 n = 24, IMM.5 n = 25). The 

dendrogram is reused from the immune clustering (Fig. 5a) to order the cell types. Immune 

clusters (rows) are sorted by the proportion of long-term survivors indicated in brackets. 

The color and size of bubbles indicate z-score scaled values of the mean abundance 

of cell types per cluster. Bubbles with a z-score of greater than or equal to 1 have a 

black border, and those with a z-score of greater than 0.5 but less than 1 have a gray 
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border. Asterisks indicate Kruskal–Wallis test P values adjusted for multiple testing using 

Benjamini-Hochberg correction. Boxplots (right) summarize CIBERSORTx absolute scores 

of each cluster; points represent each sample, boxes show the interquartile range (25–75th 

percentiles), central lines indicate the median, and whiskers show the smallest/largest values 

within 1.5 times the interquartile range. b, Boxplots summarize numerical, clinical and 

genomic features by immune cluster (IMM.1 n = 32, IMM.2 n = 23, IMM.3 n = 22, IMM.4 

n = 24, IMM.5 n = 25); points represent each sample, boxes show the interquartile range 

(25–75th percentiles), central lines indicate the median, whiskers show the smallest/largest 

values within 1.5 times the interquartile range, red triangles indicate the mean, and dotted 

lines join the means of each cluster to visualize the trend. The Kruskal–Wallis test P values 

displayed are Benjamini-Hochberg adjusted. Features are ordered by their significance and 

clusters are ordered by the proportion of long-term survivors. CD8 scores were available 

for n = 54 primary tumors as previously measured by immunohistochemistry23 and scored 

as density of CD8+ T cells (average cells/mm2, y axis) in the tumor epithelium (TE). 

HRD, homologous recombination deficiency; DEL, deletions; DUP; duplications; SV, 

structural variants; Mb, megabase; ITX, intrachromosomal rearrangements; LOH, loss-of-

heterozygosity; INV, inversions.
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Extended Data Fig. 9: Categorical features of immune clusters.
a, Proportion of patients with categorical features per cluster. Features are ordered by 

significance using Fisher’s exact test (two-sided) and the clusters are arranged by the 

proportion of long-term survivors. Features include homologous recombination (HR) 

status, homologous recombination deficiency (HRD) type, number of DNA repair pathway 

alterations, survival group (LTS, long-term survivor; MTS, moderate-term survivor; STS, 

short-term survivor), status at last follow-up (D, dead; P, progressed and alive; PF, 

progression-free and alive), self-reported smoking status, DeepCC molecular subtype (C1, 
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mesenchymal; C2, immunoreactive; C4, differentiated; C5, proliferative), and neoadjuvant 

treatment (Y, yes; N, no). b, Proportion of patients affected by gene alterations per immune 

cluster. Genes are ordered by significance using Fisher’s exact test (two-sided) and clusters 

are ordered by the proportion of long-term survivors. The Fisher’s test P values displayed in 

(a) and (b) are Benjamini-Hochberg adjusted P values.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data availability

ICGC datasets: Previously published WGS and RNA-seq data generated as part of 

the ICGC Ovarian Cancer project14 are available from the European Genome-phenome 

Archive (EGA) repository (https://ega-archive.org) as a single BAM file for each sample 

type (tumor/normal) under the accession code EGAD00001000877. Due to the sensitive 

nature of these patient data sets, access is subject to approval from the ICGC Data 

Access Compliance Office (https://docs.icgc.org/download/data-access/), an independent 

body who authorizes controlled access to ICGC sequencing data. ICGC SNP array and 
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methylation data sets have been deposited into the Gene Expression Omnibus (GEO; https://

www.ncbi.nlm.nih.gov/geo/) under accession code GSE65821, without access restrictions. 

ICGC gene count level transcriptomic data have been deposited into the GEO under 

accession code GSE209964.

MOCOG datasets: WGS, RNA-seq and SNP array data from long-term survivors generated 

as part of the MOCOG study have been deposited in the EGA repository under accession 

code EGAS00001005984. WGS and RNA-seq data are available as raw FASTQ files for 

each sample type (tumor/normal) and SNP array data are available as raw signal intensity 

files in text format for each sample type (tumor/normal). Access to patient sequence 

data can be gained for academic use through application to the independent Data Access 

Committee (dac@petermac.org). Responses to data requests will be provided within two 

weeks. Information on how to apply for access is available at the EGA under accession code 

EGAS00001005984. The MOCOG cohort raw methylation data sets have been submitted to 

the GEO under accession code GSE211687, with no access restrictions.

Uniformly processed somatic variant data from the ICGC and MOCOG cohorts have been 

deposited in Synapse under accession code syn34616347, and processed expression and 

methylation data from both cohorts have been submitted into the GEO under accession code 

GSE211687, without access restrictions.

Population frequencies of genetic variants can be accessed via the Genome 

Aggregation Database (gnomAD) at https://gnomad.broadinstitute.org/. Supporting 

evidence for pathogenicity of genomic alterations can be accessed via ClinVar 

(https://www.ncbi.nlm.nih.gov/clinvar/), BRCA Exchange (https://brcaexchange.org/) and 

the TP53 Database (https://tp53.isb-cgc.org/). The Ensembl ranked order of severity 

of variant consequences is available at: https://rn.ensembl.org/info/genome/variation/

prediction/predicted_data.html. Precomputed TCGA ovarian serous cystadenocarcinoma 

survival analysis data can be downloaded from OncoLnc (http://www.oncolnc.org/). 

Mutational signature reference databases can be accessed via COSMIC (https://

cancer.sanger.ac.uk/signatures/) and Signal (https://signal.mutationalsignatures.com/). The 

LM22 signature matrix used for immune cell deconvolution can be downloaded at 

https://cibersortx.stanford.edu/. The COSMIC Cancer Gene Census can be accessed 

at https://cancer.sanger.ac.uk/census. MSigDB hallmark gene sets can be accessed 

at https://www.gsea-msigdb.org/gsea/msigdb/. Illumina methylation probes that were 

filtered out due to poor performance (for example, cross-reactive or nonspecific 

probes) can be found at https://github.com/sirselim/illumina450k_filtering. Germline 

polymorphic sites for reference and variant allele read counts used in FACETS analysis 

can be found at ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606_b151_GRCh37p13/VCF/

common_all_20180423.vcf.gz. The gene transfer format used for annotation and RNA-

seq counts is available at ftp://ftp.ensembl.org/pub/grch37/release-92/. All other data are 

available within the article and its supplementary information files.

References

1. Millstein J. et al. Prognostic gene expression signature for high-grade serous ovarian cancer. Ann. 
Oncol 31, 1240–1250 (2020). [PubMed: 32473302] 

Garsed et al. Page 35

Nat Genet. Author manuscript; available in PMC 2023 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://gnomad.broadinstitute.org/
https://www.ncbi.nlm.nih.gov/clinvar/
https://brcaexchange.org/
https://tp53.isb-cgc.org/
https://rn.ensembl.org/info/genome/variation/prediction/predicted_data.html
https://rn.ensembl.org/info/genome/variation/prediction/predicted_data.html
http://www.oncolnc.org/
https://cancer.sanger.ac.uk/signatures/
https://cancer.sanger.ac.uk/signatures/
https://signal.mutationalsignatures.com/
https://cibersortx.stanford.edu/
https://cancer.sanger.ac.uk/census
https://www.gsea-msigdb.org/gsea/msigdb/
https://github.com/sirselim/illumina450k_filtering
ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606_b151_GRCh37p13/VCF/common_all_20180423.vcf.gz
ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606_b151_GRCh37p13/VCF/common_all_20180423.vcf.gz
ftp://ftp.ensembl.org/pub/grch37/release-92/


2. Hoppenot C, Eckert MA, Tienda SM & Lengyel E. Who are the long-term survivors of high grade 
serous ovarian cancer? Gynecol. Oncol 148, 204–212 (2018). [PubMed: 29128106] 

3. Fago-Olsen CL et al. Does neoadjuvant chemotherapy impair long-term survival for ovarian cancer 
patients? A nationwide Danish study. Gynecol. Oncol 132, 292–298 (2014). [PubMed: 24321400] 

4. Chi DS et al. What is the optimal goal of primary cytoreductive surgery for bulky stage IIIC 
epithelial ovarian carcinoma (EOC)? Gynecol. Oncol 103, 559–564 (2006). [PubMed: 16714056] 

5. Horowitz NS et al. Does aggressive surgery improve outcomes? Interaction between preoperative 
disease burden and complex surgery in patients with advanced-stage ovarian cancer: an analysis of 
GOG 182. J. Clin. Oncol 33, 937–943 (2015). [PubMed: 25667285] 

6. Alsop K. et al. BRCA mutation frequency and patterns of treatment response in BRCA mutation-
positive women with ovarian cancer: A report from the Australian ovarian cancer study group. J. 
Clin. Oncol 30, 2654–2663 (2012). [PubMed: 22711857] 

7. The Cancer Genome Atlas Research Network. Integrated genomic analysis of ovarian cancer. Nature 
474, 609–615 (2011). [PubMed: 21720365] 

8. Walsh T. et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma 
identified by massively parallel sequencing. Proc. Natl Acad. Sci. USA 108, 18032–18037 (2011). 
[PubMed: 22006311] 

9. Ciriello G. et al. Emerging landscape of oncogenic signatures across human cancers. Nat. Genet 45, 
1127–1133 (2013). [PubMed: 24071851] 

10. Ahmed AA et al. Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the 
ovary. J. Pathol 221, 49–56 (2010). [PubMed: 20229506] 

11. Tothill RW et al. Novel molecular subtypes of serous and endometrioid ovarian cancer linked to 
clinical outcome. Clin. Cancer Res 14, 5198–5208 (2008). [PubMed: 18698038] 

12. Etemadmoghadam D. et al. Integrated genome-wide DNA copy number and expression analysis 
identifies distinct mechanisms of primary chemoresistance in ovarian carcinomas. Clin. Cancer 
Res 15, 1417–1427 (2009). [PubMed: 19193619] 

13. Hwang WT, Adams SF, Tahirovic E, Hagemann IS & Coukos G. Prognostic significance of tumor-
infiltrating T cells in ovarian cancer: A meta-analysis. Gynecol. Oncol 124, 192–198 (2012). 
[PubMed: 22040834] 

14. Patch AM et al. Whole-genome characterization of chemoresistant ovarian cancer. Nature 521, 
489–494 (2015). [PubMed: 26017449] 

15. Wang YK et al. Genomic consequences of aberrant DNA repair mechanisms stratify ovarian cancer 
histotypes. Nat. Genet 49, 856–864 (2017). [PubMed: 28436987] 

16. Macintyre G. et al. Copy number signatures and mutational processes in ovarian carcinoma. Nat. 
Genet 50, 1262–1270 (2018). [PubMed: 30104763] 

17. Pennington KP et al. Germline and somatic mutations in homologous recombination genes predict 
platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. Clin. Cancer 
Res 20, 764–775 (2014). [PubMed: 24240112] 

18. Farmer H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. 
Nature 434, 917–921 (2005). [PubMed: 15829967] 

19. Fong PC et al. Poly(ADP)-ribose polymerase inhibition: frequent durable responses in BRCA 
carrier ovarian cancer correlating with platinum-free interval. J. Clin. Oncol 28, 2512–2519 
(2010). [PubMed: 20406929] 

20. Swisher EM et al. Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma 
(ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial. Lancet Oncol. 18, 75–87 
(2017). [PubMed: 27908594] 

21. Bolton KL et al. Association between BRCA1 and BRCA2 mutations and survival in women with 
invasive epithelial ovarian cancer. JAMA 307, 382–390 (2012). [PubMed: 22274685] 

22. Candido-dos-Reis FJ et al. Germline mutation in BRCA1 or BRCA2 and ten-year survival for 
women diagnosed with epithelial ovarian cancer. Clin. Cancer Res 21, 652–657 (2015). [PubMed: 
25398451] 

23. Garsed DW et al. Homologous recombination DNA repair pathway disruption and retinoblastoma 
protein loss are associated with exceptional survival in high-grade serous ovarian cancer. Clin. 
Cancer Res 24, 569–580 (2018). [PubMed: 29061645] 

Garsed et al. Page 36

Nat Genet. Author manuscript; available in PMC 2023 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



24. Ciriello G, Cerami E, Sander C. & Schultz N. Mutual exclusivity analysis identifies oncogenic 
network modules. Genome Res. 22, 398–406 (2012). [PubMed: 21908773] 

25. Etemadmoghadam D. et al. Synthetic lethality between CCNE1 amplification and loss of BRCA1. 
Proc. Natl Acad. Sci. USA 110, 19489–19494 (2013). [PubMed: 24218601] 

26. Newman AM et al. Determining cell type abundance and expression from bulk tissues with digital 
cytometry. Nat. Biotechnol 37, 773–782 (2019). [PubMed: 31061481] 

27. Miller RE et al. ESMO recommendations on predictive biomarker testing for homologous 
recombination deficiency and PARP inhibitor benefit in ovarian cancer. Ann. Oncol 31, 1606–1622 
(2020). [PubMed: 33004253] 

28. Nguyen L, Martens WMJ, Van Hoeck A. & Cuppen E. Pan-cancer landscape of homologous 
recombination deficiency. Nat. Commun 11, 1–12 (2020). [PubMed: 31911652] 

29. Joshi PM, Sutor SL, Huntoon CJ & Karnitz LM Ovarian cancer-associated mutations disable 
catalytic activity of CDK12, a kinase that promotes homologous recombination repair and 
resistance to cisplatin and poly(ADP-ribose) polymerase inhibitors. J. Biol. Chem 289, 9247–9253 
(2014). [PubMed: 24554720] 

30. Anaya J. OncoLnc: Linking TCGA survival data to mRNAs, miRNAs, and lncRNAs. Peer J. 
Comp. Sci 2, e67 (2016).

31. Norquist B. et al. Secondary somatic mutations restoring BRCA1/2 predict chemotherapy 
resistance in hereditary ovarian carcinomas. J. Clin. Oncol 29, 3008–3015 (2011). [PubMed: 
21709188] 

32. Alexandrov LB et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 
(2020). [PubMed: 32025018] 

33. Degasperi A. et al. A practical framework and online tool for mutational signature analyses 
show inter-tissue variation and driver dependencies. Nat. Cancer 1, 249–263 (2020). [PubMed: 
32118208] 

34. Popova T. et al. Ovarian cancers harboring inactivating mutations in CDK12 display a distinct 
genomic instability pattern characterized by large tandem duplications. Cancer Res. 76, 1882–
1891 (2016). [PubMed: 26787835] 

35. Wu YM et al. Inactivation of CDK12 delineates a distinct immunogenic class of advanced prostate 
cancer. Cell 173, 1770–1782.e1714 (2018). [PubMed: 29906450] 

36. Funnell T. et al. Integrated structural variation and point mutation signatures in cancer genomes 
using correlated topic models. PLoS Comput. Biol 15, 1–24 (2019).

37. Zhang L. et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. 
J. Med 348, 203–213 (2003). [PubMed: 12529460] 

38. Ovarian Tumor Tissue Analysis (OTTA) Consortium. Dose-response association of CD8+ tumor-
infiltrating lymphocytes and survival time in high-grade serous ovarian cancer. JAMA Oncol. 3, 
e173290 (2017).

39. Jiménez-Sánchez A. et al. Heterogeneous tumor-immune microenvironments among differentially 
growing metastases in an ovarian cancer patient. Cell 170, 927–938.e920 (2017). [PubMed: 
28841418] 

40. Yang SYC et al. Landscape of genomic alterations in high-grade serous ovarian cancer from 
exceptional long- and short-term survivors. Genome Med 10, 81 (2018). [PubMed: 30382883] 

41. Korotkevich G. et al. Fast gene set enrichment analysis. Preprint at bioRxiv 10.1101/060012 
(2021).

42. Liberzon A. et al. The molecular signatures database hallmark gene set collection. Cell Syst. 1, 
417–425 (2015). [PubMed: 26771021] 

43. Saner FAM et al. Going to extremes: determinants of extraordinary response and survival in 
patients with cancer. Nat. Rev. Cancer 19, 339–348 (2019). [PubMed: 31076661] 

44. Wheeler DA et al. Molecular features of cancers exhibiting exceptional responses to treatment. 
Cancer Cell 39, 38–53.e37 (2021). [PubMed: 33217343] 

45. Moore K. et al. Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. 
N. Engl. J. Med 379, 2495–2505 (2018). [PubMed: 30345884] 

Garsed et al. Page 37

Nat Genet. Author manuscript; available in PMC 2023 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



46. Ewing A. et al. Structural Variants at the BRCA1/2 loci are a common source of homologous 
repair deficiency in high-grade serous ovarian carcinoma. Clin. Cancer Res 27, 3201–3214 (2021). 
[PubMed: 33741650] 

47. Swisher EM et al. Characterization of patients with long-term responses to rucaparib treatment in 
recurrent ovarian cancer. Gynecol. Oncol 163, 490–497 (2021). [PubMed: 34602290] 

48. Velez-Cruz R. et al. RB localizes to DNA double-strand breaks and promotes DNA end resection 
and homologous recombination through the recruitment of BRG1. Genes Dev. 30, 2500–2512 
(2016). [PubMed: 27940962] 

49. Fan W. et al. MET-independent lung cancer cells evading EGFR kinase inhibitors are 
therapeutically susceptible to BH3 mimetic agents. Cancer Res. 71, 4494–4505 (2011). [PubMed: 
21555370] 

50. Cole A. NFATC4 promotes quiescence and chemotherapy resistance in ovarian cancer. JCI Insight 
5, e131486 (2020).

51. Sieh W. et al. Hormone-receptor expression and ovarian cancer survival: an Ovarian Tumor Tissue 
Analysis consortium study. Lancet Oncol. 14, 853–862 (2013). [PubMed: 23845225] 

52. Gersekowski K. et al. Germline BRCA variants, lifestyle and ovarian cancer survival. Gynecol. 
Oncol 165, 437–445 (2022). [PubMed: 35400525] 

53. Jung YS et al. Impact of smoking on human natural killer cell activity: A large cohort study. J. 
Cancer Prev 25, 13–20 (2020). [PubMed: 32266175] 

54. Cress RD, Chen YS, Morris CR, Petersen M. & Leiserowitz GS Characteristics of long-term 
survivors of epithelial ovarian cancer. Obstet. Gynecol 126, 491–497 (2015). [PubMed: 26244529] 

55. Schröder J, Corbin V. & Papenfuss AT HYSYS: Have you swapped your samples? Bioinformatics 
33, 596–598 (2017). [PubMed: 28003257] 

56. Song S. et al. qpure: A tool to estimate tumor cellularity from genome-wide single-nucleotide 
polymorphism profiles. PLoS One 7, 5–11 (2012).

57. Van Loo P. et al. Allele-specific copy number analysis of tumors. Proc. Natl Acad. Sci. USA 107, 
16910–16915 (2010). [PubMed: 20837533] 

58. Wingett SW & Andrews S. FastQ Screen: A tool for multi-genome mapping and quality control. 
F1000Res. 7, 1338 (2018). [PubMed: 30254741] 

59. Li H. & Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. 
Bioinformatics 25, 1754–1760 (2009). [PubMed: 19451168] 

60. McKenna A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-
generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010). [PubMed: 20644199] 

61. Shen R. & Seshan VE FACETS: Allele-specific copy number and clonal heterogeneity analysis 
tool for high-throughput DNA sequencing. Nucleic Acids Res. 44, 1–9 (2016). [PubMed: 
26621913] 

62. Lai Z. et al. VarDict: a novel and versatile variant caller for next-generation sequencing in cancer 
research. Nucleic Acids Res. 44, e108 (2016). [PubMed: 27060149] 

63. Kim S. et al. Strelka2: fast and accurate calling of germline and somatic variants. Nat. Methods 15, 
591–594 (2018). [PubMed: 30013048] 

64. Koboldt DC et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by 
exome sequencing. Genome Res. 22, 568–576 (2012). [PubMed: 22300766] 

65. Danecek P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, 1–4 (2021).

66. Tan A, Abecasis GR & Kang HM Unified representation of genetic variants. Bioinformatics 31, 
2202–2204 (2015). [PubMed: 25701572] 

67. Shyr C. et al. FLAGS, frequently mutated genes in public exomes. BMC Med. Genomics 7, 64 
(2014). [PubMed: 25466818] 

68. Chen X. et al. Manta: Rapid detection of structural variants and indels for germline and cancer 
sequencing applications. Bioinformatics 32, 1220–1222 (2016). [PubMed: 26647377] 

69. Cameron DL et al. GRIDSS: Sensitive and specific genomic rearrangement detection using 
positional de Bruijn graph assembly. Genome Res. 27, 2050–2060 (2017). [PubMed: 29097403] 

70. Wala JA et al. SvABA: Genome-wide detection of structural variants and indels by local assembly. 
Genome Res. 28, 581–591 (2018). [PubMed: 29535149] 

Garsed et al. Page 38

Nat Genet. Author manuscript; available in PMC 2023 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



71. Lawrence M, Gentleman R. & Carey V. rtracklayer: An R package for interfacing with genome 
browsers. Bioinformatics 25, 1841–1842 (2009). [PubMed: 19468054] 

72. Bielski CM et al. Genome doubling shapes the evolution and prognosis of advanced cancers. Nat. 
Genet 50, 1189–1195 (2018). [PubMed: 30013179] 

73. Robinson JT et al. Integrative genomics viewer. Nat. Biotechnol 29, 24–26 (2011). [PubMed: 
21221095] 

74. Sztupinszki Z. et al. Migrating the SNP array-based homologous recombination deficiency 
measures to next generation sequencing data of breast cancer. NPJ Breast Cancer 4, 16 (2018). 
[PubMed: 29978035] 

75. Nariai N. et al. HLA-VBSeq: Accurate HLA typing at full resolution from whole-genome 
sequencing data. BMC Genomics 16, 1–6 (2015). [PubMed: 25553907] 

76. Robinson J. et al. IPD-IMGT/HLA Database. Nucleic Acids Res. 48, D948–D955 (2020). 
[PubMed: 31667505] 

77. Hundal J. et al. PVACtools: A computational toolkit to identify and visualize cancer neoantigens. 
Cancer Immunol. Res 8, 409–420 (2020). [PubMed: 31907209] 

78. Dobin A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). 
[PubMed: 23104886] 

79. Wang L, Wang S. & Li W. RSeQC: Quality control of RNA-seq experiments. Bioinformatics 28, 
2184–2185 (2012). [PubMed: 22743226] 

80. Anders S, Pyl PT & Huber W. HTSeq-A Python framework to work with high-throughput 
sequencing data. Bioinformatics 31, 166–169 (2015). [PubMed: 25260700] 

81. Robinson MD, McCarthy DJ & Smyth GK edgeR: A Bioconductor package for differential 
expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2009). [PubMed: 
19910308] 

82. Ritchie ME et al. Limma powers differential expression analyses for RNA-sequencing and 
microarray studies. Nucleic Acids Res. 43, e47 (2015). [PubMed: 25605792] 

83. Aryee MJ et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis 
of Infinium DNA methylation microarrays. Bioinformatics 30, 1363–1369 (2014). [PubMed: 
24478339] 

84. Fortin J-P et al. Functional normalization of 450k methylation array data improves replication in 
large cancer studies. Genome Biol. 15, 503 (2014). [PubMed: 25599564] 

85. Leek JT, Johnson WE, Parker HS, Jaffe AE & Storey JD The sva package for removing batch 
effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882–883 
(2012). [PubMed: 22257669] 

Garsed et al. Page 39

Nat Genet. Author manuscript; available in PMC 2023 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1 |. HGSCs with multiple altered DNA repair pathway genes are associated with long-term 
survival.
a, Proportion of patients affected by homologous recombination (HR) DNA repair pathway 

gene alterations and CCNE1 gene amplification (aCCNE1) in each survival group. 

Homologous recombination alterations include pathogenic germline (g) or somatic (s) 

mutations, and BRCA1 or RAD51C promoter methylation (m) as indicated. One alteration 

is counted for patients with more than one change, prioritizing alterations by variant 

allele frequency and/or by evidence of genomic scarring associated with the candidate 
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driver alteration. Differences in proportions of homologous recombination-altered, CCNE1 
amplified and wild-type tumors between survival groups were assessed by chi-square. b, 

Bars at the top represent the number of alterations in each listed gene per patient. Pathogenic 

germline and somatic alterations in homologous recombination pathway genes are shown, 

as well as alterations in other DNA repair associated genes, immune genes and CCNE1. 
Each patient (column) is annotated with survival group (LTS, long-term survivor; MTS, 

moderate-term survivor; STS, short-term survivor). Bars indicate the level of homologous 

recombination deficiency (HRD) in each primary tumor sample, measured as probabilities 

of BRCA1-type (orange) HRD, BRCA2-type(blue) HRD, or homologous recombination 

proficiency (none, gray), as predicted by CHORD28. Bar plots at the bottom indicate the 

proportion of total detected structural variants (SV) classified as duplications, deletions, 

inversions or interchromosomal translocations. Samples are grouped by the primary gene 

alteration identified in each patient. Alteration count and proportion of alteration types per 

gene are shown as bar plots on the right. c, Proportion of patients with 0, 1, 2 or 3 or 

more DNA repair pathway alterations by survival group (LTS, long-term survivor; MTS, 

moderate-term survivor; STS, short-term survivor). Differences in proportions between 

groups were assessed by chi-square. d, Kaplan-Meier analysis of progression-free survival 

(PFS) (left) and OS in patients (right) with 0, 1, 2 or 3 or more DNA repair pathway 

alterations. P values calculated by Mantel-Cox log-rank test.
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Fig. 2 |. Genomic analysis of matched primary and recurrent HGSC in four long-term survivors.
a, Serum CA125 levels (solid black lines) on a log scale (y axis) of long-term survivor 

relapse cases (n = 4), measured at various intervals over time (x axis). The upper limit of 

normal for CA125 (dotted gray lines) can vary depending on the CA125 assay performed. 

Colored circles and rectangles represent different lines of treatment as indicated. All patients 

were diagnosed with stage IIIC HGSC at primary surgery (blue triangle). Also indicated is 

the time of first progression (red triangle), additional surgeries (purple asterisks), sequenced 

sample (red ring), death (gray cross) or date last seen alive (green diamond). b, Circos plots 

summarize the structural variants (lines) that are shared or unique between primary and 

relapse samples for each case as indicated. Bar plots below show the proportion of total 

shared and unique structural variants (SVs) in each patient. In the patient with two relapse 
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samples, structural variants that were shared only by two tumor samples were classified 

as “others”. c, Somatic (SM) and germline (GL) alterations in primary and relapse tumor 

samples in genes of interest (rows). Each sample (column) is annotated with sample type 

(primary or relapse) and molecular (Mol.) subtype11 if RNA was available. Bars indicate 

the level of HRD in each tumor sample, measured as probabilities of BRCA1-type(orange) 

HRD, BRCA2-type(blue) HRD, or homologous recombination proficient (none, gray), as 

predicted by CHORD28. Bar plots at the bottom indicate somatic mutation burden in variants 

per megabase (Mb) and SV counts in each sample. d, BigWig tracks of DNA sequencing 

coverage (y axis) in two paired primary (shaded blue) and relapse (shaded red) tumor 

samples showing the locations (x axis) of deletions (blue rectangles) identified in RB1.
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Fig. 3 |. Long-term survivor tumor genomes are characterized by distinct molecular phenotypes.
Heatmap of mutational signatures following consensus clustering based on proportions 

of mutational signature exposures in each primary tumor sample (n = 126). Patient 

(column) scaled z-scores are shown in the heatmap. Seven mutational signature clusters 

were identified (SIG.1-SIG.7), and each patient (column) is annotated with survival group 

(LTS, long-term survivor; MTS, moderate-term survivor; STS, short-term survivor), status 

at last follow-up (D, dead; P, progressed and alive; PF, progression-free and alive), residual 

disease and age at diagnosis (in years; quartiles). Bars represent the BRCA1-type (orange) 

and BRCA2-type (blue) HRD (CHORD28) scores of each tumor sample, and germline and 

somatic alterations affecting genes of interest are shown in the bottom panel.
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Fig. 4 |. Elevated somatic mutation burden in long-term survivors.
a, Bars indicate the total variant count of each primary tumor sample (n = 126), including 

SNVs, small-scale insertions and deletions (INDELs) and multinucleotide variants (MNVs). 

b, Tumor samples are ordered left to right from fewest to largest number of neoantigens 

(black bars). c, Bars indicate total number of large-scale structural variants (SVs) in primary 

tumors, including duplications, deletions, inversions and interchromosomal translocations. 

d, Bars indicate the proportion of each tumor genome affected by CNVs, including regions 

of gain, amplification, loss, homozygous deletion and copy-neutral loss of heterozygosity 

(LOH). e, Violin plots represent the tumor mutation burden, structural variant count and 

predicted neoantigen counts of tumor genomes in each survival group. Dashed lines 

represent the median and dotted lines represent the lower and upper quartiles. Kruskal-

Wallis (K-W) test P values are reported. STS, short-term survivor; MTS, moderate-term 

survivor; LTS, long-term survivor; mut/Mb, mutations per megabase. f, Forest plot indicates 

the HR (squares) and 95% Cl (whiskers) for progression-free and OS (n = 126 patients) 

calculated using a univariate Cox proportional hazard regression model based on genomic 
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features as indicated; P values < 0.05 are colored red (*P < 0.05, **P < 0.01) and were not 

adjusted for multiple comparisons.
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Fig. 5 |. Immune phenotypes of long-term survivors.
a, Heatmap of scaled abundance of immune cell types following consensus clustering 

based on CIBERSORTx26 estimated absolute abundance of immune cell types from bulk 

RNA-seq data of each primary tumor (n = 126). Five immune clusters were identified 

(IMM.1-IMM.5), and each patient (column) is annotated with survival group (LTS, long-

term survivor; MTS, moderate-term survivor; STS, short-term survivor), status at last 

follow-up (D, dead; P, progressed and alive; PF, progression-free and alive), residual disease 

size and age at diagnosis (quartiles). CIBERSORTx absolute (abs) immune scores, tumor 

purity, neoantigen counts, structural variant (SV) counts and ploidy estimates are shown 

as quartiles. Tumor samples are also classified according to molecular subtype11 (Cl, 

mesenchymal; C2, immunoreactive; C4, differentiated; C5, proliferative). b,c, Kaplan-Meier 

analysis of progression-free survival (b) and OS (c) in patients stratified by immune clusters. 

P values were calculated by Mantel-Cox log-rank test, and dotted lines indicate median 

survival.
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Fig. 6 |. Key features associated with exceptional survival in HGSC.
a, Spine plots showing the proportion of samples shared between the mutational signature 

clusters (left) and the immune clusters (right), with the number of overlapping samples 

indicated inside the colored bars. Also shown is the proportion of survival groups (STS, 

short-term survivor; MTS, moderate-term survivor; LTS, long-term survivor) in each cluster. 

Each of the two types of clusters is ordered horizontally and vertically by the overall 

proportion of LTS. The height of the bars indicates the number of samples in the cluster. 

b, Forest plot illustrates the HR (squares) and 95% CI (whiskers) for OS calculated using 

a univariate Cox proportional hazard regression model based on selected features; results 

were not adjusted for multiple comparisons (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 
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0.0001). Features are sorted top to bottom by smallest to largest HR and P values less than 

0.05 in multivariable model are colored red. Complete univariable and multivariable results, 

including feature associations with progression-free survival, are provided in Supplementary 

Tables 13, 14. Ref indicates the reference used for categorical features, and n indicates the 

number of samples in the categorical group.
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