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ABSTRACT
Inflammatory bowel disease (IBD) represents a prominent chronic immune-mediated inflammatory 
disorder, yet its etiology remains poorly comprehended, encompassing intricate interactions 
between genetics, immunity, and the gut microbiome. This study uncovers a novel colitis- 
associated risk gene, namely Ring1a, which regulates the mucosal immune response and intestinal 
microbiota. Ring1a deficiency exacerbates colitis by impairing the immune system. Concomitantly, 
Ring1a deficiency led to a Prevotella genus-dominated pathogenic microenvironment, which can 
be horizontally transmitted to co-housed wild type (WT) mice, consequently intensifying dextran 
sodium sulfate (DSS)-induced colitis. Furthermore, we identified a potential mechanism linking the 
altered microbiota in Ring1aKO mice to decreased levels of IgA, and we demonstrated that 
metronidazole administration could ameliorate colitis progression in Ring1aKO mice, likely by 
reducing the abundance of the Prevotella genus. We also elucidated the immune landscape of 
DSS colitis and revealed the disruption of intestinal immune homeostasis associated with Ring1a 
deficiency. Collectively, these findings highlight Ring1a as a prospective candidate risk gene for 
colitis and suggest metronidazole as a potential therapeutic option for clinically managing 
Prevotella genus-dominated colitis.

SUMMARY
We found that PcG protein Ring1a could be a new risk gene for colitis. Ring1a deficiency causes 
aggravated colitis by regulating the mucosal immune system and colonic microbial ecology.
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Introduction

Inflammatory bowel disease (IBD) is a chronic 
immune-mediated relapsing inflammatory disorder 
of the intestine and is recognized as a prevalent gas-
trointestinal condition worldwide.1,2 Despite its high 
prevalence, the etiology of IBD remains inadequately 
understood. Existing evidence strongly suggests that 
the pathophysiology of IBD arises from intricate inter-
actions among environmental, microbial, and 
immune-mediated factors in individuals with 
a genetic susceptibility.3–5 Two prominent clinical 

phenotypes of IBD are Crohn’s disease (CD) and 
ulcerative colitis (UC). Although CD and UC exhibit 
distinct characteristics, both disorders share 
a common pathogenesis involving dysbiosis of sym-
biotic microorganisms and intestinal inflammation.4 

The mammalian gastrointestinal tract harbors 
a complex microbial community comprised of tril-
lions of bacteria, which dynamically interact and co- 
evolve with the host immune system.6 The resident 
gut symbionts play fundamental roles in host physio-
logical processes, nutrition and metabolism, immune 
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system development, and defense against pathogen 
colonization.7,8 In recent years, extensive research 
has focused on unraveling the intricate interplay 
between the immune system and the gut microbiota, 
as well as the impact of the intestinal microbiota on 
immune system functioning in various diseases, 
including IBD.6 Therefore, understanding and unco-
vering the complex relationships between the intest-
inal microbiota and the host immune system holds 
promise for elucidating the pathogenesis of IBD and 
providing novel preventive and therapeutic strategies.

Polycomb group (PcG) proteins comprise a class 
of epigenetic repressors that catalyze histone modifi-
cations involved in gene regulation, cell differentia-
tion, and development.9,10 These proteins mainly 
form two protein complexes, namely polycomb 
repressive complexes 1 (PRC1) and 2 (PRC2).11 

Generally, PRC1 acts as a transcriptional repressor, 
inhibiting gene transcription through catalyzing his-
tone H2A monoubiquitylation at lysine 119 
(H2AK119ub1).12–14 However, several studies have 
revealed that PRC1 can also function as 
a transcriptional activator, promoting gene 
transcription.15,16 Mammalian PRC1 comprises the 
E3 ubiquitin ligase Ring1a, Ring1b, and one of six 
PCGF proteins. The E3 ubiquitin ligase Ring1a or its 
homolog Ring1b constitutes the catalytic core of 
PRC1. Ring1a exerts overlapping functions with 
Ring1b in catalyzing H2AK119ub1.12 By cooperating 
with Ring1b and other PcG proteins, Ring1a regulates 
processes such as chromosome X inactivation,12 Hox 
gene silencing,17 and ES and AML stem cell identity 
maintenance.18–20 Although Ring1a is widely 
expressed in various immunocyte types, its role in 
the immune system and immune-related disorders 
remains largely unexplored. Ring1a has been reported 
to play an essential role in converting T cells to B cells. 
T cell deficiency of Ring1a and Ring1b leads to over-
expression of PAX5, which hampers their maturation 
and promotes their conversion to B cells.21 Moreover, 
Ring1a has been shown to bind to the Il4 and Ifng loci 
in differentiated T helper cells.22 However, the invol-
vement of Ring1a in chronic immune-mediated IBD 
remains uninvestigated.

In this study, we investigated the contribution of 
the polycomb complex protein Ring1a to colitis 
development and revealed how Ring1a regulates 
colitis through the immune system and intestinal 
microbiota. We found that Ring1a deficiency 

exacerbated colitis exacerbation by perturbing the 
immune system and altering the gut microbiota 
composition. Additionally, we demonstrated that 
colitis exacerbations caused by Ring1a deficiency 
could be transmitted to co-housed wild type (WT) 
mice and persist over time. Furthermore, 16S rRNA 
sequencing revealed that Ring1a deficiency led to 
a Prevotella genus-dominated microenvironment, 
potentially attributable to reduced IgA production. 
Additionally, we discovered that metronidazole 
administration mitigated colitis exacerbations 
induced by Ring1a deficiency. Furthermore, 
through Single-cell RNA sequencing (scRNA-seq) 
transcriptional analysis, we characterized the 
immune landscape of intestinal lamina propria 
(LP) in dextran sodium sulfate (DSS)-induced colitis 
and uncovered the disruption of intestinal immune 
homeostasis associated with Ring1a deficiency.

Materials and methods

Mice

CD45.1+ mice were purchased from Beijing University 
Experimental Animal Center (Beijing, China). Ring1a 
knockout (Ring1aKO) mice (Saiye, Guangzhou, 
China) were crossed with C57BL/6 J (B6) (Huafukang 
Bioscience, Beijing, China). All mice were bred and 
maintained under specific pathogen-free conditions 
in the animal facility of Zhengzhou University. Sex- 
matched littermate WT and Ring1aKO mice of 8 to 12- 
week were used for experiments. For co-housing 
experiments, 5 to 6-week and gender-matched litter-
mate WT and Ring1aKO mice were co-housed for at 
least 2 to 4 weeks. All animal studies were approved by 
the Animal Ethics Committee of Zhengzhou 
University (Zhengzhou, China).

DSS colitis

Mice were treated with 2.5% (w/v) DSS (M.W. =  
36,000–50,000 Da; MP Biomedicals) dissolved in 
drinking water for 7 or 8 consecutive days, and 
then mice were sacrificed. Ring1a inhibitor 
(PRT4165, 8 mg/kg, Sigma-Aldrich) or the same 
dose of dimethyl sulfoxide was intraperitoneally 
injected into mice daily from day −2 to day 3 during 
DSS-induced colitis model to evaluate the effect of 
Ring1aKO inhibitor on mouse colitis. Body weight 
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and disease activity index (DAI) were assessed daily. 
DAI scores were calculated according to weight loss, 
stool consistency, and stool blood content/rectal 
bleeding, as previously described.23

Histopathology

Colon tissues were fixed in 4% paraformaldehyde 
and then embedded in paraffin. Subsequently, 5  
μm sections were stained with hematoxylin and 
eosin (H&E).24 Histological sections were scored 
as previously described.23 Epithelium: normal mor-
phology (0), loss of goblet cells (1), loss of goblet 
cells in large areas (2), loss of crypts (3), and loss of 
crypts in large areas (4); and infiltration: no infil-
trate (0), infiltrate around crypts (1), infiltrate 
reaching the lamina muscularis mucosae (2), 
extensive infiltration reaching the lamina muscu-
laris mucosae and thickening of the mucosa (3), 
and infiltration of the submucosal layer (4). A total 
histological score equals to the sum of both scores.

Isolation of colonic LP cells

Colonic LP cells were isolated as previously 
described.25 Briefly, colons were sheared longitud-
inally and rinsed with PBS, and then were incu-
bated in PBS (5 mM EDTA) on the shaker for 12  
min at 37°C. Colon tissues were washed and 
minced, and then digested in 5 mL of 1640 medium 
containing 10% FBS, 1 mg/mL Type IV collage-
nase, and 40 µg/mL DNase I at 220 rpm for 60  
min at 37°C. After digestion, cells were filtered 
successively through 75-µm and 37-µm filter 
membranes.

Flow cytometry

For analysis of surface markers, prepared single cell 
suspension (100 μL, 5 × 106 cells/ml) was stained 
with anti-mouse CD45 (30-F11, Biolegend), anti- 
mouse CD19 (6D5, Biolegend), anti-mouse CD45.1 
(A20, Tonbo), anti-mouse CD45.2 (104, Invitrogen), 
anti-mouse IgA (mA-6E1, Invitrogen). Stained cells 
were analyzed on FACSCelesta (BD Biosciences) 
and the obtained data were analyzed with 
FlowJo_V10 software.

Cell Sorting by Flow Cytometry

4 × 106 colonic LP cells were suspended in 300 μL 
PBS. Firstly, incubated with anti-mouse CD16/32 
antibody for 10 min, and then incubated with anti- 
mouse CD45 antibody for 30 min. After being 
washed with cold PBS, cells were incubated with 
7-aminoactinomycin (7AAD) for 10 min. Lastly, 
CD45+7AAD− cells were sorted on BD FACSMelody.

16S rRNA analysis

Fecal samples were collected separately from sin-
gle-housed and co-housed mice (2 weeks) into ster-
ile tubes before DSS treatment, and were rapidly 
snap-frozen in liquid nitrogen. The total DNA 
from fecal bacteria was extracted and 16S rRNA 
genes (V3-V4 region) were amplified using primers 
(F: 5’-ACTCCTACGGGAGGCAGCA-3’, R: 5’- 
GGACTACHVGGGTWTCTAAT-3’). Sequencing 
was performed using the Illumina NovaSeq plat-
form (PANOMIX Biomedical, Suzhou). Data were 
analyzed using QIIME2. Taxonomy was assigned 
to ASVs using the classify-sklearn naïve Bayes tax-
onomy classifier in the feature-classifier plugin 
against the SILVA Release 132 database.

Depletion of intestinal microbiota

WT and Ring1aKO mice were gavaged with 
a combination of four antibiotics (ampicillin 100  
mg/kg, vancomycin 50 mg/kg, neomycin sulfate 
100 mg/kg and metronidazole 100 mg/kg) to deplete 
bacteria or amphotericin B (1 mg/kg) to deplete 
fungi for 14 consecutive days (2 times/day). Before 
and during DSS-induced colitis model, WT and 
Ring1aKO mice were gavaged with metronidazole 
(100 mg/kg) for every 12 hours consecutive 14 days 
(from day −10 to day 4), feces were collected for 16S 
rRNA sequencing at day 0.

Bone marrow transplantation

For full bone marrow chimeras, 8 to 10- week male 
WT and Ring1aKO mice were sublethally irra-
diated with 9 Gy, and then received 1 × 107 WT 
or Ring1aKO bone marrow cells 4 hours later. For 
mixed bone marrow chimeras, 8 to 10-week male 
CD45.1 mice were sublethally irradiated with 9 Gy 
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and received 1 × 107 WT and Ring1aKO bone mar-
row cells (1:1) 4 hours later.

scRNA-seq and data analysis

Intestinal LP immune cells were prepared and 
pooled for scRNA-seq from colon tissues of five 
mice of each group (DSS-treated WT and 
Ring1aKO mice). Sorted CD45+ cells were loaded 
onto the Chromium microfluidic chips and bar-
coded with a 10× Chromium Controller to generate 
single-cell gel beads-in-emulsions (GEMs). The 
scRNA-seq libraries were constructed using Single 
Cell 3’ Library and Gel Bead Kit V3.1 (10× 
Genomics). The libraries were finally sequenced 
using the Illumina Novaseq 6000 platform with 
a sequencing depth of at least 100,000 reads per 
cell with a pair-end 150 bp (PE150) reading strategy. 
Raw sequence data were mapped to the mm10 gen-
ome reference using CellRanger-count (3.0.1) to 
produce feature-barcode matrices. The Seurat V3.0  
R package (https://satijalab.org/seurat) was used to 
perform data filtration, sample integration, gene 
normalization, dimension reduction and data visua-
lization. Samples including WT and Ring1aKO were 
integrated as one object by Seurat “IntegrateData” 
function. It used t-Distributed Stochastic Neighbor 
Embedding (t-SNE) to visualize single-cell clusters, 
employing the top 25 principal components with the 
largest variance (at resolution = 0.7 for all the 
merged samples). Calculate the percent of mito-
chondrial (“percent.mito”) and ribosome (“percent. 
ribo”)-related genes for each cell, and filter out the 
cells with a value of “percent.mito” less than 5, and 
the value of “percent.ribo” less than 40, respectively. 
Differentially expressed genes (DEGs) of each clus-
ter under the threshold of adjusted P < .05 (corrected 
P value from T-test by Benjamini-Hochberg correc-
tion) and LogFoldChang ≥ 0.5 compared to other 
clusters by Seurat’s “FindMarkers” function. The 
scRNA-seq data has been submitted to the GEO 
database (GSE210866, https://www.ncbi.nlm.nih. 
gov/geo/query/acc.cgi?acc=GSE210866).

Statistical analysis

All data were presented as mean ± SD. Unpaired 
two-tailed Student’s t-test was used for data from 
two groups. Data from more than two groups were 

subjected to a one-way analysis of variance 
(ANOVA) with SAS 9.2 version. Comparisons 
were considered statistically significant when the 
P value was less than 0.05. * P < .05, ** P < .01.

Results

Ring1a-deficient mice developed severe colitis

The sulfated polysaccharide DSS-induced colitis is 
a commonly used model to simulate the pathological 
features of IBD.26 Therefore, we employed this model 
to investigate the role of Ring1a in colitis. During the 
process, Ring1aKO mice exhibited significant weight 
loss in the late stages (Figure 1a) and a higher mor-
tality rate than that of WT mice (Figure 1b). 
Moreover, Ring1aKO mice exhibited remarkably 
higher disease activity index (DAI) scores than those 
of WT mice (Figure 1c). Furthermore, the colon 
length of Ring1aKO mice was considerably shorter 
than that of WT mice (Figure 1d). Consistently, the 
colon tissues of Ring1aKO mice were also infiltrated 
with more inflammatory cells and showed more 
severe intestinal damage than those of WT mice 
(Figure 1e). Furthermore, we found that Ring1aKO 
mice developed spontaneous colitis as they aged. 
One-year-old Ring1aKO mice displayed remarkably 
shorter colon length and more severe inflammatory 
infiltration than those of age-matched WT mice of 
the same age (Figures 1f–g). To further verify the role 
of Ring1a in colitis, we investigated the effect of 
a Ring1a inhibitor, PRT4165, in the DSS-induced 
colitis model. The results showed that PRT4165- 
treated mice exhibited shortened colon length 
(Figure 1h), increased histological inflammatory infil-
trates, and exacerbated intestinal damage (Figure 1i). 
Notably, the effect of the Ring1a inhibitor on colitis 
appeared to be less than that of the Ring1a deficiency. 
These findings collectively indicate that Ring1a defi-
ciency or inhibition exacerbates DSS-induced colitis, 
suggesting a protective role of Ring1a in colitis and its 
negative regulatory function in this condition.

Ring1a deficiency intrinsically aggravates 
DSS-induced colitis in immune cells

To elucidate whether the aggravated colitis result-
ing from Ring1a deficiency is primarily attributable 
to the effects of immune cells or other cell types, we 
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performed reciprocal bone marrow transfer experi-
ments between WT and Ring1aKO mice. 
Compared to WT or Ring1aKO recipient mice 
that received WT bone marrow cells (designated 

as WT→WT and WT→Ring1aKO), WT and 
Ring1aKO recipient mice that received Ring1aKO 
bone marrow cells (designated as Ring1aKO→WT 
and Ring1aKO→Ring1aKO) exhibited significantly 

Figure 1. Ring1a deficiency aggravated colitis. (a) The body weight of WT and Ring1aKO mice under normal condition and DSS 
treatment. The survival rate (b) and DAI scores (c) of WT and Ring1aKO mice in DSS-induced colitis (n = 4). (d) Colon lengths of WT and 
Ring1aKO mice in DSS-induced colitis (n = 4). (e) H&E staining and H&E scores of colon tissues of WT and Ring1aKO mice under normal 
conditions and DSS treatment. (f) Colon lengths of aged WT and Ring1aKO mice under normal conditions (n = 5). (g) H&E staining and 
H&E scores of colon tissues of aged WT and Ring1aKO mice under normal conditions. (h) Colon lengths of WT mice treated with or 
without Ring1a inhibitor PRT4165 in DSS-induced colitis (n = 4). (I) H&E staining and H&E scores of colon tissues of WT mice treated 
with or without Ring1a inhibitor PRT4165 in DSS-induced colitis. Data are shown as mean ± SD, representing one of at least three 
independent experiments. *P < .05, **P < .01.
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more body weight loss, a higher DAI score, and 
shorter colon length (Figures 2a–d). Furthermore, 
colon tissues from Ring1aKO→WT and 
Ring1aKO→Ring1aKO mice exhibited more severe 
histological inflammatory infiltration and intestinal 
damage than those from WT→WT and 
WT→Ring1aKO mice (Figure 2e). Conversely, no 
considerable differences were observed between 
WT→WT and WT→Ring1aKO mice with respect 
to the indicators of colitis (Figures 2a–e). Hence, 
Ring1a deficiency aggravates colitis in the DSS- 
induced colitis model through its effects on 
immune cells.

Ring1a deficiency leads to colitis exacerbation 
mediated by the transferable intestinal microbiota

Prior studies have unequivocally established the 
critical role of intestinal microbiota in colitis 
pathogenesis, demonstrating that genetically mod-
ified mice exhibited altered susceptibility to colitis 
due to changes in gut microbiota composition.3,27– 

29 To investigate the functional relationship 
between the intestinal microbiota and Ring1a defi-
ciency-induced colitis exacerbation in the DSS- 

induced colitis model, we first co-housed adult 
Ring1aKO mice with age- and sex-matched WT 
mice for two weeks and then conducted DSS- 
induced colitis. Remarkably, we found that co- 
housed WT and Ring1aKO mice exhibited com-
parably severe DSS-induced colitis, with a tendency 
for greater severity in WT mice co-housed with 
Ring1aKO mice (Supplementary Figure S1).

Subsequently, to verify our speculation, we 
simultaneously subjected single-housed WT and 
Ring1aKO mice, as well as co-housed WT (desig-
nated as WT-CH) and Ring1aKO mice (designated 
as Ring1aKO-CH), to DSS-induced colitis. 
Notably, WT-CH mice demonstrated equally 
severe DSS-induced colitis compared to 
Ring1aKO-CH mice and single-housed Ring1aKO 
mice. The results showed all three groups (single- 
house Ring1KO, WT-CH, and Ring1aKO-CH) 
exhibited significantly greater bodyweight loss, 
higher DAI scores, shorter colon lengths, and 
more pronounced histological inflammatory infil-
tration and intestinal damage compared to single- 
housed WT mice (Figures 3a–d). Importantly, no 
significant differences were observed in these coli-
tis indicators among single-housed Ring1aKO 

Figure 2. Ring1a deficiency in immune cells intrinsically aggravates DSS induced colitis. (a) The schematic plot of construction of bone 
marrow chimera. The body weight (b) and DAI scores (c) of irradiated WT and Ring1aKO mice transferred with WT or Ring1aKO bone 
marrow in DSS-induced colitis. (d) Colon lengths of irradiated WT and Ring1aKO mice transferred with WT or Ring1aKO bone marrow 
in DSS-induced colitis. (e) H&E staining and H&E scores of irradiated WT and Ring1aKO mice transferred with WT or Ring1aKO bone 
marrow in DSS-induced colitis. Data are shown as mean ± SD (n = 4-5), representing one of at least three independent experiments. 
*P < .05, **P < .01.
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mice, WT-CH mice, and Ring1aKO-CH mice 
(Figures 3a–d). These results conclusively demon-
strate that the variations in colitis severity observed 
among single-housed WT and Ring1aKO mice are 
indeed driven by differences in their respective 
intestinal microbiota. Additionally, we provide evi-
dence that the intestinal microbiota of Ring1aKO 
mice possesses increased pathogenicity and can be 
transferred to co-housed WT mice.

To investigate whether the effect of the transfer-
able pathogenic intestinal microbiota from 
Ring1aKO mice to co-housed WT mice can be 
sustained over an extended period of time, 
a group of age- and sex-matched WT mice were co- 
housed with Ring1aKO mice for two weeks and 
then separated for four weeks (designated as WT- 
CH-Sep) before colitis induction. Intriguingly, 
WT-CH-Sep mice exhibited significantly shorter 
colon length, a more severe histological inflamma-
tory infiltrate, and greater intestinal damage than 
those exhibited by single-housed WT mice 
(Figures 3e–g). Notably, there were no differences 
in colon length, histological inflammatory infil-
trate, or intestinal damage among WT-CH-Sep, 
WT-CH, and Ring1aKO-CH mice (Figures 3e–g). 
Therefore, these findings demonstrate that the 
effect of the transferable pathogenic intestinal 
microbiota from Ring1aKO mice to co-housed 
WT mice can persist for at least one month.

Gut bacteria caused severe colitis in Ring1aKO mice

The gut microbiota comprises trillions of bacteria 
and fungi.30 To identify whether increased colitis 
severity is driven by gut bacteria or fungi, single- 
housed WT and Ring1aKO mice were orally admi-
nistered a combination of four antibiotics (ampi-
cillin, vancomycin, metronidazole, and neomycin) 
or amphotericin B for two weeks, which are known 
to effectively eliminate gut bacteria or fungi, 
respectively.27,31 The results showed that removing 
fungi using amphotericin B did not alter the sever-
ity of DSS-induced colitis in Ring1aKO mice. Even 
after treatment with amphotericin B, Ring1aKO 
mice experienced greater weight loss, shorter 
colon length, and more severe histological inflam-
mation than those experienced by WT mice 
(Figures 4a–d). Conversely, colitis severity was 
comparable between WT and Ring1aKO mice 

when gut bacteria were eliminated using 
a combination of four antibiotics. Furthermore, 
Ring1aKO mice exhibited similar weight loss, 
colon length, and histological inflammation to 
WT mice following antibiotic treatment 
(Figures 4e–h). Thus, it is evident that gut bacteria, 
rather than fungi, contribute to the development of 
severe colitis in Ring1aKO mice.

Ring1a deficiency alters the composition of 
intestinal bacteria, likely due to decreased lgA 
production

To further identify the specific colitogenic bacteria 
responsible for the exacerbated colitis in Ring1aKO 
mice, we collected fecal samples from single- 
housed WT, Ring1aKO, and co-housed WT and 
Ring1aKO mice for 16S rRNA sequencing. Cluster 
analysis revealed distinct differences in the fecal 
bacterial phylogenetic architecture between single- 
housed WT and Ring1aKO mice (Figure 5a). 
However, after two weeks of co-housing, WT-CH 
and Ring1aKO-CH mice displayed similar fecal 
bacterial phylogenetic architectures (Figure 5a). 
Furthermore, the bacterial composition of the 
fecal microbiota in WT-CH and Ring1aKO-CH 
mice resembled that of single-house Ring1aKO 
mice, which was different from that of single- 
housed WT mice (Figure 5b). Interestingly, the 
bacterial component showed that Akkermansia 
and Lactobacillus were the predominant bacterial 
genera in the fecal microbiota of single-housed WT 
mice (Figure 5b), while Prevotella and Lactobacillus 
were the predominant genera in single-housed 
Ring1KO mice (Figure 5b). Co-housing with 
Ring1aKO mice for two weeks led to 
a considerable decrease in the proportion of 
Akkermansia and a dramatic increase in the pro-
portion of Prevotella in WT mice (Figure 5b). 
Notably, significant differences were observed in 
the abundance of Prevotella and Akkermansia 
between single-housed WT and Ring1aKO mice, 
as well as between single-housed WT and WT-CH 
mice (Figure 5c). However, no significant differ-
ence in the abundance of Lactobacillus was 
observed between single-housed WT mice and 
Ring1aKO mice (Figure 5c). Considering our pre-
vious demonstration that Ring1a deficiency in 
immunocytes aggravates DSS-induced colitis, the 
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Figure 3. Exacerbation of colitis caused by Ring1a deficiency owing to intestinal microbiota that is transferable to co-housed WT mice. 
The body weight (a) and DAI scores (b) of single-housed and co-housed WT and Ring1aKO mice in DSS-induced colitis. (c) 
Colon lengths of single-housed and co-housed WT and Ring1aKO mice in DSS-induced colitis. (d) H&E staining and H&E scores 
of single-housed and co-housed WT and Ring1aKO mice in DSS-induced colitis. (e) Colon lengths of single-housed WT, WT-CH- 
Sep, and co-housed WT and Ring1aKO mice in DSS-induced colitis. H&E staining (f) and H&E scores (g) of single-housed WT, 
WT-CH-Sep, and co-housed WT and Ring1aKO mice in DSS-induced colitis. Data are shown as mean ± SD (n = 5), representing 
one of at least three independent experiments. *P < .05, **P < .01.
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altered intestinal bacterial composition in 
Ring1aKO mice is likely a consequence of intestinal 
immune dysfunction. IgA represents the most cri-
tical immunoglobulin that is transported and 
secreted into the gut lumen, thereby maintaining 
the regional intestinal ecosystems.32,33 To confirm 
whether the altered composition of intestinal 

bacteria in Ring1aKO mice is linked to changes in 
IgA production, we conducted mixed bone chi-
meric experiments to assess the impact of Ring1a 
deficiency on IgA production. The results revealed 
that Ring1a deficiency significantly reduced 
IgA+CD19+ B cells in Peyer’s patches and 
IgA+CD19 plasma cells in LP (Figures 5d,e). 

Figure 4. Gut bacteria caused severe colitis in Ring1aKO mice. The body weight (a) and DAI scores (b) of WT and Ring1aKO mice 
treatment with AmB in DSS-induced colitis (n = 4-5). (c) Colon lengths of WT and Ring1aKO mice treatment with AmB in DSS-induced 
colitis (n = 4-5). (d) H&E staining and H&E scores WT and Ring1aKO mice treatment with AmB in DSS-induced colitis. The body weight 
(e) and DAI scores (f) of WT and Ring1aKO mice treatment with 4Abx in DSS-induced colitis (n = 5). (g) Colon lengths of WT and 
Ring1aKO mice treatment with 4Abx in DSS-induced colitis (n = 5). (h) H&E staining and H&E scores WT and Ring1aKO mice treatment 
with 4Abx in DSS-induced colitis. Data are shown as mean ± SD, representing one of at least three independent experiments. *P < .05, 
**P < .01.
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Figure 5. Ring1a deficiency altered the composition of intestinal bacteria decreased the production of lgA. (a) PCoA analysis of gut 
bacteria of single-housed and co-housed WT and Ring1aKO mice (n = 4-5). (b) Top 20 genus of gut bacteria of single-housed and co- 
housed WT and Ring1aKO mice. (c) Difference significance analysis of Akkermansia genus, Prevotella genus, and Lactobacillus genus in 
single-housed and co-housed WT and Ring1aKO mice (n = 4-5). In mixed bone marrow chimera mice, percentages of CD19+IgA+ cells 
in PPs (d) and percentages of CD19−IgA+ cells in LP (e) of CD45.1+ WT cells and CD45.2+ Ring1aKO cells (n = 5). IgA in feces (f) and 
colon tissues (g) of 8-week-old WT and Ring1aKO mice (n = 8). Data are shown as mean ± SD, representing one of at least three 
independent experiments. *P < .05, **P < .01.
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Moreover, the levels of IgA were significantly 
decreased in fecal samples and colon tissues of 
Ring1aKO mice compared to WT mice (Figures 
F and G). Hence, the decreased IgA production in 
Ring1aKO mice is likely responsible for the altered 
composition of intestinal bacteria.

An exacerbation of colitis caused by Ring1a 
deficiency can be alleviated by metronidazole

The Prevotella genus is a kind of gram-negative anae-
robic bacteria that belongs to the Bacteroidetes 
phylum.34 To investigate whether depletion of the 
Prevotella genus can alleviate DSS-induced colitis in 
Ring1aKO mice, we treated WT and Ring1aKO mice 
with metronidazole, a compound known to deplete 
most gram-negative anaerobic bacteria. Following 
metronidazole treatment, the Prevotella genus was 
dramatically reduced in Ring1aKO mice, while 
a high proportion of the Lactobacillus genus was still 
observed in the feces of Ring1aKO mice (Figure 6a). 
Importantly, there was no difference in the severity of 
colitis between WT and Ring1aKO mice after metro-
nidazole treatment. Ring1aKO mice exhibited similar 
weight loss, DAI scores, colon lengths, and 

histological inflammation compared to WT mice 
after metronidazole treatment (Figures 6b–e). These 
results suggest that the exacerbation of colitis in 
Ring1aKO mice is driven by colitogenic microbes 
and can be ameliorated using metronidazole.

Ring1a deficiency alters the immune homeostasis of 
intestinal LP

scRNA-seq has been widely used to reveal the het-
erogeneity and cellular composition of tissues in 
many human diseases and animal models. 
However, scRNA-seq has not yet been applied to 
investigate the cellular composition of the colon 
tissue in the DSS colitis model. In this study, we 
utilized scRNA-seq to gain insights into the 
detailed immunocyte composition of the colon tis-
sue in DSS colitis and evaluate the effects of Ring1a 
deficiency on immunocyte populations. The analy-
sis of CD45+ cells in the LP of WT and Ring1aKO 
mice was sorted and further analyzed by scRNA- 
seq.

CD45+ immunocytes in the intestinal LP exhib-
ited high heterogeneity, as evidenced by the gene 
expression profiles and available cell markers from 

Figure 6. Metronidazole alleviated Ring1a deficiency caused exacerbation of colitis. (a) Top 20 genus of gut bacteria of metronida-
zole-treated WT and Ring1aKO mice (n = 6-7). The body weight (b) and DAI scores (c) of WT and Ring1aKO mice treatment with 
metronidazole in DSS-induced colitis (n = 5). (d) Colon lengths of WT and Ring1aKO mice treatment with metronidazole in DSS- 
induced colitis (n = 5). (e) H&E staining and H&E scores WT and Ring1aKO mice treatment with metronidazole in DSS-induced colitis 
(n = 5). Data are shown as mean ± SD, representing one of at least three independent experiments. *P < .05, **P < .01.
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the CellMarker website and published literature. 
We identified 23 distinct cell types and states in 
the intestinal LP (Figure 7a and Supplementary 
Figure 2B). The putative 23 cell types contained 
nearly all kinds of immunocytes, including B cells, 
T cells, monocytes/macrophages, neutrophils, 
innate lymphoid cells (ILCs), NK cells, NKT cells, 
and γδT cells (Figure 7a,b), which indicates the 
involvement of nearly all immune cell populations 
in the pathogenesis of DSS colitis. Furthermore, 
Ring1a deficiency resulted in remarkable altera-
tions in the proportions of several immune cell 
groups, including B cells, monocytes/macrophages, 
ILCs, NKT cells, and γδT cells (Figure 7c,d). 
Notably, Ring1a deficiency led to a notable increase 
in the percentage of B cells (groups 0, 1, and 3), 
a finding that was further validated using fluores-
cence activated cell sorting (FACS) (Figure 7e). 
Subsequent t-SNE clustering analysis of B cells 
revealed five distinct subclusters. Notably, com-
pared to WT mice, the percentages of IgA+ plasma 
cells in Ring1aKO mice decreased (Supplementary 
Figure S3), consistent with the aforementioned 
results obtained from the mixed bone marrow chi-
mera experiment. In group 13 (plasma cells), we 
also found that Igha expression was significantly 
decreased and Ighg2b expression was significantly 
increased in Ring1KO mice (Figure 7f). 
Additionally, in group 21 (IgA+ plasma cells), the 
expression of Ighg1 was boosted considerably in 
Ring1aKO mice (Figure 7f), indicating a tendency 
for increased production of IgG1 by plasma cells in 
Ring1aKO mice. Moreover, Ring1a deficiency 
altered the proportions of monocytes/macrophages 
(groups 2, 9, and 11), especially group 11, which 
exhibited high expression of CXCL9 and CXCL10 
(Supplementary Figure S2). Group 11 almost dis-
appeared in Ring1aKO mice (Figures 7c,d). 
Additionally, pro-inflammatory IL-17+ γδT cells 
and cytotoxic γδ/CD8 Trm cells were increased, 
while ILC2s were decreased in Ring1aKO mice 
(Figures 7c,d).

Treg cells in the intestinal microenvironment are 
important to maintain intestinal homeostasis by 
controlling inflammation.35 Comparatively, the 
proportion of Treg cells slightly decreased in 
Ring1aKO mice. Notably, the expressions of sup-
pression function-associated genes, such as Areg, 
Il2ra, Il18r1, Huwe1, and Itgb8, significantly 

reduced in Treg cells of Ring1aKO mice than 
those of WT mice (Figure 7g), indicating 
a diminished anti-inflammatory function of Treg 
cells in Ring1aKO mice. Additionally, although 
there was no difference in the percentage of neu-
trophils between WT and Ring1aKO mice, pro- 
inflammatory function-associated genes (Mmp8, 
Mmp9, Cxcl1, Ccl6, and Tnf) were significantly 
upregulated in neutrophils from Ring1aKO mice 
(Figure 7h), suggesting an enhanced pro- 
inflammatory function of neutrophils in 
Ring1aKO mice.

Discussion

IBD, encompassing CD and UC, represents 
a diverse group of chronic inflammatory disorders. 
Despite extensive research employing advanced 
technologies and experimental models, the precise 
pathogenesis of IBD remains elusive. The current 
understanding of IBD etiology involves interweav-
ing host genetics, host immunity, the gut micro-
biome, and environmental exposures.36 Although 
over 200 loci, including NOD2 and PTPN22, have 
been identified as IBD risk variants, they account 
for only 8%–13% of disease susceptibility.36,37 

Consequently, it is crucial to explore potential 
novel candidate risk genes for IBD and unravel 
the complex interactions driving the disease.

The gastrointestinal tract houses a complex net-
work of interactions between the microbiome, 
epithelium, and immune cells.38 However, the 
mechanisms underlying the involvement and 
interconnections of these disease drivers remain 
poorly understood. As the catalytic core of PRC1, 
Ring1a has been implicated in gene expression 
regulation through H2AK119ub1 catalysis and 
chromatin remodeling.12–14 However, its func-
tions in immune cells and immune-associated 
IBD have not been extensively studied. In this 
study, we identified the PcG protein Ring1a as 
a crucial player in IBD pathogenesis by regulating 
both host immunity and intestinal microbiota, 
thus potentially serving as a new risk gene for 
IBD. Notably, In DSS-induced colitis, Ring1a defi-
ciency significantly exacerbated the symptoms in 
the DSS-induced colitis model of the disease. We 
employed Ring1aKO mice, which encompass 
a whole-body knockout of Ring1a, to investigate 
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Figure 7. Ring1a deficiency altered immune landscape in intestinal LP. \(a) tSNE plot of 23 identified cellular populations in intestinal 
LP. (b) FeaturePlots of classical cell markers of lymphocytes, γδ T cells, monocytes, NK cells, macrophages, and ILC. (c) tSNE plot of 23 
identified cellular populations in the intestinal of WT and Ring1aKO mice. (d) Percentages of 23 identified cellular populations in the 
intestinal of WT and Ring1aKO mice. (e) Percentages of CD19+ B cells in intestinal LP of WT and Ring1aKO mice. (f) Expressions of 
Ighg1, Ighg2b, and Igha in plasma and IgA+ plasma of WT and Ring1aKO mice. (g) Expressions of Il2ra, Areg, Huwel, Il18r1, and Itgb8 in 
Treg cells of WT and Ring1aKO mice. (h) Expressions of Mmp8, Mmp9, Ccl6, Il18r1, Tnf, and Cxcl1 in Treg cells of WT and Ring1aKO mice.
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the role of Ring1a deficiency in immune cells in 
the exacerbation of DSS colitis. To further eluci-
date this relationship, we constructed bone mar-
row chimeras. The findings revealed that Ring1a 
deficiency in immune cells intrinsically aggra-
vated DSS colitis.

Additionally, we also found that co-housing 
Ring1aKO mice with WT mice for two weeks 
led to aggravated DSS colitis in the WT mice, 
suggesting that Ring1a deficiency increased the 
pathogenicity and transmissibility of the intest-
inal microbiota. Importantly, the effect of the 
transferable pathogenic intestinal microbiota 
from Ring1aKO mice to co-housed WT mice 
persisted for at least one month. When 
Ring1aKO mice were co-housed with WT mice 
for more than two weeks, regardless of subse-
quent separation, the pathogenic intestinal micro-
biota of Ring1aKO mice dominated and induced 
severe colitis in the WT mice.

By employing antibiotics to selectively target 
bacteria or fungi, we found that it is gut bacteria, 
rather than fungi, contribute to the development of 
severe colitis in Ring1aKO mice. The Prevotella 
genus has been reported to be associated with sev-
eral autoimmune diseases, including insulin resis-
tance and diabetes, arthritis and intestinal 
inflammation.39 Several studies have indicated 
that a Prevotella-dominated microbiome may pro-
mote inflammation, with the Prevotella genus 
implicated as a potential pathogenic bacterium in 
IBD. Genetically altered mice with Prevotella- 
dominated gut microbiota or oral gavage of 
Prevotella intestinalis have shown increased sus-
ceptibility to colitis. NLRP6 deficiency in mouse 
colonic epithelial cells exacerbates DSS-induced 
colitis and promotes the expansion of 
Prevotellaceae and TM7.27 Furthermore, coloniza-
tion of mice with a novel Prevotella genus species 
from NLRP6-deficient mice exacerbates DSS- 
induced colitis via reducing IL-18 production.39 

However, another study showed that caspase-11 
deficiency exacerbates DSS-induced colitis inde-
pendently of gut microbiota alterations, with 
a considerable reduction in Prevotella species.40 

Our 16s rRNA sequencing results revealed that 
Ring1a deficiency dramatically altered the compo-
sition of intestinal bacteria, leading to a remarkable 
expansion of the Prevotella genus and a decrease in 

the Akkermansia genus. Importantly, the Prevotella 
and Akkermansia genera differed considerably 
between single-housed WT and Ring1aKO groups, 
as well as between WT and WT-CH groups. 
Moreover, the Prevotella genus was significantly 
reduced in metronidazole-treated Ring1aKO 
mice. These findings suggest that the Prevotella 
genus may be the main colitogenic bacteria con-
tributing to the exacerbated colitis observed in 
Ring1aKO mice and that metronidazole could alle-
viate colitis exacerbation in Ring1aKO mice by 
reducing the Prevotella genus. However, further 
investigation is warranted to establish direct evi-
dence regarding the role of the Prevotella genus in 
colitis.

The Akkermansia genus has garnered attention 
as a promising next-generation probiotic due to its 
therapeutic potential in metabolic diseases.41 

Consistent with our results, numerous studies 
have reported a negative correlation between 
Akkermansia muciniphila and IBD, which exhibit 
a marked decrease in the abundance of 
Akkermansia muciniphila. However, several stu-
dies also showed the controversial role of 
Akkermansia muciniphila in mouse models of 
IBD. Akkermansia muciniphila enrichment was 
observed in Nlrp6 and Il10 double-deficient mice 
and can induce intestinal inflammation in germ- 
free and specific-pathogen-free Il10-deficient 
mice.42 Additionally, 1,25(OH)2D3 deficiency has 
been linked to increased Akkermansia muciniphila 
and colon inflammation phenotypes in Cyp27b1 
knockout mice.43 These seemingly contradictory 
effects may be attributed to specific strain differ-
ences, necessitating further studies to elucidate 
their roles in IBD.

With the emergence and widespread adoption of 
scRNA-seq technology, several studies have uti-
lized this advanced approach to unravel the com-
plex pathogenesis of human IBD.44–46 However, to 
date, no study has applied single-cell transcriptome 
technology to investigate the immune landscape in 
the DSS-induced colitis model, which closely 
resembles the pathological features of human 
IBD. Although FACS has demonstrated immune 
cell infiltration and activation in DSS colitis,47 tech-
nical limitations have hindered a comprehensive 
understanding of the immune landscape in this 
model. In this study, we first investigated the 
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immune microenvironment of intestinal LP in DSS 
colitis using single-cell transcriptome sequencing 
technology. In the sorted CD45+ immunocytes of 
intestinal LP, we identified 23 distinct clusters. The 
immunocytes in LP exhibited remarkable hetero-
geneity, representing various immune cell popula-
tions, including T cells, B cells, monocytes/ 
macrophages, DC, NK cells, NKT cells, and ILCs, 
all of which participated in the intestinal immune 
microenvironment of DSS colitis. ILC3s are con-
ventionally believed to play important roles in 
maintaining intestinal homeostasis.38,48 

Unexpectedly, we observed a higher abundance of 
ILC2s compared to ILC3s in the intestinal LP, 
suggesting a potential involvement of ILC2s in the 
pathogenesis of IBD.

To further explore the immune mechanisms 
underlying the exacerbation of DSS colitis caused 
by Ring1a deficiency, we also sorted and analyzed 
CD45+ immunocytes in the intestinal LP of 
Ring1aKO mice using scRNA-seq. Remarkably, 
Ring1a deficiency significantly altered the intest-
inal bacteria even before the implementation of the 
DSS-induced colitis model. The observed intestinal 
immune landscape in Ring1aKO mice reflects the 
integrated effects of Ring1a deficiency in immuno-
cytes and the altered gut bacteria induced by the 
deficiency.

Compared to WT mice, Ring1a deficiency signifi-
cantly increased the proportion of B cells, including 
resting and activated B cells. The functional roles of 
B cells in IBD remain unclear, with conflicting find-
ings reported in the literature. For instance, Do et al. 
demonstrated the increased infiltration of 
B lymphocytes within the inflamed LP in DSS 
colitis47 and posited that the HDAC6 inhibitor 
BML-281 selectively attenuated B cell infiltration 
into the LP, potentially contributing to the ameliora-
tion of colonic inflammation.47 Conversely, Wang 
et al. found that DSS-treated mice exhibited more 
severe colitis in the absence of B cells, while the 
adoptive transfer of B cells attenuated the disease.49 

IgA-producing plasma cells are essential to main-
taining intestinal homeostasis in the normal gut. 
However, there is a shift in the mucosal immune 
system from a predominance of IgA-producing 
plasma cells to an abundance of plasma cells dedi-
cated to IgG production in IBD,50 a characteristic 
that we also observed in Ring1KO mice.

Our analysis revealed a reduction in ILC2s in 
Ring1aKO mice, suggesting a protective role for 
ILC2s in DSS colitis. Several studies have 
detected ILC2s in the intestines of IBD patients 
and demonstrated their protective roles in colitis 
models.51,52 For instance, You et al. transferred 
purified ILC2s to Rag1−/− mice and found that 
they could alleviate DSS-induced acute innate 
colitis, potentially by promoting M2 macrophage 
polarization.53 Similarly, the adoptive transfer of 
IL-33-expanded ILC2s to DSS-treated mice sig-
nificantly reduced colonic inflammation com-
pared to DSS control mice.54 Moreover, Uddin 
et al. identified the IL-33-ILC2s pathway as an 
important host defense mechanism against ame-
bic colitis, as treatment with IL-33 protected 
Rag2−/− mice from amebic colitis by increasing 
recruitment of ILC2s.55 However, Qiu et al. 
reported that the IL-33-ILC2s axis may have 
pathogenic effects in IBD, as they found that IL- 
33 deficiency protected mice from DSS-induced 
experimental colitis by suppressing ILC2s and 
Th17 cell responses.56 Further studies are war-
ranted to fully elucidate and confirm the func-
tions of ILC2s in IBD, and targeting ILC2s could 
hold promise as a novel therapeutic target for 
IBD treatment.

Furthermore, the proportions of IL-17A+ γδ 
T cells and a cluster characterized as cytotoxic 
γδ/CD8 Trm cells were significantly increased in 
the intestinal LP of Ring1aKO mice. IL-17+ γδ 
T cells are known to contribute to protective 
anti-microbial responses and are implicated in 
pathogenic inflammation at barrier sites. For 
instance, Do et al. revealed that IL-17+ γδ 
T cells play a crucial role in enhancing in vivo 
Th17 differentiation and T cell-mediated colitis. 
They found that TCRβδ−/− mice were resistant 
to colitis, and cotransfer of IL-17+ γδ T cells 
with CD4 T cells was sufficient to enhance 
Th17 differentiation and induce colitis in 
TCRβδ−/− recipients.57 In EAE, IL-17- 
producing IL23R+ γδ T cells were found to 
accumulate in the CNS and inhibit the suppres-
sor activity of Treg cells.58 Consistently, in our 
study, we observed a remarkable decrease in the 
suppressive function of Treg cells in Ring1aKO 
mice, as evidenced by marked decreased expres-
sions of genes including Areg, IL2RA, Il18r1, 
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Huwe1, and Itgb8, all of which have been asso-
ciated with the suppressive function of Treg 
cells.59–63 The cluster of IL-17+ γδ T cells also 
exhibited a high level of Cxcr6 expression, 
which may be associated with their migration 
to a specific location.

In the present study, we identified a cluster of cyto-
toxic γδ/CD8 Trm cells that showed a significant 
increase in Ring1aKO mice. The cluster of cytotoxic 
γδ/CD8 Trm cells highly expressed cytotoxic markers 
such as Gzma, Gzmb, Ccl5, and Klrd1, Itgae/CD103, 
indicating their potential cytotoxicity against epithelial 
cells and their ability to recruit inflammatory cell types 
that promote tissue destruction. Notably, Hu et al. dis-
covered a cluster of intraepithelial γδ T cells with 
a similar gene expression profiles to the cytotoxic γδ/ 
CD8 Trm cells identified in the intestinal LP. They 
found that these intraepithelial γδ T cells facilitated 
pathological epithelial cell shedding via CD103- 
mediated granzyme release,64 thereby promoting tran-
sient gaps in the epithelial barrier and increased intest-
inal permeability.65 Similarly, Do et al. also identified 
a CD103+α4β7high γδ T subset in mesenteric lymph 
nodes that highly expressed Gzma, Gzmb, Klrd1, and 
Ccl5, which promoted intestinal inflammation and 
enhanced disease severity.66 Gzma, a pro- 
inflammatory protease involved in the regulation of 
the inflammatory response in intestinal hemostasis, 
exerts a pivotal role. Santiago et al. found that Gzma 
deficiency reduced gut inflammation and colorectal 
cancer development.67

In summary, our data provide evidence for the 
role of the PcG protein E3 ubiquitin ligase Ring1a in 
colitis. Ring1a plays a protective role in colitis by 
synthetically regulating immune cells and the gut 
microbiota. Ring1a deficiency exacerbates DSS coli-
tis due to its deficiency in the immune system. 
Meanwhile, Ring1a deficiency dramatically alters 
the community of intestinal bacteria, leading to 
a Prevotella genus-dominated pathogenesis micro-
environment that can be horizontally transmissible 
to co-housed WT mice and aggravates DSS colitis. 
We also find that Ring1a deficiency causes micro-
biota disorder potentially due to decreased IgA and 
prove that Ring1a deficiency leads to exacerbation of 
colitis that can be alleviated by metronidazole treat-
ment. Furthermore, we describe the immune land-
scapes of mouse DSS colitis for the first time and 
reveal that Ring1a deficiency alters intestinal 

immune homeostasis. Our results suggest that 
Ring1a may be a new potential candidate risk gene 
for colitis, and metronidazole may treat Prevotella 
genus-dominated colitis clinically.
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