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Abstract 
Background.   High-grade gliomas (HGG) are aggressive brain tumors associated with short median patient sur-
vival and limited response to therapies, driving the need to develop tools to improve patient outcomes. Patient-
derived xenograft (PDX) models, such as mouse PDX, have emerged as potential Avatar platforms for personalized 
oncology approaches, but the difficulty for some human grafts to grow successfully and the long time required for 
mice to develop tumors preclude their use for HGG.
Methods.   We used a rapid and efficient ex-ovo chicken embryo chorioallantoic membrane (CAM) culture system 
to evaluate the efficacy of oncologic drug options for HGG patients.
Results.   Implantation of fresh glioma tissue fragments from 59 of 60 patients, that include difficult-to-grow IDH-
mutated samples, successfully established CAM tumor xenografts within 7 days, with a tumor take rate of 98.3%. 
These xenografts faithfully recapitulate the histological and molecular characteristics of the primary tumor, and 
the ability of individual fragments to form tumors was predictive of poor patient prognosis. Treatment of drug-
sensitive or drug-resistant xenografts indicates that the CAM-glioma assay enables testing tumor sensitivity to 
temozolomide and carboplatin at doses consistent with those administered to patients. In a proof-of-concept 
study involving 14 HGG patients, we observed a correlation of 100% between the CAM xenograft response to 
temozolomide or carboplatin and the clinical response of patients.
Conclusion.   The CAM-glioma model is a fast and reliable assay that has the potential to serve as a complemen-
tary model to drug discovery and a real-time Avatar platform to predict the best treatment for HGG patients.

Key Points

-	 Patient glioma tumor fragments undergo fast and robust expansion on CAM assay.

-	 Xenografts preserved the pathological characteristics of the parental tumor.

-	 CAM-glioma model has a high rate of prediction of patient response to treatments.

High-grade gliomas (HGGs), which arise from neural stem cells 
or oligodendrocyte precursor cells in the brain, are malignant tu-
mors that invade the surrounding brain tissue. They are tradition-
ally classified based on histologic/genetic criteria and grade that 
includes oligodendroglioma IDH-mutant and 1p/19q codeleted 
(OLIG, CNS WHO grade 3), astrocytoma IDH-mutant (ASTRO, 
CNS WHO grade 3 or 4), and glioblastoma IDH-wild type (GBM, 
CNS WHO grade 4), which is the most aggressive form of the dis-
ease, accounting for the majority (60% to 70%) of all HGGs.1

All these malignant brain tumors are almost infallibly as-
sociated with recurrence and progression, regardless of the 
subtype. Aggressive therapeutic ionizing radiation in combi-
nation with alkylating chemotherapy, usually temozolomide 
(TMZ), is the mainstay of nonsurgical therapy for gliomas.2 
Unfortunately, resistance to treatment almost inevitably 
occurs, leading to second-line interventions that include 
reirradiation, alkylating chemotherapy rechallenge, alter-
native chemotherapeutic approaches, and/or clinical trials. 

The development of a rapid patient-derived xenograft 
model to predict chemotherapeutic drug sensitivity/
resistance in malignant glial tumors  
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Despite these multimodal treatment regimens, the prog-
nosis of patients with HGGs remains poor. For example, 
the median overall survival (OS) of patients with glioblas-
toma is only 15 months with a median progression-free 
survival (PFS) of 6.2–7.5 months.2,3 Advances in gene ex-
pression profiling and genomic sequencing have raised 
hope that cancer driver genes and mutations shared by a 
large number of tumors could be identified and targeted 
to improve tumor response and reduce unnecessary drug 
toxicity.4 However, precision oncology in gliomas has not 
proven successful because of the high degree of molec-
ular and genetic heterogeneity between individual tumors 
and within tumors, and the lack of identification of clear 
gene targets.5 The genetic variability of HGGs, variable 
response to chemotherapeutic drugs, and poor clinical 
outcomes have encouraged the development of individu-
alized patient models for drug discovery and personalized 
therapy.

There has been increasing interest in the use of patient-
derived xenograft (PDX) models for basic and transla-
tional research in oncology.6 Traditional PDX models 
typically involves implanting patient tumor cells or tumor 
fragments into immunodeficient mice. Such models are 
a mainstay in preclinical and co-clinical drug assess-
ment due to their capacity to maintain the principal his-
topathological and genetic characteristics of the original 
tumor better than cell lines or genetically engineered 
mice.7 Moreover, the sensitivity/resistance of PDXs to 
anticancer drugs was shown to correlate closely with clin-
ical response in patients from whom they were derived.8 
These favorable outcomes motivated the use of PDXs as 
personalized Avatars, where a patient and a derivative 
PDX are treated with the same therapeutic regimen.9,10 
PDX models have been successfully established in most 
cancer types including neurological cancers such as 
medulloblastoma,11 ependymoma,12 and HGG.13 Despite 
their usefulness, traditional PDX models are associated 
with ethical and financial limitations. More importantly, 
there are strong limitations for their direct application in 
fast-progressing cancers such as HGGs. A period of time 
that can vary from 4 to 8 months is usually required for 
the establishment and amplification of sufficient tissues 
to assess drug sensitivity, so many patients are set to 
die before results become available.14 In addition, unless 
using a technically challenging orthotopic model of brain 
tumors, the engraftment rate of glioma fragments in mice 
is very low. This leads to clonal selection and replacement 

of the human tumor microenvironment by mouse com-
ponents, during the multiple passages in mice necessary 
for tissue amplification, two factors that can alter drug 
responses.15,16 Thus, there is a critical need to develop 
alternative approaches for drug discovery and to drug 
sensitivity assessment in HGG patients.

The chicken embryo chorioallantoic membrane (CAM) is 
a simple, highly vascularized extraembryonic membrane 
that functions as the respiratory organ of avian embryos. 
Due to the immunodeficient nature of the chick embryo 
and the abundant vascularization of the CAM, this in vivo 
model has proven to be very useful for the implantation 
of various types of cancer cell lines and patient-derived 
tumor cells or explants.17,18 The CAM-PDX model is well 
suited for rapid tumor engraftment and subsequent testing 
of therapeutic approaches. As such, the duration of tumor 
amplification and drug regimen screening is reduced to 7 
days. In addition, several studies have suggested the po-
tential of this assay to assess the chemosensitivity of brain 
tumors.19–21 An ethical advantage of the CAM assay is that 
the CAM is not innervated, and experiments are termin-
ated before the establishment of pain perception in the 
embryo.22 All these features indicate that the CAM model 
has the potential to become a rapid and efficient precision 
medicine platform for HGGs.

In this study, we report the development of a person-
alized CAM avatar model that retains crucial characteris-
tics of the original tumor specimen and reliably predicts 
chemotherapeutic drug sensitivity for high-grade gliomas.

Materials and Methods

Collection of Patient Tumor Specimens and 
Tissue Preparation

Patient glioma tissues were collected between the years 
2016 and 2020, according to a protocol approved by 
the research ethics committee of the Centre hospitalier 
universitaire de Sherbrooke (ID#11-088). Written informed 
consent was obtained from all patients. Pathological di-
agnosis was established by a neuropathologist using 
the histologic and genetic criteria described by the 2021 
World Health Organization (WHO) classification of brain tu-
mors.23,24 Fresh tumor specimens were collected and pre-
pared as detailed in Supplementary Methods.

Importance of the Study

Despite recent advances in the treatment of HGGs, the 
prognosis has not improved significantly over the past 
few decades. A major problem is the lack of rapid and 
reliable methods to develop new and more efficient drug 
therapies and to predict individual patient response. 
Here we demonstrate that the glioma CAM Avatar is 
a time-efficient model that recapitulates the impor-
tant characteristics of glioma tumors. Furthermore, 

our proof-of-concept study shows that this model can 
accurately predict patient clinical outcomes in terms 
of progression-free and overall survival and, more im-
portantly, chemoresistance/sensitivity of the tumor to 
patient’s drug regimen. These findings underline the po-
tential of this model to be used for drug discovery and 
implementation of personalized medicine to improve 
survival of HGG patients.

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad047#supplementary-data
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Glioma Cell Lines

The glioblastoma cell lines U-87 MG and LN-18 were 
obtained from the American Type Culture Collection and 
cultured as detailed in Supplementary Methods.

Establishment of the CAM Xenograft Model

Fertilized eggs from white leghorn chickens were obtained 
from the Couvoir Boire et Frères Inc. (Wickham, QC, 
Canada). The ex-ovo culture was performed in a standard 
incubator at 37°C as previously described.25 Between em-
bryonic day 8 and 10, fragments of freshly resected tumor 
specimens or suspensions of glioma cell lines were im-
planted on CAM as detailed in Supplementary Methods. 
On day 16, chick embryos were euthanized by decapita-
tion. Vascularized tumor masses with no visible signs of 
necrosis were considered successfully engrafted and were 
removed from the CAM. Xenograft volumes were calcu-
lated using the formula (Dd2/2) and tissues were either 
snap-frozen in liquid nitrogen and stored at −80°C for DNA 
extraction or fixed in formalin for 24 hours and embedded 
into paraffin for histopathological analysis or recut into 
1–2 mm diameter fragments for reimplantation.

Histology and Immunostaining

Hematoxylin and eosin (HE) and immunohistochemistry 
(IHC) staining of original tumors and CAM xenografts was 
performed according to the standard HE and avidin-biotin 
immunoperoxidase complex technique respectively as de-
tailed in Supplementary Methods.

Genomic Analysis

DNA was extracted from frozen original tissues and CAM 
tumors at the Rnomics Platform at the Université de 
Sherbrooke (Qc, Canada). Whole-exome sequencing was 
performed at the Mayo Clinic (Rochester, MN) using the 
SureSelect capture kit (Agilent). Chicken sequencing reads 
were removed using Xenome prior to mutation calling.

CAM Xenograft Drug Sensitivity Assays and 
Clinical Evaluation

Two days after the implantation of tumor fragments 
or glioma cell lines, drugs were injected into the CAM 
vasculature at the following concentrations: 8  mg/
kg of carboplatin (Centre hospitalier universitaire de 
l’Université de Sherbrooke, QC, Canada) or 4  mg/kg of 
TMZ (Sigma, cat#T2577). On day 16, chick embryos were 
euthanized, and xenograft volumes calculated. Drug treat-
ments were considered effective when they resulted in at 
least a 30% decrease (P < .05) in the volume of the lesions 
compared with the control xenograft group. Patients were 
followed monthly (for carboplatin treatment) or every 
1–4 months (for TMZ treatment) by magnetic resonance 
imaging scan. According to the Revised Assessment in 
Neuro Oncology (RANO) criteria,26 patient response was 

classified as either complete response (CR), partial re-
sponse (PR), or stable disease (SD), which are generally 
considered therapeutically beneficial in a clinical setting, 
or progressive disease (PD).

Statistical Analysis

The GraphPad software (version 9.3.1) was used for sta-
tistical analysis. Significance was assessed by an un-
paired Student’s t-test (Mann-Whitney), a one-way ANOVA 
(Kruskal-Wallis), or a Gehan-Breslow-Wilcoxon test as in-
dicated in figure legends. A P value smaller than .05 was 
considered significant.

Results

Establishment of a High-efficiency Glioma CAM-
PDX Model that Retains the Histopathological 
and Molecular Characteristics of the Original 
Tumor

To develop the glioma CAM-PDX model, we used an ex-ovo 
chicken embryo culture system to allow broad access to 
the CAM for external manipulations, including tumor im-
plantation and drug treatments. Surgically resected oligo-
dendroglioma, astrocytoma, and glioblastoma tissues 
were obtained from a total of 60 individual patients under-
going treatment at the Centre hospitalier universitaire 
de Sherbrooke between April 2016 and December 2020. 
The demographic and clinical characteristics of these pa-
tients are summarized in Supplementary Table 2, and the 
detailed clinicopathological characteristics of each pa-
tient are shown in Supplementary Table 3. The median age 
in this cohort is 53 years with a 2:1 male to female ratio. 
We also observed a prevalence of HGGs (CNS WHO grade 
4) (68.3%) as opposed to lower grade tumors (CNS WHO 
grade 2–3) (31.7%). Furthermore, primary and recurrent 
tumors are present in similar proportions (55% and 45%, 
respectively).

To preserve the morphological characteristics of the orig-
inal tumor as accurately as possible, fresh tumor explants 
were used.27 The tissue was cut into fragments of less than 
5  mm3 (between 1 and 2  mm in diameter) (Figure  1A), 
which were implanted on embryonic development day 
(EDD) 9 or 10 and cultured on CAMs for an additional 6 or 
7 days as illustrated in Figure 1B. Initial studies indicated 
that these culture conditions resulted in optimal growth 
(Figures 1C, D) and greater uptake (Figures 1E, F) of the 
xenografted fragments. Using this optimized model, 59 out 
of 60 glioma specimens established xenograft tumors on 
CAM, corresponding to a success rate of 98.3% (Figure 1G). 
We also observed an uptake of 74.4% for individual tumor 
fragments of the specimen (Figure 1G). An example of 
successfully implanted CAM-glioma tumor is shown in 
Figure 1H. HE staining of xenografts reveal a network of 
capillaries filled with nucleated chicken erythrocytes28 
as shown in Figure 1I. There was no association between 
tumor type (primary or recurrent), IDH status (wild type 
or mutated) or the cell type/grade (oligodendroglioma, 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad047#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad047#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad047#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad047#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad047#supplementary-data
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Figure 1.  Optimization of the glioma CAM-PDX model. (A) Representative images of the tumor fragments used for implantation. Scale bar = 
2mm. (B) Timeline of the procedure. (C and D) Xenograft volume 6 or 7 days post-implantation based on initial fragment size (C) and embryonic 
development day (EDD) of implantation (D). (E and F) Tumor uptake as a function of initial fragment size (E) and EDD of implantation (F). (G) 
Tumor specimen and tumor fragment uptake on CAM. Created with BioRender.com (H) Representative image and (I) representative H&E staining 
of a CAM-glioma xenograft. Arrows show chicken blood vessels. Scale bar = 50 μm. Zoom in scale bar = 25 μm. (J–L) Tumor take rate according 
to primary or recurrent tumors (J), IDH status (K), or cell types/grades (L) of gliomas. Oligo: oligodendroglioma, Astro: astrocytoma, GBM: glio-
blastoma. Values are expressed as mean ± SEM. *P < .05, **P < .01, ****P < .0001, (C,E,J,K) Mann-Whitney test, (D,F,L) Kruskal-Wallis test.
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astrocytoma, or glioblastoma) and the extent of glioma 
fragment engraftment (Figure 1J, K and L).

The ability of the CAM to support the growth of glioma 
tissue fragments was evaluated by tumor volume measure-
ments before and after 7 days of implantation. Xenografts 
were found to undergo robust expansion on the CAM, with 
fold induction between 1.5 and 7.8 of the mean volume of 
the developed tumors (Supplementary Figure S1A). A sig-
nificant increase in fold induction was observed for recur-
rent tumor compared to primary tumors (Supplementary 
Figure S1B). In contrast, no significant difference was ob-
served according to IDH status (Supplementary Figure 
S1C), or for the 3 different grades/types of gliomas im-
planted (Supplementary Figure S1D). In addition, patient-
derived tumor fragments that successfully engrafted onto 
CAM could be serially passaged across multiple recip-
ient eggs for up to 3 amplification cycles (Supplementary 
Figure S1E). Together, these results demonstrate that the 
CAM-based xenograft model is a robust approach for the 
amplification of patient glioma tumors.

We next sought to determine whether the tumors grown 
on CAM retained some important characteristics of the orig-
inal tumor. Histopathologic examination by H&E staining 
demonstrated morphologic features characteristic of HGGs, 
including necrosis and pleomorphic astrocytic cells with 
marked nuclear atypia and mitosis in xenografted tumors, 
similar to those observed in the original tumors (Figure 2A). 
In some cases, the presence of gemistocytic cells, 
multinucleated giant cells, and cells with abundant vacuoles 
were also observed in both tissue types (Supplementary 
Figure S2). Specific staining for GFAP and vimentin, two 
important markers of malignant gliomas,29,30 and two neu-
ronal markers synaptophysin and neuro-specific enolase 
(NSE) showed similar expression between the original and 
implanted tumor tissues. In addition, the relative abundance 
of stem-like cells, identified by CD44 and nestin, and actively 
proliferating cells, identified by Ki67 was also comparable 
between the two sample types (Figure 2A).

To determine whether CAM-amplified tumors maintain 
genomic alterations found in patient tissues, we performed 
whole-exome sequencing of 6 HGG tumors and matched 
early-passage (P1) CAM xenografts. Analysis of genomic 
alterations in 4,927 genes indicated a high percentage 
(95.4%–97.7%) of identity between the parental and the 
xenograft tumors (Figure 2B and Supplementary Table 
4), with the exception of patient GBM17-26, who also dis-
played the highest rate of total mutations (Supplementary 
Table 5). As expected, commonly mutated genes were 
found in glioma-related pathways, such as IDH1, TP53, and 
PTEN, suggesting that cancer-driven mutations are well 
conserved in the CAM model. These results indicate that, 
in the CAM model, glioma xenografts retain many of their 
original histological and genomic characteristics.

The CAM-glioma PDX Model Enables the 
Assessment of Sensitivity/Resistance to TMZ and 
Carboplatin

We first identified drug doses that distinguish sensitive 
from resistant gliomas by treating CAM xenografts de-
rived from drug-sensitive U-87 MG or drug-resistant LN-18 

human glioblastoma cell lines31–33 with escalating doses 
of TMZ or carboplatin. TMZ was chosen as it is part of 
the standard treatment for newly diagnosed HGGs34 and 
carboplatin as it is the most frequently used second-line 
treatment at the CHUS because of clinicians’ expertise 
in intra-arterial (intra-carotid) infusion of the compound 
that enhances its efficacy.35,36 Maximum growth inhibi-
tion of U-87 MG-derived tumor xenografts was observed 
after IV injection of 4 mg/kg TMZ or 8 mg/kg carboplatin 
(Figure 3A, B), which is comparable to the usual doses 
given to HGG patients2,35 (Supplementary Table 6). In con-
trast, and as expected, drug-resistant LN18-derived xeno-
grafts, failed to respond to TMZ or carboplatin (Figure 3C, 
D). Using these optimized drug doses, we next evaluated 
whether patient-derived glioma xenografts exhibit dif-
ferential drug responses. Tumor fragments from 9 HGG 
patients were implanted on CAM and the developed tu-
mors treated with TMZ or carboplatin. A differential drug 
response was observed in these xenografts (Figure 3E-G 
and Supplementary Figure 3). For example, while GBM20-
65 xenografts responded to both TMZ and carboplatin 
(Figure 3E), GBM18-35-1 responded only to carboplatin 
(Figure 3F) whereas ASTRO19-48 was insensitive to both 
treatments (Figure 3G). Drug-induced inhibitory effects 
were associated with higher levels of caspase-3 activa-
tion (Figure 3H, I). These results suggest that the CAM-PDX 
model is appropriate for assessing sensitivity/resistance to 
chemotherapeutic drugs commonly used to treat HGGs at 
doses corresponding to the ones administered to patients.

CAM-Glioma PDX as a Predicting Model for 
Clinical Outcomes and Patient Response to 
Anticancer Drugs

We next evaluated the concordance between tumorige-
nicity in the CAM-PDX model and patient clinical out-
come. Kaplan-Meier analysis of PFS curves indicates that 
recurrence tends to occur later in patients with low tumor 
fragment uptake on CAM compared to those with a high 
uptake (Figure 4A), whereas a significant association was 
observed between CAM-PDX engraftment and overall pa-
tient survival (Figure 4B). These results indicate that higher 
CAM-PDX tumorigenicity is associated with poorer prog-
nosis in glioma patients.

To determine whether the CAM-PDX model can be used 
as an Avatar model to predict clinical responses in patients 
with glioma, we retrospectively evaluated treatment re-
sponse in 15 HGG patients and their corresponding CAM-
PDX models that were treated with optimized doses of TMZ, 
carboplatin, or vehicle alone. Treatments were considered 
effective in CAM when they resulted in a >30% and signif-
icant inhibition of tumor volume, according to the interna-
tionally standardized clinical Response Evaluation Criteria 
In Solid Tumors.37 These criteria were adapted to the CAM-
PDX model by using the control group as a reference. 
Patient response to treatment was assessed according to 
the RANO criteria,26 which is the current standard for as-
sessing response to treatment for HGGs. Patient response 
was classified as either CR, PR, or SD, which are generally 
considered therapeutically beneficial in a clinical setting, 
or PD. Table 1 summarizes the chemosensitivity profiles of 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad047#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad047#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad047#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad047#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad047#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad047#supplementary-data
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http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad047#supplementary-data
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http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad047#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad047#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad047#supplementary-data
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these 14 glioma patients who generated 15 matched CAM-
PDX models, 2 of which were derived from the same pa-
tient. Overall, the positive and negative predictive value 
was 100% (5/5 and 9/9 samples, respectively). As an ex-
ample, the lack of effect of a drug on CAM xenograft growth 
corresponded to tumor progression in the patient treated 
with the same drug (Figure 5A, B). In contrast, stabilization 

of the patient’s pathology was observed in cases where 
the drug significantly inhibited tumor growth in CAM-PDX 
(Figure 5A, C). It should be noted that we could not clearly 
define the radiographic response for the ASTRO19-48 pa-
tient, in keeping with the finding that response assessment 
in astrocytoma IDH-mutant, CNS WHO grade 2–3 could be 
problematic using the current modified RANO criteria.38
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Figure 2.  Histopathological and genetic characteristics of original and xenografted tumors. (A) Representative images of H&E, vimentin, GFAP, 
CD44, nestin, synaptophysin, NSE, and Ki67 staining of the original and xenografted tumors; arrows show Ki67 positive cells; N = 5. Scale bar = 50 
μm. (B) Mutations in 28 glioblastoma-associated genes identified by whole-exome sequencing of parental (T0) and xenografted (T1) tumors; 
N = 6. ASTRO: astrocytoma, GBM: glioblastoma, OLIG: oligodendroglioma.



1611Charbonneau et al.: Development of a CAM Avatar model of gliomas
N

eu
ro-

O
n

colog
y

In addition, in one patient with primary glioblastoma IDH-
wild type, CNS WHO grade 4, two sequential PDX models 
could be generated allowing longitudinal prediction of 
drug response (GBM18-35-1, GBM18-35-2). For the first 
CAM-PDX model, which was established after initial tumor 
resection, drug treatment of xenografted tumors showed 

significative tumor volume inhibition with carboplatin, 
whereas TMZ had no significant effect (Figure 5D). Clinically, 
the patient was treated with TMZ (as included in the STUPP 
protocol). Consistently with the lack of xenograft response 
to this drug, TMZ had no therapeutic benefit and the tumor 
progressed to a point of requiring furth 5E). In the second 
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Figure 4.  Prognostic value of the ability for glioma specimens to form xenografts in the CAM model. Kaplan-Meier analysis of (A) progression-
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Table 1.  Comparison of Patient and Xenografts Chemosensitivity Profiles

Identifica-
tion Number 

Diagnosis Tumor 
Type 

IDH 
Status 

Treatment Patient Clin-
ical Response 

PDX Inhibi-
tory Response 

GBM18-33 Glioblastoma, IDH-wild type, CNS 
WHO grade 4

Recur-
rent

Wild 
Type

Carboplatin PD −

GBM18-35-1 Glioblastoma, IDH-wild type, CNS 
WHO grade 4

Pri-
mary

Wild 
Type

Temozolomide PD −

GBM18-35-2 Glioblastoma, IDH-wild type, CNS 
WHO grade 4

Recur-
rent

Wild 
Type

Carboplatin PD −

GBM18-38 Glioblastoma, IDH-wild type, CNS 
WHO grade 4

Recur-
rent

Wild 
Type

Carboplatin PD −

GBM18-39 Glioblastoma, IDH-wild type, CNS 
WHO grade 4

Recur-
rent

Wild 
Type

Carboplatin PD −

GBM19-42 Glioblastoma, IDH-wild type, CNS 
WHO grade 4

Pri-
mary

Wild 
Type

Temozolomide PR +

ASTRO19-43 Astrocytoma, IDH-mutant, CNS 
WHO grade 4

Recur-
rent

Mu-
tated

Carboplatin PD −

OLIG19-45 Oligodentroglioma, IDH-mutant, 
CNS WHO grade 3

Recur-
rent

Mu-
tated

Carboplatin PD −

ASTRO19-47 Astrocytoma, IDH-mutant, CNS 
WHO grade 4

Recur-
rent

Mu-
tated

Temozolomide SD +

ASTRO19-48 Astrocytoma, IDH-mutant, CNS 
WHO grade 3

Recur-
rent

Mu-
tated

Carboplatin ? −

OLIG19-50 Oligodendroglioma, IDH-mutant, 
1p/19q codeleted, CNS WHO grade 3

Pri-
mary

Mu-
tated

Temozolomide CR +

GBM20-60 Glioblastoma, IDH-wild type, CNS 
WHO grade 4

Pri-
mary

Wild 
Type

Temozolomide PD −

ASTRO20-63 Astrocytoma, IDH-mutant, CNS 
WHO grade 4

Recur-
rent

Mu-
tated

Carboplatin SD +

GBM20-66 Glioblastoma, IDH-wild type, CNS 
WHO grade 4

Recur-
rent

Wild 
Type

Carboplatin PD −

GBM20-68 Glioblastoma, IDH-wild type, CNS 
WHO grade 4

Pri-
mary

Wild 
Type

Temozolomide CR +

Abbreviations: GBM, glioblastoma; ASTRO, astrocytoma; OLIG, oligodendroglioma; PD, progressive disease; SD, stable disease; PR, partial 
response; CR, complete response.
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CAM-PDX model generated following this second surgery, 
carboplatin had no effect on xenograft volume (Figure 5D), 
which again was associated with a lack of clinical response 
of the patient to this drug (Figure 5F). Taken together, these 

results further support the idea that drug responses in 
CAM-PDX closely mimic patient clinical outcomes. More 
so, they highlight the potential importance of choosing a 
personalized treatment in first-line therapy.
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Figure 5.  CAM-glioma and clinical response to chemotherapeutics. (A) Xenograft response to chemotherapeutic drugs for a non-responder 
(GBM20-66) and a responder (ASTRO20-63) PDX model. (B and C) Associated pre-and post-treatment MRI images for (B) GBM20-66 and (C) 
ASTRO20-63 patients. (D) Xenograft response to chemotherapeutic agents for two PDX models established from a single patient. (E and F) Pre- 
and post-treatment MRI images for the patient associated with (E) GBM18-35-1 and (F) GBM18-35-2 samples. Mann-Whitney test.
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Discussion

Despite recent advances in human glioma therapy, the 
prognosis has not improved significantly over the last sev-
eral decades. One important issue is the lack of rapid and 
reliable methods for developing new and more efficient 
drug therapies and for predicting individual patient re-
sponse. Here we demonstrate that the glioma CAM Avatar 
is a time-efficient model that faithfully recapitulates the 
histological and genetic characteristics of glioma tumors. 
Furthermore, our proof-of-concept study shows that this 
model can accurately predict patient clinical outcomes in 
terms of progression-free and OS and, more importantly, 
chemoresistance/sensitivity of the tumor to TMZ and 
carboplatin.

For this study, fresh tissue fragments from 60 glioma 
patients were implanted onto CAMs and 59 CAM-PDX 
models were successfully established. The engraftment 
rate was 100% for astrocytomas and oligodendrogliomas 
and 97.1% for glioblastomas for an average of 98.3%. This 
engraftment rate in the CAM-PDX model was higher than 
those observed in heterotopic mouse PDX glioma models, 
which ranged from 38% to 69%,13,39 but more comparable 
to, yet higher than, the orthotopic model of brain tumors, 
which showed a 76%–90% success rate.40,41 Of note, all 25 
IDH-mutated samples successfully engrafted in the CAM 
model. This finding is of particular interest because IDH 
mutations are present in a high proportion of gliomas and 
a long-standing challenges in the development of glioma 
PDX models is the almost complete failure of IDH1-mutated 
specimens to engraft when transplanted heterotopically or 
orthotopically into mice.13,42,43 Consequently, it has been 
very difficult to establish appropriate models for preclin-
ical study and drug testing for this molecular subtype of 
glioma. In fact, several small molecule inhibitors targeting 
the mutated form of IDH1 have been generated and are in 
various phases of development, although very few have 
reached phase III clinical trials. The CAM-PDX model, which 
allows the engraftment of tumors from patients with dif-
ferent types of gliomas regardless of their IDH status, 
would therefore be well suited for the evaluation of new 
therapeutic strategies designed to target the different ge-
netic types of gliomas.

The mouse PDX model is known to preserve a high de-
gree of concordance in histological features and genomic 
variation between primary tumors and corresponding 
xenografts and is therefore viewed as the most reliable 
for tumor biological research and is the gold standard in 
preclinical studies.40,44 Our histological study indicates 
that CAM xenografts also retain the cellular and morpho-
logic heterogeneity as well as features typical of HGGs. 
For instance, features of the original tissue such as pleo-
morphic astrocytic cells or cells expressing stem-like and 
glial markers also populated the matching CAM-PDX. 
Furthermore, analysis of 6 whole-exome sequencing 
data showed that 91% of mutations, including the IDH 
status, were shared between original tissue samples and 
their CAM-amplified xenografts. The few differences be-
tween the original tumor and xenografts could be attrib-
uted to regional intratumoral heterogeneity, a hallmark of 

GBM.4,45 This may be particularly true for the PDX GBM17-
26 sample, which has the lowest percentage of gene mu-
tation retention in xenografts (3 out of 8) and the highest 
tumor mutation burden (Supplementary Table 4). In fact, 
this sample was identified as a giant cell glioblastoma, a 
rare variant of glioblastoma IDH-wild type characterized by 
frequent TP53 mutations, a marker associated with GBM 
subclonal heterogeneity.46,47 These results highlight that, 
while CAM xenografts generally retain key features of the 
parental tumor, further studies will be needed to define 
whether this GBM variant should be included in an even-
tual glioma CAM-PDX precision medicine platform.

Preclinical models are essential tools to study cancer de-
velopment and drug screening. However, currently used 
models, such as organoids, cell line-derived xenografts, or 
patient-derived xenografts in zebrafish or murine models, 
all have certain limitations. For example, generating a full 
cohort of PDX mice for in vivo drug screening can take 
4–8 months. Therefore, when used in a clinical setting, 
tumor progression or even death will often occur before 
screening results are available. Even though the zebrafish 
model is much more rapid, the required incubation tem-
perature of 32–34°C and the normally used 48 h incubation 
time for drug testing may hamper the detection of some 
types of drug, leading to an underestimation of drug ef-
fects.48 In addition, cell line-derived xenografts are limited 
by poor predictability of drug sensitivity because they do 
not accurately reflect the genetic and biological heter-
ogeneity of tumors,49 while organoids lack a method to 
generate large numbers of brain organoids with minimal 
inter-organoid variations. The glioma CAM-PDX model es-
tablished herein can overcome some of these limitations. 
Xenografts grown on CAMs reproduce histological and 
genetic features of the original tissue while preserving 
its complex heterogeneity. Furthermore, the short ex-
perimental window of the CAM assay, which can be con-
sidered a limitation for long-term experiments, has proven 
to be an advantage because tumors can form on the CAM 
and respond to drug treatments in only 7 days, making this 
model particularly time efficient.

An additional benefit of the CAM-glioma model is the 
fact that the large majority of the specimens can be suc-
cessfully engrafted in the first round of implantation, 
regardless of the glioma subtype or variant. As such, no ad-
ditional propagation is required for drug response testing. 
This is particularly important as murine-based PDX models 
will eventually lose human stromal components during the 
multiple in vivo passages needed to amplify enough mate-
rial for drug testing, so a model requiring a low number of 
passages is ideal for maintaining the histological integrity 
of the primary tumor.39,50 In addition, clonal selection and 
evolution can occur during serial passaging, resulting in 
potential divergence in drug response.15

In our proof-of-concept study, the response of glioma 
PDX xenografts to chemotherapy was predictive of the pa-
tients’ clinical response to these drugs in all cases tested. 
This overall predictive value of 100% compares favorably 
with values, ranging from 67% to 100%, that have been re-
ported in literature for different types of cancer implanted in 
mouse models, such as breast, ovarian, and pancreatic.51,52 
In addition, results from 2 sequential CAM-PDX models es-
tablished from one patient whose tumor did not respond to 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad047#supplementary-data
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any treatments in the clinic indicate that carboplatin treat-
ment might have been a better choice than TMZ used as 
a first-line treatment for this patient. Even though further 
evaluation of the correlation between patient responses 
and corresponding PDX in a larger prospective setting will 
be required, these data suggest that the glioma CAM-PDX 
model has a high potential to become a valuable platform 
for modeling clinical response in patients. This possibility 
is of great interest as CAM test results can be available 
early enough (in as little as 1–3 weeks) to guide clinicians in 
choosing the best treatment for patients afflicted by these 
rapidly progressing types of brain cancer.

Supplementary Material

Supplementary material is available online at Neuro-
Oncology (http://neuro-oncology.oxfordjournals.org/).
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