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Abstract  
Adult neural stem cells are neurogenesis progenitor cells that play an important role in neurogenesis. 
Therefore, neural regeneration may be a promising target for treatment of many neurological 
illnesses. The regenerative capacity of adult neural stem cells can be characterized by two states: 
quiescent and active. Quiescent adult neural stem cells are more stable and guarantee the quantity 
and quality of the adult neural stem cell pool. Active adult neural stem cells are characterized by 
rapid proliferation and differentiation into neurons which allow for integration into neural circuits. 
This review focuses on differences between quiescent and active adult neural stem cells in nutrition 
metabolism and protein homeostasis. Furthermore, we discuss the physiological significance and 
underlying advantages of these differences. Due to the limited number of adult neural stem cells 
studies, we referred to studies of embryonic adult neural stem cells or non-mammalian adult neural 
stem cells to evaluate specific mechanisms.
Key Words: adult neurogenesis; cell metabolic pathway; cellular proliferation; neural stem cell niches; 
neural stem cells; neuronal differentiation; nutrient sensing pathway; proteostasis

Introduction 
Studies have shown that the brain retains neuroregenerative capacity after 
mammals, such as rodents (Altman and Das, 1965) and primates (Kaplan and 
Hinds, 1977), reach adulthood. However, the neuroregenerative capacity of 
the adult human brain remains unclear, with some studies showing negligible 
levels of adult neurogenesis (Sorrells et al., 2018). The general belief is 
that two main areas maintain neurogenesis: the subventricular zone (SVZ) 
of the lateral ventricle (Morshead et al., 1994; Dillen et al., 2020) and the 
subgranular zone (SGZ) of the dentate gyrus (Bonaguidi et al., 2012; Berg 
et al., 2018). Discovery of a complex microenvironment and crucial roles 
played by neuronal stem cell (NSC) development has led to coining of the 
term “neurogenic niche.” Recent animal studies have shown neurogenesis in 
other brain regions such as in tanycytes in the hypothalamus (Rodríguez et 
al., 2019), the striatum (Parent et al., 1995), and the cerebral cortex (Ge et al., 
2020; Figure 1).

In the SVZ and SGZ, NSCs have different names, forms, and surroundings 
(McMillan et al., 2022; Malik et al., 2023). In the SVZ, NSCs are called B-type 
cells and are astrocyte-like in appearance. NSCs in the SVZ express GFAP, 
Nestin, and Sox2 (Doetsch et al., 1997). Morphologically, a B cell presents 
with a long base with a protrusion terminating in a blood vessel and an 
apex that terminates on the surface of the ventricle, where ependymal 
cells surround the apices of these B cells to form a pinwheel-like tissue 
morphology (Mirzadeh et al., 2008). A study showed that direct interaction 
between B cells and vascular endothelial cells promoted B cell quiescence 
through ephrinB2 and Jagged1 (Ottone et al., 2014). In the SGZ, NSCs are 
called type 1 cells and are similar to B cells in the SVZ in that they present 
with astrocyte-like electrophysiological properties and express GFAP, Nestin, 
and Sox2 (Filippov et al., 2003). Morphologically, type 1 cell bodies are 
located in the SGZ, but type 1 cell protrusions stick out of the granular layer 
and make contact with the molecular layer while maintaining permanent 
contact with blood vessels (Kumar et al., 2019; Ribeiro and Xapelli, 2021). 
Through direct contact with blood vessels, NSCs can monitor changes in blood 
flow signals, thus monitoring delivery of nutrients and oxygen, which are raw 
materials for NSC metabolism (Andreotti et al., 2019). The perception of NSCs 
to the surrounding metabolic conditions may be inextricably linked with the 
metabolic changes from qNSCs to aNSCs. At the same time, in the face of the 
environment’s changing conditions, how NSC maintains a stable ecological 
niche seems to be an important topic. In this review, metabolism and protein 
homeostasis differences between qNSCs and aNSCs are discussed.  

Database Search Strategy
In this narrative review, we included studies that discussed factors affecting 
adult NSC regeneration and differentiation. The majority of articles referenced 
(~90% of all references) were written in the English language and were full-
text articles published between January 2005 and June 2022. The studies 
were primarily conducted on mammals such as rodents and humans. The 
authors searched the PubMed database to identify relevant publications 
using the following criteria: adult to avoid studies focused on embryonic 
neurogenesis. Then, the following terms were searched: (1) neurogenesis, (2) 
neural regeneration, (3) NSCs. Representative articles were screened studies 
related to metabolism and protein homeostasis, then relevant references 
were used to clarify each aspect, i.e., nutrient-sensing and metabolic 
pathways and protein homeostasis. 

Nutrient-Sensing and Metabolic Pathways 
Nutrient-sensing pathways
Nutrients and oxygen are the two extrinsic elements of metabolism, and 
monitoring of these determines the behavior of NSCs. In naive cognition cells 
have better proliferative potential in a nutrient-rich environment. Cells have 
a series of nutrient sensing pathways to detect nutrition in the environment. 
The most well-characterized nutrient sensing pathway is the insulin/insulin-
like growth factor 1 (IGF1)/forkhead box protein O (FOXO) pathway (Tia et 
al., 2018). In this pathway, the presence of insulin represents nutritional 
sufficiency and insulin-stimulated cells activate Akt and other protein kinases, 
resulting in phosphorylation and inactivation of FOXO. FOXO then translocates 
to the cytoplasm for degradation via ubiquitination (Greer and Brunet, 2005). 
Nuclear FOXO mediates transcription of various target genes, such as those 
associated with G1 arrest, G2 arrest, DNA repair, antioxidative stress, cell 
differentiation, and other effects in stem cells (Paik et al., 2009). 

In NSCs, FOXO regulation of the expression of these genes has been 
demonstrated in many studies (Du and Zheng, 2021; Tay et al., 2021). 
Some studies (McLaughlin and Broihier, 2018; Ludikhuize and Rodríguez 
Colman, 2021) showed that FOXO inhibited NSC proliferation and turnover, 
resulting in NSC quiescence. Although FOXO deficiency initially increased NSC 
proliferation, sustained ventriculomegaly and SVZ thinning were observed in 
response to prolonged FOXO deficiency in the adult brain. These long-term 
effects were associated with loss of the NSC pool and increased oxidative 
stress. Therefore, inhibition of the insulin/IGF1-FOXO pathway participates 
in NSC pool maintenance. Interestingly, patients with Alzheimer’s disease 
(AD) had persistent ventriculomegaly and SVZ thinning, and studies have 
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suggested that AD development is associated with reduced hippocampal 
neurogenesis (Mu and Gage, 2011). The amyloid precursor protein (APP) 
intracellular domain (AICD) is a byproduct of APP metabolism. Elevated AICD 
results in AD, possibly through interaction with FOXO3a (Figure 2). In addition, 
FOXO3a overexpression leads to a marked reduction in NSC proliferation 
and differentiation (Jiang et al., 2020) and regulates phosphatase and tensin 
homolog (PTEN)-induced kinase 1 (Pink-1) expression (Goiran et al., 2018). 
Pink-1 is associated with mitochondrial dynamics (Poole et al., 2008) and 
mitochondria-induced autophagy (Vives-Bauza et al., 2010). AICD activates 
FOXO3a, and FOXO3a inhibits AICD (Jiang et al., 2020) which is similar to the 
homeostatic loop in which blood glucose regulates insulin and glucagon levels 
and the daily rhythm of REM-ON and REM-OFF neuron activity. Furthermore, 
other factors may alter the FOXO pathway in neurons in individuals with AD. 

Studies have shown that activation of the IGF1 signaling pathway is necessary 
to increase the number of functional neurons to counteract FOXO3a-induced 
decreases in neuronal differentiation in the olfactory bulb (OB) (Hurtado-
Chong et al., 2009) and in the hippocampus (Nieto-Estévez et al., 2016). 
However, high levels of IGF do not maintain the NSC pool because neuronal 
differentiation exhausts the NSC pool, possibly because proliferation and 
differentiation may be contradictory cellular processes. Lack of IGF-1 typically 
results in decreased NSC proliferation. However, in the mouse hippocampus 
IGF-1 deficiency resulted in larger neurospheres (Nieto-Estévez et al., 2016), 
possibly because IGF-1 deficiency resulted in progenitor cell misplacement 
and morphological abnormalities in the dentate gyrus (DG), blocking neuron 
differentiation and forcing NSC self-renewal. To address this paradox, the 
effects of cyclical fasting and feeding were analyzed, and cyclical IGF-1 
changes were found to increase hippocampal neurogenesis and cognitive 
performance in mice (Brandhorst et al., 2015).

Sensing oxygen
Hypoxia-inducible factor-1 (HIF-1) is an important molecular oxygen sensor. 
HIF-1 regulates glycolytic metabolism, and increased HIF-1 expression leads 
to enhanced glycolysis and decreased OXPHOS, which is critical for induction 
of pluripotency of stem cells (Semenza, 2012). Under normoxic conditions, 
HIF-1α rapidly degrades via the ubiquitin protease pathway. However, 
under hypoxic conditions degradation is blocked, and HIF-1α accumulates 
and associates with HIF1β, resulting in decreased association with target 
genes and reduced transcription (Huang et al., 1996). Increase in HIF-1α 
expression results in increased self-renewal of stem cells. Symptoms of Von 
Hippel-Lindau disease, characterized by systemic cysts and tumors with high 
malignant potential, supports this concept (Bader and Hsu, 2012). 

In NSCs HIF activation facilitates conversion of qNSCs to aNSCs. In a rat 
model of cerebral ischemia, hypoxia resulting from vascular disruption in the 
damaged area increased HIF-1α expression, resulting in neurogenesis (Liu et 
al., 2014). Remote limb ischemia postconditioning has been shown to improve 
cerebral ischemia/reperfusion injury and may be associated with increased 
HIF-1α expression (Zong et al., 2015). The effects of HIF-1α on nerve 
regeneration through the Wnt/β-catenin signaling pathway have been well-
characterized. Hypoxia results in increased NSC proliferation and increased 
mRNA and protein expression of HIF-1α, β-catenin, and cyclin D1. Knockdown 
of HIF-1α results in decreased expression of β-catenin (Mazumdar et al., 
2010; Qi et al., 2017). Interestingly, HIF-1α modulates mitochondrial dynamics 
and reactive oxygen species (ROS) production during neural differentiation 
of induced pluripotent stem cells. When mitochondria are excessively 

Figure 1 ｜ In rodent brains, two main areas maintain neurogenesis: the SVZ of the LV. 
In the subventricular zone (SVZ), nascent neurons migrate long distances to the 
olfactory bulb (OB) along the dorsal migratory stream (depicted with green lines) and 
the subgranular zone (SGZ) of the dentate gyrus (DG). Nascent neurons then migrate 
short distances to form the granule cell layer of mossy fiber pathways and synaptic 
connections with Cornu Ammonis region 3 (CA3) neurons (DG and CA3 depicted with 
red lines). In the SVZ, neural stem cells (NSCs) are termed B-type cells, a subpopulation 
of quiescent cells with an astrocyte-like appearance. Morphologically, B cells have a 
long base protrusion terminating in blood vessels and an apex that terminates on the 
surface of the ventricle. Then, B cells differentiate into transport amplifying cells, called 
C cells, and later into neuroblasts, which are also called A cells. In the SGZ, NSC cells are 
called type 1 cells, which are similar to B cells of the SVZ. Type 1 cells differentiate into 
intermediate progenitors, which are called type 2 cells. Type 2 cells give rise to type 3 
cells or neuroblasts (not shown), which form mature cells in contact with pyramidal cells.  
Created with Adobe illustrator. LV: Lateral ventricle; SVZ: subventricular zone. 

Figure 2 ｜ The classic insulin/IGF1/FOXO pathway and its association with APP. 
The left signaling pathway shows the classic insulin/IGF1 (insulin-like growth factor 1)/
FOXO (forkhead box protein O) pathway. In this pathway, insulin-stimulated cells activate 
Akt. Akt then phosphorylates and inactivates FOXO, resulting in translocation to the 
cytoplasm for degradation by ubiquitination. When FOXO is in the nucleus it mediates 
transcription of various target genes such as G1 arrest, G2 arrest, DNA repair, anti-
oxidative stress, cell differentiation, and other effects in stem cells. The right signaling 
pathway shows that amyloid precursor protein (APP) may be involved in development of 
Alzheimer’s disease. The amyloid APP intracellular domain (AICD) is a byproduct of APP 
metabolism, produced by sequential proteolytic cleavage by α/β and γ-secretases. AICD 
activates FOXO3a resulting in reduced neurogenesis. Reduced neurogenesis may be a 
mechanisms of brain shrinkage in AD. Created with Adobe illustrator. FOXO: Forkhead 
box protein O; IGF1: insulin-like growth factor 1; PI3K: phosphoinositide 3-kinase; RTK: 
receptor tyrosine kinases. 

fragmented, insufficient mitochondrial function results in decreased 
mitochondrial capacity to regulate solute Ca2+ levels, resulting in increased 
solute Ca2+ levels and upregulation of CaMKII activity and noncanonical 
proteasome degradation of β-Catenin protein (Zhong et al., 2019). A recent 
study showed that expression of HIF-1α inhibited mitofusin 2 (MFN2) 
expression (Cui et al., 2021), resulting in disruption of mitochondrial dynamics 
due to inhibition of MFN activity and defects in neuronal differentiation. 
Therefore, HIF-1α may affect NSC differentiation through β-Catenin signaling 
mediated by MFN2 (Cui et al., 2021). While the Wnt/β-catenin pathway is 
important for NSC renewal and the differentiation of embryonic stem cells 
(ESCs) and induced pluripotent stem cells, it may be dispensable for adult 
NSC homeostasis and activation. Activated or quiescent NSCs showed similar 
levels of Wnt/β-catenin signaling activity. Knockout of Wnt/β-catenin signaling 
did not alter the activation state of NSCs in vitro. Notch and BMP signaling 
is elevated in quiescent NSCs (Austin et al., 2021). Although endogenous 
β-catenin signaling may not be associated with NSC niche cues, exogenous 
Wnt signaling plays a significant role in NSC fate (Heppt et al., 2020). 

Inflammatory signaling is regulated by HIF-1α under cerebral hypoxic 
conditions (Amin et al., 2021). Inflammation plays an important role in neural 
regeneration, especially in the hippocampal region (Monje et al., 2003). 
Neuroinflammation-mediated neurogenesis is a distinct pathological feature 
of Alzheimer’s disease (Sung et al., 2020) and depression (Borsini et al., 
2020). In most tissues HIF is overexpressed in response to increased oxygen 
consumption and through NF-KB-mediated tissue inflammation, resulting 
in immune cell survival and activation (Elks et al., 2011). Under normoxic 
conditions proinflammatory signaling molecules such as IL-1β (Jung et al., 
2003) can increase HIF-1α protein expression. Expression of HIF results in a 
positive feedback loop, leading to pathogenic bacteria death and impaired 
cell clearance. These processes were explained in detail in a recent review 
(Kiani et al., 2021). However, some studies on hippocampal nervous tissue 
hypoxia (Xing and Lu, 2016; Lee et al., 2022) reported the opposite results. 
Stabilization of HIF-1α for 24 hours after transient total ischemia attenuated 
rat hippocampal IL-6R and TNFR1 activity, and reduced caspase-3 protein 
expression after ischemia/reperfusion injury (Xing and Lu, 2016). 

Glucose metabolism 
Metabolism is closely related to energy supply. Stem cells exhibit a unique 
metabolic pattern, and stem cells that differentiate and mature into adult 
cells undergo unique metabolic transitions (Ludikhuize and Rodríguez Colman, 
2021). Stem cells in the quiescent state under anaerobic conditions use 
glycolysis as their main energy source, activated stem cells exhibit enhanced 
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oxidative phosphorylation (Suda et al., 2011), and adult NSCs are no exception 
(Feng and Liu, 2017). The adult aNSCs prefer oxidative phosphorylation but 
qNSCs prefer glycolysis  Recent studies have shown that hypoxic metabolism 
regulates proliferation of stem cells (Antebi et al., 2018; Wobma et al., 2018; 
Xing et al., 2018) and that glycolysis (Khacho and Slack, 2017; Sun et al., 
2018) and glutamine catabolism (Zhou et al., 2019) contribute to survival and 
reproduction of stem cells during hypoxic metabolism. Although glycolytic 
breakdown produces less ATP than does oxidative phosphorylation (OXPHOS), 
it is kinetically faster. Furthermore, glycolysis and glutamine breakdown 
products are critical components of signaling pathways that support cell 
division (Lunt and Vander Heiden, 2011). For example, ten-eleven translocation 
methylcytosine dioxygenase 1 (TET1) catalyzes conversion of the modified 
DNA base 5-methylcytosine to 5-hydroxymethylcytosine via oxidation of 
5-methylcytosine in an iron- and α-ketoglutarate (α-KG)-dependent manner. 
In addition, TET1 demethylates pluripotency genes, resulting in increased 
transcriptional activity. Glutaminase catalyzes conversion of glutamine to 
glutamate, which is then converted to α-KG by glutamate dehydrogenase or 
transaminases (PSAT/GOT/GPT) (Tambay et al., 2021), resulting in increased 
catalytic activity of TET1. Glycolysis and glutamine fuel the hexosamine 
biosynthesis pathway (Hanover et al., 2010). In embryonic stem cells the 
hexosamine biosynthesis pathway produces O-linked β-N-acetylglucosamine 
(O-GlcNAc) through O-GlcNAc transferase, resulting in O-GlcNAcylation-
mediated increases in TET1 activity (Vella et al., 2013; Figure 3). In addition, 
anaerobic metabolism enables stem cells to maintain low ROS production. 
Stem cells first undergo anaerobic metabolism, characterized by low oxygen 
consumption rates and immature mitochondria with low mitochondrial 
DNA (mtDNA) density (Facucho-Oliveira and St John, 2009; Rehman, 2010). 
However, although mitochondrial OXPHOS is the main driver of ROS generation, 
the repair system through which oxidative mtDNA damage is mitigated is less 
efficient than the nuclear DNA repair system (de Souza-Pinto et al., 2008). 
Therefore, decreased ROS production via anaerobic metabolism in stem cells 
allows for more efficient maintenance of nuclear DNA and mtDNA genome 
integrity. This phenomenon was first observed during early research on yeast. 
The yeast cell cycle is accompanied by periodic changes in cellular oxygen 
consumption. In the S phase during DNA synthesis, oxygen consumption is low, 
resulting in protection of single-stranded DNA, which is more vulnerable to 
oxidative damage during replication (Tu et al., 2005; Tu and McKnight, 2007). 
Simultaneous anaerobic metabolism enhances defense of stem cells against 
ROS. First, glycolysis and pentose phosphate pathways increase the production 
of NADPH, which is a key cofactor for maintaining the reduced forms of 
thioredoxin and glutathione, which are important ROS scavengers (Perales-
Clemente et al., 2014). Second, glutamine is required to maintain high levels 
of the intracellular antioxidant glutathione. Increased glutamine in stem cells 
promotes scavenging of ROS. Levels of ROS affect signaling proteins such as 
the pluripotency gene octamer-binding transcription factor 4 (OCT4), which 
maintains cell stemness. Oxidation induces spontaneous degradation of OCT4, 
resulting in cell differentiation, and glutathione produced by glutamine protects 
OCT4 from oxidative degradation (Marsboom et al., 2016).

Mitochondrial dynamics
Redox status is important in regulation of stem cell differentiation (Ogasawara 
and Zhang, 2009) and mitochondrial dynamics (Khacho et al., 2016). In 
embryonic NSCs, mitochondria have different morphologies at different 
stages. Mitochondria in qNSCs exhibit an elongated morphology, whereas 
mitochondria in aNSCs are rounder and either more spherical or more tubular 
(Beckervordersandforth et al., 2017). As NSCs differentiate their mitochondria 
fragment. Mitochondria then undergo fusion once fully differentiated as 
neurons.

Changes in mitochondrial morphology may regulate differentiation of NSCs. 
Suppression of Drp1, which mediates mitochondrial fission, resulted in fused 
mitochondria and NSC self-renewal (Iwata et al., 2020). Some studies have 
shown that small, fragmented mitochondria have higher electron transport 
chain and OXPHOS activity and higher mitochondrial membrane potentials 
(Beckervordersandforth et al., 2017) resulting in higher ROS levels. Although 
fused mitochondria in self-renewing NSCs can function normally when these 
cells are forced to undergo OXPHOS due to lack of energy, proton leakage 
caused by UCP2 and IF1 inhibits OXPHOS (Khacho et al., 2016). 

Fragmented mitochondria produce higher levels of ROS, and ROS inhibit self-
renewal by upregulating nuclear transcription factor 2 and downregulating 
Notch signaling, resulting in differentiation (Khacho et al., 2016). In addition, 
Sirtuin1 (Iwata et al., 2020), a protein deacetylase/mono-ADP ribosyltransferase, 
plays a role in NSC differentiation. Sirtuin1 activity depends on nicotinamide 
adenine dinucleotide (NAD+). Therefore, sirtuins are associated with regulation 
of cellular metabolic state (Schwer and Verdin, 2008). Increased ETC activity 
leads to increased NAD+/NADH ratio, resulting in activation of Sirtuin1. Sirtuin1 
is recruited by BCL6 to promote neural differentiation through epigenetic 
inhibition of the Notch signaling target gene Hes (Tiberi et al., 2012; Iwata et 
al., 2020). The Notch signaling pathway promotes NSC self-renewal. A recent 
study has shown that increased Notch signaling pathway activity increased 
NSC self-renewal via symmetrical division of hippocampal NSCs in mice with 
intracerebral hemorrhage (Chen et al., 2021). 

However, mitochondrial fission only affects NSC differentiation selection. 
When NSCs differentiate into neurons, intact mitochondrial function 
is essential. Knockout or mutation of the Mfn2 gene, which mediates 
fragmented mitochondrial fusion, causes mitochondrial metabolism and 
defects in signaling networks, neurogenesis, and synapse formation, causing 
various neurological deficits (Fang et al., 2016). The AMPK-PGC-1a-NRF 

(Zhang et al., 2018) and the SIRT1-PGC-1a axes (Gomes et al., 2013) play 
important roles in mitochondrial biogenesis. Increased ROS may result in 
increased mitochondrial activity and increased OXPHOS in mature neurons. 
Mitochondrial fission is thought to be a possible mechanism of mitochondrial 
biogenesis, and increased mitochondrial fission produces many fragmented 
mitochondria. Mitochondrial fragmentation is an important step in 
elimination of damaged mitochondria and generation of new mitochondria to 
meet increased energy demands (Youle and van der Bliek, 2012).

Lipid metabolism
Lipid metabolism plays an important role in neurogenesis. Whether NSCs 
are in the quiescent or activated states in the hippocampus is dependent on 
FA metabolism. Carnitine palmitoyltransferase-1a-dependent FA oxidation 
(FAO) activity is high in quiescent NSCs (Knobloch et al., 2017). Inhibition of 
FAO leads to increased differentiation and decreased self-renewal of NSCs, 
resulting in a reduced pool of NSCs. This decrease in the pool of NSCs is 
associated with various neuropsychiatric disorders such as autism spectrum 
disorder. For example, carnitine has different types of carnitine depending 
on the length of the carbon atom, and the different proportions of their 
different types of carnitine in autism spectrum disorder compared with 
healthy individuals may be one of the reasons for the decrease in FAO flux, 
and appropriate carnitine supplementation improves symptoms (Barone et 
al., 2018). 

Increased FA synthase-mediated de novo lipid synthesis in activated NSCs 
promotes nerve regeneration (Knobloch et al., 2013). This process may be 
associated with SPOT14, which is negatively regulated via de novo lipogenesis. 
Synthesis of medium and long chain FA controls NSC proliferation, and 
increased levels of these fatty acids are associated with low proliferation 
rates in NSCs (Knobloch et al., 2013, 2014). Exercise promotes neurogenesis 
in the hippocampus, which aids in cognition. Exercise is also associated with 
increased FA synthase expression and increased mobilization of SPOT14-
positive qNSCs (Knobloch et al., 2014). Additional evidence has suggested 
that FA synthesis plays an important role in neurogenesis. Thyroid hormone-
induced liver protein, also known as SPOT14, is encoded by the THRSP 
gene. Overexpression of SPOT14 in the prefrontal cortex (Dela Peña et al., 
2015) and striatum (Custodio et al., 2018) may be associated with attention 
deficits. For example, attention-deficit/hyperactivity disorder symptoms 
have been shown to be highly correlated with long-chain polyunsaturated 
FA (LCPUFA) deficiency (Janssen and Kiliaan, 2014). As previously stated, 
SPOT14 negatively regulates synthesis of medium and long chain FA. Although 
biosynthesis of LCPUFAs such as docosahexaenoic acid mainly depends on 
the diet and requires the liver, a small percentage of LCPUFAs is synthesized 

Figure 3｜ The underlying mechanisms by which glutamine metabolism and glycolysis 
promote TET1 catalysis under hypoxic conditions. 
The process on the left shows that glutamine is converted to glutamate by glutaminase, 
then further converted to α-ketoglutarate (α-KG) by glutamate dehydrogenase or 
transaminases (PSAT/GOT/GPT). Catalytic activity of TET1 is then increased by α-KG. 
The process on the right shows that glycolysis and glutamine can fuel the hexosamine 
biosynthesis pathway, the product of which is O-linked β-N-acetylglucosamine (O-GlcNAc), 
which is produced by O-GlcNAc transferase-mediated O-GlcNAcylation of TET1. This 
product positively regulates TET1 activity. Created with Adobe illustrator. GDH: Glutamate 
dehydrogenase; GLS: glutaminase; TET1: ten-eleven translocation methylcytosine 
dioxygenase 1. 
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in the brain. These fatty acids are mainly synthesized in glial cells, but may 
also be synthesized by NSCs with a glial cell phenotype (Gharami et al., 2015), 
as long-chain FAs do not easily cross the blood-brain barrier. Malonyl-CoA 
is the common modulator of both FAO and FA synthesis. Malonyl-CoA is a 
raw material for FA synthesis. In FAO, malonyl-CoA may inhibit the enzymatic 
activity of carnitine palmitoyltransferase-1 (CPT1) through malonylation of 
CPT1 (Fadó et al., 2021). GPT1 accelerates transport of long-chain FAs from 
the cytoplasm into mitochondria where they undergo β-oxidation. Therefore, 
malonyl-CoA levels may modulate FA synthesis and FAO. Levels of malonyl-
CoA determine NSC fate through regulation of lipid metabolism. 

Fatty acid metabolism is partially reflected by the respiratory quotient (RQ). 
Human premature infants have brain RQs 10% lower than those in adults 
(Gluck, 1962), which reflects elevated FAO in premature infants, possibly 
related to highly proliferative NSCs. During sleep and under anesthesia, the 
human brain RQ is less than 1, and metabolic studies of sleep have shown 
that synthesis and decomposition of brain lipids were both greater during 
sleep than during wakefulness (Aalling et al., 2018), which may indicate 
that sleep is associated with increased self-renewal and neurogenesis of 
NSCs. Recent studies have shown that freely moving mice exhibit greater 
NSC proliferation during the day or in the presence of light, which may be 
due to melatonin-mediated effects on NSC calcium dynamics and reduced 
NSC proliferation (Gengatharan et al., 2021). Specifically, in stem cells, high 
cytoplasmic Ca2+ levels trigger proliferation, while Ca2+ oscillations maintain 
stem cell quiescence, which is important in the intestines where stem cells 
sense external metabolic and mechanical changes (He et al., 2018). Increasing 
studies have shown that Ca2+ level plays an important role in NSC sensing 
of cerebrospinal fluid flow. Under high flow conditions, ENaC ion channels 
in NSCs transport sodium into cells. Sodium influx induces membrane 
depolarization, which stimulates calcium exchangers and channels, leading to 
increased cytoplasmic calcium and NSC proliferation (Petrik et al., 2018).

Protein homeostasis
Proteostasis is important for maintenance of long-term NSC self-renewal 
and differentiation. Loss of proteostasis leads to protein aggregation, which 
is associated with many neurodegenerative diseases such as AD, Parkinson’s 
disease, and prion diseases (Aguzzi and O’Connor, 2010). Although 
mainstream research has concluded that neurodegenerative diseases are 
primarily associated with dysfunction and apoptosis of differentiated neurons, 
the important role played by the loss of homeostasis and the NSC pool during 
NSC ageing cannot be ignored. For example, decreased expression of the 
molecular chaperone TRiC in NSPCs resulted in a senescence phenotype, 
whereas decreased expression of small Hsps (sHsps) in differentiated neurons 
did not lead to senescence (Vonk et al., 2020). This finding suggested that 
NSPCs may be particularly sensitive to loss of protein homeostasis. Loss 
of protein homeostasis results in accumulation of protein aggregates, 
which disrupt the ability of NSCs to cease proliferation and prevent nerve 
regeneration (Morrow et al., 2020). Sequestration of protein aggregates via 
the autophagy-lysosomal pathway, the proteasome pathway, or chaperones 
promotes protein homeostasis.

When protein homeostasis is compromised, accumulated misfolded proteins 
form inclusion bodies in cells to protect themselves from toxic proteins 
such as JUNQ and IPOD (Ogrodnik et al., 2014; Radwan et al., 2017). In a 
recent study vimentin cages were shown to be important for NSC activation. 
Knockout of vimentin resulted in marked downregulation of NSC proliferation, 
rendering these cells incapable of exiting quiescence (Morrow et al., 2020). 
The vimentin cage mediates asymmetric division resulting in the formation of 
JUNQ perinuclear inclusion bodies. When a cell divides into two, the cell that 
inherits these inclusion bodies maintains a low-division phenotype while the 
other cell maintains a high division rate to ensure the population dominance 
(Bento et al., 2016). Moreover, vimentin also localizes the proteasome to 
protein aggregates to promote protein homeostasis (Morrow et al., 2020).

The autophagy-lysosomal pathway connects many nutrient sensing-related 
pathways. For example, mTORC1 inhibition and AMP-activated protein 
kinase (AMPK) activation occur in response to nutrient deprivation (Saikia 
and Joseph, 2021). A recent study showed that FOXO3 regulates protein 
homeostasis in adult neural stem cells through autophagy, which may be 
one mechanism by which FOXO inhibits proliferation of NSCs in response to 
nutrient sensing (Audesse et al., 2019). Interestingly, the transition between 
activation and quiescence of NSCs was also recently found to depend on 
the autophagy-lysosomal pathway as indicated by higher lysosomal activity 
in qNSCs than that in aNSCs. Furthermore, this transition was associated 
with EGFR (epidermal growth factor receptor) degradation and activation of 
TFEB (transcription factor EB) (Kobayashi et al., 2019), which is a key gene 
in lysosomal biogenesis (Ballabio and Bonifacino, 2020). In addition, this 
pathway favors qNSCs and clearance of damaged organelles and aggregates 
to ensure niche stability. This pathway may also be associated with nutrient 
level regulation, and lack of energy may induce neural quiescence (Zhao et al., 
2016). This is partly reflected in degradation of growth factors such as EFGR.

The proteasome pathway is a cellular clearance mechanism for maintaining 
intracellular protein homeostasis. Inhibition of the proteasome pathway by 
MG132, a proteasome inhibitor, leads to impaired NPC proliferation and 
differentiation (Kim and Kim, 2020). However, one study showed that MG132 
treatment resulted in an increased proportion of cells that expressed BDNF 
expression, which led to neurogenesis and may have been related to the 
high apoptosis rate induced by MG132 (Mekala et al., 2020). Another study 
showed that MG132 administration significantly increased intracellular 

ROS levels and decreased the mitochondrial membrane potential, whereas 
the proteasome activator 18α-GA induced the opposite effect (Kim and 
Kim, 2020). These findings were consistent with our assertion that ROS 
promote differentiation of NSCs into neurons, which suggests that inhibition 
of the proteasome may cause ROS to force NSCs to undergo apoptosis or 
differentiation to ensure niche stability.

Chaperones direct polypeptides into a folded state or facilitate protein 
quality control through refolding, degradation, and sequestration. A variety 
of chaperones are expressed in NSCs, and sHsps, TRiC, and HspB5 have 
been recently found to be significantly differentially expressed in NSPCs and 
their differentiated progeny. The expression of TRiC is high in NSPCs prior to 
differentiation and the expression of HspB5 is high after differentiation. The 
activity of TRiC is highly dependent on ATP, which maintains the solubility of 
TRiC and prevents its aggregation. In contrast, HspB5 activity, which promotes 
misfolded protein spatial isolation, is independent of ATP (Vonk et al., 2020). 
Undifferentiated NSPCs consume more energy during proteostasis than 
during other functions to prevent the aggregate formation that diminishes 
niche stability. This high consumption rate may be related to increased ATP 
kinetics caused by high glycolysis rate.

Limitations
This review is subject to several limitations. First, since neurogenesis is a broad 
subject, this paper does not explore the relationship between each factor 
in neurogenesis, and does not explore the relationship between astrocytes 
and microglia. Second, most of the cited studies included animal and cell 
experiments. Lack of clinical data limits the generalizability of the findings in 
the referenced studies to humans. Third, the articles were limited to English-
language publications or translations. Therefore, relevant international data 
could be lacking.

Conclusions 
In this review, we summarized studies focused on the effects of energy 
metabolism and protein homeostasis on the transition from quiescent to 
activated NSCs (Table 1). For qNSCs, the focus was on maintaining quantitative 
and qualitative stability, whereas for aNSCs, the focus was on rapid 
proliferation and differentiation because of more aggressive metabolism. In 
energy metabolism qNSCs maintain activation of FOXO, resulting in slowed 
cell cycle, improve DNA inspection and repair, and also increased resistance 
to oxidative stress. In contrast, aNSCs move FOXO out of the nucleus to 
accelerate the cell cycle. Furthermore, qNSCs use glycolysis as the main mode 
of metabolism, resulting in reduced OXPHOS-generated ROS. In contrast, 
aNSCs prefer OXPHOS as an energy source to promote rapid proliferation. The 
mitochondria in qNSCs inhibit OXPHOS through proton leakage and show an 
elongated fused morphology. In contrast, mitochondria in aNSCs have higher 
OXPHOS activity and show a smaller and more fragmented morphology. 
Increased hypoxia-induced HIF-1 expression results in enhanced NSC 
proliferation, which seems to contradict the preference of qNSCs for hypoxic 
glycolysis. A possible explanation is that qNSCs may undergo anaerobic 
metabolism independent of environmental pressures. With regard to lipid 
metabolism, qNSCs prefer FA for FAO, while aNSCs prefer lipid synthesis via 
FA synthase to meet proliferation needs. In protein homeostasis,during the 
division of NSCs, the one that retains protein aggregates is gradually activated 
and divides and differentiates into mature functional cells, while the other will 
retain quiescent and stemness. In addition, qNSCs exhibit higher lysosomal 
activity, and the lack of a proteasome forces qNSCs to exit quiescence. With 
regard to chaperone proteins, NSCs use energy-consuming but more powerful 
TriC for aggregate removal prior to differentiation and non-energy-consuming 
HspB5 for aggregate isolation after differentiation. Although the difference 
lies in the differentiation process, it also shows that the NSC chooses a more 
expensive strategy in ensuring its own homeostasis.

Table 1 ｜ The role of nutrient-sensing and metabolic pathways/protein homeostasis 
in NSCs from quiescence to activity

Role  qNSCs aNSCs

Nutrient-sensing and metabolic pathways
Nutrient-sensing pathways    Activation of FOXO Move FOXO out of the 

nucleus
Oxygen sensing                Stable HIF-1α Enhanced HIF-1α
Glucose metabolism Glycolysis and glutamine 

catabolism
Oxidative phosphorylation

Mitochondrial dynamics Elongated fused morphology             Smaller and more 
fragmented morphology

Lipid metabolism Prefer FA oxidation Prefer lipid synthesis
Protein homeostasis
Autophagy-lysosomal 
pathway

Higher lysosomal activity Stable lysosomal activity

Proteasome pathway More sensitive Less sensitive
Chaperones Energy-consuming TriC Non-energy-consuming 

HspB5

aNSCs: Active NSCs; FOXO: forkhead box protein O; HIF: hypoxia-inducible factor; NSCs: 
neural stem cells; qNSCs: quiescent NSCs.
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