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Abstract  
Lactate, a byproduct of glycolysis, was thought to be a metabolic waste until the discovery of the 
Warburg effect. Lactate not only functions as a metabolic substrate to provide energy but can also 
function as a signaling molecule to modulate cellular functions under pathophysiological conditions. 
The Astrocyte-Neuron Lactate Shuttle has clarified that lactate plays a pivotal role in the central 
nervous system. Moreover, protein lactylation highlights the novel role of lactate in regulating 
transcription, cellular functions, and disease development. This review summarizes the recent 
advances in lactate metabolism and its role in neurodegenerative diseases, thus providing optimal 
perspectives for future research.
Key Words: Alzheimer’s disease; Astrocyte-Neuron Lactate Shuttle; brain; central nervous system; 
glucose metabolism; glycolysis; neuroinflammation; Parkinson’s disease; protein lactylation; signaling 
molecule 

Introduction 
Although the brain accounts for only 2% of the human body weight, it 
consumes approximately 25% of the energy during rest (Castro et al., 2009). 
As new unexpected functions of lactate have been uncovered, the role of 
lactate in the central nervous system (CNS) is receiving increasing attention. 
Substantial evidence shows that lactate functions as but is not limited to: (1) 
an energy metabolism source (Stanley et al., 1985; Bergman et al., 1999), (2) 
substrate for gluconeogenesis (Stanley et al., 1988; Emhoff et al., 2013), (3) 
signaling molecule (Hashimoto et al., 2007; Brooks, 2009), (4) and donor for 
protein lactylation (Zhang et al., 2019a; Gaffney et al., 2020). The description 
of the Astrocyte-Neuron Lactate Shuttle (ANLS) clarified the importance of 
lactate in maintaining neuronal metabolism and neurotransmitter transmission 
(Suzuki et al., 2011). Moreover, lactate also participates in metabolic 
reprogramming (Pan et al., 2022b), neuroinflammation (Boland et al., 2018; 
Aldana, 2019), and neurodegenerative diseases (Le Douce et al., 2020; 
Schirinzi et al., 2020), including Alzheimer’s disease (AD), Parkinson’s disease 
(PD), multiple sclerosis (MS), amyotrophic lateral sclerosis, and Huntington’s 
disease (HD). Neurodegenerative diseases are characterized by cognitive and 
behavioral dysfunctions, which are caused by the gradual and progressive 
neuronal loss and functional decline (Wang et al., 2020). With the growth 
of aging population, the number of people affected by neurodegenerative 
diseases is increasing. Deciphering the pathogenesis and developing effective 
treatments for these neurodegenerative diseases are urgently needed 
(Xiao et al., 2021). This review summarizes the recent advances in the role 
and mechanism of lactate metabolism in neurodegenerative diseases and 
emphasizes the potential therapeutic strategy for these diseases by targeting 
lactate metabolism.
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Search Strategy 
Studies cited in this review were published from 1985 to 2022, with a 
predominant citation from 2011 to 2022. All studies cited here were 
searched on PubMed database using the following keywords: lactate, lactate 
metabolism, glucose metabolism, glycolysis, lactate shuttle, monocarboxylate 
transporter, neurodegenerative diseases, histone lactylation, non-histone 
lactylation, microglia, astrocyte, neuron, neuroinflammation, Alzheimer’s 
disease, Parkinson’s disease, tuberculous meningitis, Huntington’s disease, 
and multiple sclerosis as well as learning and memory.

Overview of Lactate Metabolism 
Production and removal of lactate 
D-lactate, L-lactate, and racemic DL-lactate are the three isomers of lactate 
that are frequently created; however, due to the asymmetry of the carbon 
atoms in humans, L-lactate is the predominant form (Li et al., 2022b). As a 
terminal metabolite of glycolysis, lactate is generally produced under hypoxic 
conditions (Brooks, 2009). The glucose transporter (Glut) mediates glucose 
transfer from the extracellular matrix into the cytoplasm. Normally, glucose is 
converted to pyruvate by a number of glycolytic enzymes that simultaneously 
produce two molecules of adenosine triphosphate (ATP) (Brooks, 1986). 
Under normoxia conditions, pyruvate is transported into the mitochondria for 
the tricarboxylic acid cycle and coupled oxidative phosphorylation (OXPHOS), 
which generates about 36 molecules of ATP. Under hypoxia conditions, 
OXPHOS is blocked and pyruvate is catalyzed by the enzyme lactate 
dehydrogenase A into lactate. The removal of lactate is reverse-catalyzed by 
lactate dehydrogenase B to produce pyruvate after the supply of oxygen is 
sufficient, which then enters the tricarboxylic acid cycle and is metabolized 
to produce water and carbon dioxide. However, even when there is enough 
oxygen available, tumor cells or many proliferative cells prefer to use glycolysis 
and create enormous amounts of lactate, which is known as the “Warburg 
effect”.

The brain is regarded as a net lactate generator when at rest (van Hall, 2010; 
Dienel, 2012). The lactate that the brain cells make is transported to the 
extracellular matrix through the cellular membrane and then enters the 
systemic circulation by way of the blood vessels or lymphatic system. When 
blood lactate levels increase, the brain becomes an organ of net lactate 
uptake and monocarboxylate transporters (MCTs) on the blood-brain barrier 
transport lactate from blood to the brain. As a result, brain cells take up more 
lactate, and during exercise, the brain can eliminate up to 11% of the body’s 
lactate (van Hall, 2010).

Lactate shuttle and MCTs in the central nervous system 
Cell-cell lactate shuttle is the ability of lactate to shuttle from a highly 
glycolytic cell to an adjacent cell (Figure 1). The best-studied cell-cell lactate 
shuttle in the nervous system is named the ANLS (Suzuki et al., 2011). 
Glucose is taken up by astrocytes from the surrounding capillaries via glucose 
transporter 1. Glucose can then be stored as glycogen in astrocytes or 
undergo glycolysis to generate pyruvate. According to the ANLS, the lactate 
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produced by glycolysis in astrocytes can be transported to the astrocyte-
neuron intercellular space by MCT1 and MCT4, followed by neuronal 
uptake of the lactate via MCT2, which is required for synaptic formation and 
neurotransmitter transmission (Machler et al., 2016; Descalzi et al., 2019). 
Lactate is catalyzed to pyruvate and acetyl-CoA in neurons, which are utilized 
for generating a large amount of energy by OXPHOS along with regulating 
fatty acid synthesis to meet the needs of synaptic transmission and nerve 
excitability (Machler et al., 2016; Liu et al., 2017). Those studies have shown 
that the ANLS is disrupted in several neurological diseases, including AD, 
amyotrophic lateral sclerosis, and schizophrenia (Veloz Castillo et al., 2021).

There also exists an intracellular lactate shuttle (Butz et al., 2004; Brooks 
et al., 2022), which ensures that the lactate can be removed by the 
mitochondria (Brooks, 2002). In this shuttle, lactate oxidation to pyruvate 
is facilitated through the mitochondrial lactate oxidation complex, which is 
composed of mitochondrial MCT1, basigin (CD147), mitochondrial lactate 
dehydrogenase, and cytochrome oxidase (Hashimoto and Brooks, 2008). 
Consistently, MCT1, MCT2, and lactate dehydrogenase are reported to be 
located in the mitochondria and are associated with cytochrome oxidase 
in the neuronal mitochondria of the brain. Neuronal mitochondria contain 
mitochondrial lactate oxidation complex that has the potential to facilitate 
both the intracellular and cell-cell lactate shuttles in the rat brain (Hashimoto 
et al., 2008).

The shuttling system mediated by MCTs can also mediate the transportation 
of pyruvate and ketone bodies (Pierre and Pellerin, 2005). Since MCTs are 
lactate/proton symporters, the concentration gradient and protons decide 
the direction of the lactate transport. In addition, each type of MCT exhibits a 
specific cellular distribution in the brain, which can change with ontogenetic 
progression as well as different pathological states. MCT1 is highly expressed 
in most brain cell types during early postnatal development. In the adult 
brain, MCT1 is expressed mostly by endothelial cells, microglia (Kong et 
al., 2019), astrocytes, oligodendrocytes, ependymocytes, and choroid 
plexus cells (Murakami et al., 2021). MCT2 is expressed only by neurons 
and its expression increases with neuronal maturity and in the presence of 
some neurotransmitters (Pellerin et al., 1998). MCT4 is found exclusively 
in astrocytes (Bergersen et al., 2002; Rafiki et al., 2003). Interestingly, part 
of MCT2 immunoreactivity is located at postsynaptic sites, suggesting the 
particular role of MCT2 in synaptic transmission (Pierre and Pellerin, 2005).

A recent study showed that the PTEN/Akt pathway in endothelial cells can 
regulate the expression of MCT1 to enhance lactate transport across the brain 
endothelium, which is critical for lactate homeostasis, adult hippocampal 
neurogenesis, and cognitive function (Wang et al., 2019). Lactate, not 
pyruvate, can rescue memory impairment caused by the knockdown of MCT2 
by promoting learning-induced mRNA translation and expression of Arc/Arg3.1 
in both excitatory and inhibitory neurons, indicating that lactate is crucial 
because it fuels the neuronal reactions necessary for long-term memory 
(Descalzi et al., 2019). Furthermore, when blood lactate levels are over 4 mM 
because of exhaustive exercise or intravenous infusion of lactate, cognitive 
functions such as attention, working memory, and stress decline without sex 
differences (Coco et al., 2020). Insufficient astrocyte lactate supply may be an 
important cause of hypoxia or stroke-induced neurodegeneration (Yamagata, 
2022). MCTs and lactate are necessary for long-term memory and cognitive 
function. Lactate metabolism disorder would result in the development of 
neurodegeneration (Descalzi et al., 2019; Wang et al., 2019; Coco et al., 2020; 
Yamagata, 2022).

Multifaceted Functions of Lactate 
As a metabolic substrate, lactate can not only be catalyzed to pyruvate and 
serve as a crucial metabolic substrate but can also act as a gluconeogenic 
precursor to synthesize glucose to generate energy (Brooks, 2009). In addition 
to its metabolic functions, lactate can modulate transcription by epigenetic 
modification, which is called lactylation in macrophage and microglia (Zhang 
et al., 2019a; Gaffney et al., 2020; Pan et al., 2022b). Therefore, lactate plays 
a central role in both physiological and pathological contexts. In the CNS, 
cells can utilize lactate as a key energy source to meet the metabolic demand 
(Figure 1), in addition, it also acts as a signaling molecule to modulate 
cellular function. Thus, it may be an important regulator of cellular metabolic 
flexibility, which exerts modulatory effects on key cellular functions.

Signaling molecule
Lactate has a dual role in neurons and glia at different conditions. On the one 
hand, lactate is detrimental to CNS. For example, an increase in lactate intake 
by neurons was found to boost the generation of reactive oxygen species, 
enhanced mitochondrial energy metabolism and caused neurons to be in 
an oxidative state. Oxidative stress affected ATP synthesis, which increased 
reactive oxygen species production in mitochondria. This vicious cycle 
eventually caused axonal degeneration in the peripheral nervous system. 
(Jia et al., 2021). On the other hand, lactate is required for maintaining brain 
homeostasis. The G protein-coupled receptor 81 (GPR81) is highly expressed 
in the CNS and has a neuroprotective function. Lactate activates GPR81-
mediated signaling and reduces excitatory damage, demonstrating that 
lactate may be involved in regulating whole-brain metabolism (Morland et al., 
2015; Brown and Ganapathy, 2020; Laroche et al., 2021). 

Mitochondrial antiviral-signaling could function as a lactate sensor, whose 
inactivation by direct lactate binding serves as a natural barrier to limit 
retinoic-acidinducible gene I-like receptors signaling activation for enabling 
type I interferon production (Zhang et al., 2019b). The C2 domain in cytosolic 
phospholipase A2 can interact with mitochondrial antiviral-signaling 
mitochondrial antiviral-signaling and disrupt mitochondrial antiviral-signaling-
hexokinase 2 interactions in astrocytes, leading to decreased production 
of lactate to support neurons (Chao et al., 2019). N-methyl-D-aspartate 
receptors, which are glutamate receptors, are typical synaptic plasticity 
mediators. Lactate also stimulates N-methyl-D-aspartate receptors and 
downstream ERK1/2 signaling pathways, enhances the expression of Arc, 
c-Fos, and Zif268 implicated in neuronal plasticity and activity maintenance, 
and increases inward current flow and calcium inward flow brought on by 
glutamate and glycine (Yang et al., 2014; Veloz Castillo et al., 2021). 

In addition, hippocampal injection of lactate prevents the inhibition of 
memory retention by 1,4-dideoxy-1,4-imino-D-arabinitol (Alberini et al., 
2018). With memory impairment in a mouse model of AD, a study found 
that lactate level in the hippocampus and cerebral cortex declined (Lu et al., 
2019). Interestingly, the lactate shuttle allows exercise-produced lactate to 
enter the hippocampus, where it activates sirtuin 1 to boost the expression 
of brain-derived neurotrophic factor, which is conducive to cognition, 
learning, and memory formation (El Hayek et al., 2019). Local application 
of L-lactate to the injured spinal cord was found to promote corticospinal 
tract axon regeneration, leading to behavioral recovery in adult mice (Li et 
al., 2020). Therefore, lactate could be a signaling molecule in the regulation 
of intrinsic signaling transduction and confers bidirectional function in CNS 
pathophysiology.

Protein lactylation
Recent studies have shown that lactate can mediate protein modification 
by lysine lactylation (alternatively named lysine lactoylation, Kla) (Zhang et 
al., 2019a). They described two varieties of Kla known as L-lactyllys (K [L-
la]) and D-lactoyllys (K [D-la]). Moreover, L-lactly-CoA, an activated type of 
L-lactate, serves as histone K(L-la)’s substrate when an enzyme is in an active 
state (Zhang et al., 2019a), whereas under non-enzymatic conditions, lactyl-
glutathione was transferred to protein lysine residues, generating a K (D-
la) modification generally on non-histone proteins (Gaffney et al., 2020). 
At present, 26 histone lactylation modification sites have been identified in 
human cells and 18 histone lactylation modification sites have been identified 
in mouse cells (Zhang et al., 2019a).

Histone lysine lactylation
It has been reported that histone lactylation is closely related to the 
exogenous and endogenous lactate concentration (Zhang et al., 2019a). The 
majority of histone actylations involve so-called effectors, such as proteins 
termed writer and eraser that can add and subtract particular chromatin 
modifications, respectively (Liu et al., 2022). Coincidentally, studies have 
shown that p300, a classic histone acetyltransferase, together with its 
homolog CREB-binding protein, are potential histone Kla writer proteins 
(Zhang et al., 2019a; Yang et al., 2022). Besides, sirtuin 2, histone deacetylase 
1, and histone deacetylase 3 are potential histone easer proteins that have 
the functions of delactylase (Dai et al., 2022; Moreno-Yruela et al., 2022; Zu 
et al., 2022).

Glycolysis is a key topic in the majority of recent investigations on histone 
lactylation. Histone lactylation is found throughout the brain and experiences 
broad modifications as the neural development (Dai et al., 2022). As a novel 
epigenetic modification regulated by cellular metabolism, histone lactylation 
modification explains the molecular mechanism of metabolic reprogramming 
and transcriptional reprogramming under pathological conditions (Zhang et 

Figure 1 ｜ The role of lactate in the central nervous system.
Glucose transports into the cytoplasm is mediated by Glut1 and is converted to pyruvate 
by glycolytic enzymes in astrocytes. Under hypoxia conditions, pyruvate is catalyzed by 
LDHA into lactate that can be transported to the astrocyte-neuron intercellular space 
by MCT1 and MCT4, followed by neuronal uptake of the lactate via MCT2. Lactate is 
catalyzed to pyruvate by LDHB, which is utilized for generating energy by TCA cycle 
to meet the needs of synaptic transmission and nerve excitability. Whether histone 
lactylation is affected by lactate in astrocyte and microglia is waiting to be elucidated. 
Whether MNLS exists remains to be studied. Created with CorelDRAW 2018. ANLS: 
Astrocyte-Neuron Lactate Shuttle; LDHA: lactate dehydrogenase A; LDHB: lactate 
dehydrogenase B; MNLS: Microglia-Neuron Lactate Shuttle; TCA: tricarboxylic acid cycle. 
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al., 2019a; Pan et al., 2022b). However, there is a dearth of information on 
how histone lactylation affects neurological diseases. Our team has discovered 
that in an AD mouse model (5XFAD), H4K12la worsens microglia activation 
and functioning by affecting the glycolysis (Pan et al., 2022b). H3K18la is 
heavily implicated in transcriptome remodeling to support cell-fate transitions 
in the embryonic telencephalon and is closely associated with chromatin 
state and gene expression (Dai et al., 2022). Via histone H3K18la, macrophage 
aerobic glycolysis induces Arg1 expression and causes macrophages to enter 
a damage repair state (Zhang et al., 2019a). Aerobic glycolysis of tumor cells 
promotes tumor cell proliferation by upregulating YTHDF2 expression through 
H3K18la (Yu et al., 2021). Given the multiple pathophysiological effects of 
histone lactylation, it will be interesting to investigate the role and mechanism 
of histone lactylation in regulating neuronal and astrocytic functions during 
brain development and neurological pathogenesis.

Lactylation of non-histone proteins
Non-histone proteins were also found to be lactylated at lysine residues 
(Gaffney et al., 2020; Gao et al., 2020; Hagihara et al., 2021). Recently, a study 
demonstrated that neural excitement and behavior-related stimuli lead to 
the lactylation of 63 proteins in the mouse brain, accompanied by a change 
in the lactate level. These findings provide evidence for protein lactylation 
in the brain and its regulation by neural-activity-induced lactate production 
(Hagihara et al., 2021). In addition, methyltransferase-like 3 was also founded 
lactylation at g K281 and K345 that was essential for it to capture target RNA 
in the tumor-infiltrating myeloid cells (Xiong et al., 2022). 

350 lactylated proteins were discovered by liquid chromatography-tandem 
mass spectrometry in HEK293T cells, the majority of which were glycolysis-
related enzymes that affected the glycolytic production through negative 
feedback (Gaffney et al., 2020). Besides, 273 lysine lactylation was also found 
in 166 proteins, which were distributed in the nucleus (36%), mitochondria 
(27%), and cytoplasm (25%) in Botrytis cinerea (Gao et al., 2020). However, 
accurate Kla detection and restricted lactylation detection of non-histone 
proteins could not be performed by liquid chromatography-tandem mass 
spectrometry (Wu and Tao, 2022). Recently, Wan et al. (2022) identified 
the cyclic immonium ion that can be used to confidently identify novel 
Kla and modification sites, which revealed widespread lactylation beyond 
histones in the human proteome. They found that Kla proteins also existed 
in the cytoplasm and are mostly involved in glycolysis. For example, fructose 
bisphosphate aldolase A was lactylated on K147, which reduced its enzymatic 
activity. Interestingly, the modification site of dehydrogenase reductase 7, 
K321, was also found to be involved in methylation and ubiquitylation in 
previous studies, suggesting its potential importance (Wan et al., 2022; Wu 
and Tao, 2022).

Considering that protein lactylation might be a universal post-translational 
modification and plays an important role in the regulation of protein 
function, future studies to define specific protein(s) with lactylation and to 
investigate its role in different cell types will expand our understanding of 
the pathogenesis of neurodegenerative diseases that associated with lactate 
metabolism disorder.

Role of Lactate in Regulating Neuroinflammation
Neuroinflammation, an inflammatory response in the CNS, is mediated by 
the production of cytokines and chemokines, which are produced by resident 
CNS glia (microglia and astrocytes), endothelial cells, and peripherally derived 
immune cells (DiSabato et al., 2016). Generally, acute neuroinflammation is 
a defense against infection, injury, and toxins in the CNS. However, when the 
balance between pro-inflammatory and anti-inflammatory signals is disrupted, 
acute neuroinflammation will convert into chronic neuroinflammation 
(Ferreira et al., 2014; Kinney et al., 2018). Cytotoxic factors continuously 
activate the CNS glia, resulting in the release of pro-inflammatory signals 
(Grammas, 2011). Chronic neuroinflammation is an important pathological 
feature in neurological diseases, including AD (Holmes, 2013), PD (Tansey et 
al., 2022), amyotrophic lateral sclerosis (Appel et al., 2021), and MS (Ruiz et 
al., 2019).

There were multiple reports that neuroinflammation is regulated by microglial 
lactate metabolism (Woodburn et al., 2021). Microglia are predominantly 
fueled by OXPHOS in physiological conditions (Barros et al., 2018). However, 
in neurodegenerative diseases, pro-inflammatory microglia metabolically 
reprogram to aerobic glycolysis, with the mass production of lactate (Boland 
et al., 2018; Aldana, 2019). In turn, the lactate produced by microglia 
promotes the release of pro-inflammatory cytokines (Figure 2), such as tumor 
necrosis factor-alpha, interleukin (IL)-6, and interleukin-1β (IL-1β) (Andersson 
et al., 2005). It should be noted that under LPS-induced inflammation 
conditions, exogenous lactate may inhibit the secretion of tumor necrosis 
factor-alpha and IL-1β, along with the activation of phosphorylated nuclear 
factor kappa-B and NLRP3 inflammasome complex (NLRP3/ASC/caspase-1) 
(Liang et al., 2022). 

Lactate Metabolism in Neurodegenerative 
Diseases 
Alzheimer’s disease
AD, a chronic neuroinflammatory disease, is characterized by the deposition 
of amyloid-β (Aβ) plaques and tau neurofibrillary tangles (Hardy and Selkoe, 
2002; Huang and Mucke, 2012), along with progressive cognitive dysfunction 

and an alteration of aerobic glycolysis (Cunnane et al., 2020). Implementation 
of 2-Deoxy-2-[18F] fluoro-D-glucose positron emission tomography, a 
technique for the analysis of cerebral glucose metabolism, has revealed that 
glucose uptake is decreased in the brain of AD patients. Interestingly, it was 
reported that the lactate level is increased in the cerebrospinal fluid (CSF) 
of AD and mild cognitive impairment patients, suggesting that a glucose 
metabolism disorder is involved in the development and progression of 
AD (Liguori et al., 2016; Xiang et al., 2021). However, as mentioned above, 
microglia are in a state of glucose hypometabolism in physiological conditions, 
which may transform into glucose hypermetabolism in AD (Boland et al., 
2018; Aldana, 2019; Xiang et al., 2021). These results suggest that microglial 
glucose metabolism disturbance may affect the lactate level, which further 
results in neuroinflammation in the cerebral environment in AD. 

On the contrary, astrocytes and neurons were found to participate in 
significant glucose hypometabolism when exposed to Aβ oligomers 
(Tarczyluk et al., 2015). Besides, Glut1 is predominantly expressed on 
astrocytes and endothelial cells, while glucose transporter 3 is specifically 
expressed on neurons. Both Glut1 and glucose transporter 3 were found to 
be downregulated in a post-mortem analysis of AD brains (Simpson et al., 
2007). Moreover, in a 3×Tg-AD model, resting lactate production via aerobic 
glycolysis was decreased in astrocytes (Le Douce et al., 2020). Due to faulty 
lactate shuttling from glial cells to neurons, dysmetabolism in the brain can 
cause degeneration similar to AD (Sun et al., 2020). In the APP/PS1 AD model 
mice, reduced expression of MCT1, MCT2, and MCT4 resulted in neuronal 
energy deficits due to disturbed lactate transport from glial cells to neurons 
(Zhang et al., 2018). Therefore, the low amount of lactate produced by 
astrocytes could affect the energy supply of neurons.

In the early onset stage in AD model mice, we found that sodium rutin, a 
small molecular compound, could improve microglial mitochondrial OXPHOS, 
promote tricarboxylic acid cycle, and inhibit glycolysis, thus significantly 
attenuating neuroinflammation and pathological symptoms and improving 
cognition in AD model mice (Pan et al., 2019). As mentioned before, our 
group discovered that histone lactylation is increased in the microglia. We 
identified a positive loop glycolysis/H4K12la/PKM2 pathway that exacerbates 
microglial activation and dysfunction in the context of AD. We showed that 
interruption of this loop by blocking PKM2 decreases the H4K12la level, which 
transcriptionally suppresses a set of glycolytic genes and thereby reduces 
lactate levels. This may be a potential therapeutic strategy for treating AD (Pan 
et al., 2022b). Consequently, focusing on compromised lactate metabolism 
may be a new AD intervention approach (Zhao and Xu, 2022). During the 
development of AD, the main cell types involved in the lactate metabolism 
disorder as well as the point, function, and regulatory mechanism of gene 
expression for lactate regulation are not clear. Therefore, more in-depth 
studies are required to investigate whether lactate metabolism may be an 
early intervention target for AD.

Parkinson’s disease 
The dense substantia nigra exhibits a severe early deficiency of dopaminergic 
neurons, which is a hallmark of PD (Kalia and Lang, 2015). Major motor 
symptoms of PD include resting tremors, bradykinesia, stiffness, and postural 
instability, while the nonmotor symptoms include cognitive decline (Rocha 
et al., 2018; Dorsey et al., 2019; Xiao et al., 2021). It has been reported that 
lactate levels were abnormally elevated in the CSF of late-onset PD patients 
(Schirinzi et al., 2020). Upregulated hexokinase 2 and lactate dehydrogenase 
A with increased lactate levels promote the apoptosis of dopaminergic 
neurons, while inhibition of hexokinase 2 expression attenuates the 
apoptosis of abnormal neurons by downregulating lactate production and 
the AMPK/Akt/mTOR pathway in PD (Li et al., 2022a). Moreover, impaired 
glucose metabolism and reduced OXPHOS and ATP levels are also potential 
pathogenic factors in PD (Saxena, 2012; Cunnane et al., 2020). Terazosin 
enhances the enzymic activity of phosphoglycerate kinase 1, promoting 
glycolysis and increasing ATP levels (Chen et al., 2015). Both in vivo and vitro 
results suggested that terazosin has the potential of improving PD symptoms 
by enhancing glycolysis (Cai et al., 2019). These findings imply that targeting 
glucose metabolism may be an important PD therapeutic strategy.

Figure 2 ｜ Relationship 
between lactate metabolism, 
neuroinflammation, and 
neurodegenerative diseases.
On one hand, the lactate 
produced by astrocyte provides 
energy to neuron by ANLS. On 
the other hand, the lactate would 
lead to activating glia that cause 
neuroinflammation. Moreover, 
activated glia secrete pro-
inflammatory cytokines, such as 
TNF-α, IL-6, and IL-1β, which leads 
to neurodegenerative disease. 
ANLS: Astrocyte-Neuron Lactate 
Shuttle; IL-1β: interleukin-1β; IL-
6: interleukin-6; TNF-α: tumor 
necrosis factor-alpha.
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Other neurodegenerative diseases
In addition to AD and PD, lactate metabolism dysfunction also participates 
in other neurodegenerative diseases, such as MS and HD. MS, a common 
chronic inflammatory disease in CNS, is now incurable (Reich et al., 2018). 
CSF lactate was higher in MS patients compared to controls (Albanese et al., 
2016). Therefore, measuring CSF or serum lactate (Ghareghani et al., 2016) 
could be a low-cost and reliable laboratory test to gauge an MS patient’s 
response to treatment and the severity of their condition. 

HD is an autosomal-dominant, progressive neurodegenerative disorder 
with a unique phenotype that includes chorea and dystonia, incoordination, 
cognitive impairment, and behavioral issues (Walker, 2007; Wyant et al., 
2017). The research demonstrated that ascorbic acid’s inhibition of glucose 
transport results in the promotion of lactate absorption, but overexpressing 
glucose transporter 3 in HD cells totally restored lactate (Solís-Maldonado et 
al., 2018). These findings imply that lactate can be employed as a diagnostic 
marker and therapeutic target for MS and HD.

Treatment Strategies for Neurodegenerative 
Diseases by Targeting Lactate Metabolism
Most treatments for AD are pharmacological interventions, such as 
cholinesterase inhibitors (galantamine (Loy and Schneider, 2004)) and 
N-methyl-D-aspartate receptor blockers (memantine (Reisberg et al., 2003)). 
These drugs only partially relieve the symptoms in AD patients, and cannot 
delay the progression of AD (Tan et al., 2014). Moreover, one of the primary 
focuses for the creation of AD medications is neuroinflammation (Heneka et 
al., 2015). However, the activation of microglia can produce a variety of pro-
inflammatory cytokines, such as IL-6, IL-1β, and so on; therefore, the prospect 
of targeting a single inflammatory factor in the treatment of AD is uncertain. 
In addition to drug intervention, studies have found that aerobic exercise 
can significantly improve the cognitive function of AD patients. Molecular 
mechanism studies have revealed that aerobic exercise can promote cerebral 
blood circulation and improve cerebral glucose metabolism (Vidoni et al., 
2019; De la Rosa et al., 2020; Zhao and Xu, 2021). New research from our 
group demonstrates that intermittent fasting alters gut microbial composition 
with a large enrichment of probiotics like Lactobacillus, which improves 
cognitive skills and AD-related pathologies in a 5×FAD mouse model (Pan et 
al., 2022a).

Moreover, due to the lactate metabolic disorder in AD, targeting lactate 
metabolism may be a novel way to treat AD. We found that rutin sodium, 
a small molecular compound, significantly inhibited LPS-induced glycolysis 
in the microglia and promoted mitochondrial OXPHOS and ATP production, 
thus accelerating Aβ clearance. In vivo, it can significantly delay disease 
progression, reduce brain inflammation and Aβ plaque deposition, and 
improve the learning and memory function of AD model mice (Pan et al., 
2019). Besides, by altering the production of lactate, the glycolysis/H4K12 
lactylation/PKM2 positive feedback loop also relieved the symptoms and 
improved the cognition functions in an AD mouse model (Pan et al., 2022b). 

Conclusion and Future Perspective 
Lactate as a final metabolite of glycolysis is produced under anaerobic 
conditions. Recently, the role of lactate as a unique signaling molecule and 
lactylation as a novel post-translational modification of proteins have been 
studied in the physiological and pathological environment. Therefore, it 
is important to clarify how lactate affects the energy metabolism and the 
occurrence and progression of diseases in the CNS. Nowadays, lactate is used 
clinically to diagnose, predict, and assess the effectiveness of traumatic brain 
injury (Li et al., 2022b). Whether lactate can also be used for the diagnosis of 
neurological diseases needs to be elucidated.

In oxidative cancer cells, lactate exerts a beneficial effect by promoting 
v-ATPase-dependent lysosomal acidification and autophagy by lactate 
dehydrogenase B activity. Similarly, as the major phagocytes in the brain, 
microglia cells rely on lysosomes to maintain their phagocytic function (Brisson 
et al., 2016). In the early stages of AD, whether lactate produced by the 
microglia can affect lysosomes and subsequently affect the phagocytosis of 
Aβ plaques need to be further investigated. 

Lactate accumulation and protein lactylation can regulate downstream gene 
expression, thereby determining cell-mediated inflammation, neurotrophy, 
synaptic pruning, neuronal injury, and other functional disorders. However, 
there are few studies on the disorders of lactate metabolism and lactylation 
of proteins in the CNS. Furthermore, it is unclear whether protein lactylation 
is an inevitable result of a high concentration of lactate accumulation or a 
fine regulation mode controlled by time and space. Is lactyl-CoA or lactyl-
glutathione the direct substrate for protein lactylation? What enzyme 
catalyzes the formation of lactate to lactly-CoA and what are the “write”, 
“read”, and “erase” proteins that enable the modification of protein 
lactylation? Besides histones, what other proteins can be regulated by 
lactation modification? Future studies are urgently needed to address these 
questions.
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